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ABSTRACT
In this paper, we introduce “task trail” as a new concept to
understand user search behaviors. We define task to be an
atomic user information need. Web search logs have been
studied mainly at session or query level where users may
submit several queries within one task and handle several
tasks within one session. Although previous studies have
addressed the problem of task identification, little is known
about the advantage of using task over session and query
for search applications. In this paper, we conduct exten-
sive analyses and comparisons to evaluate the effectiveness
of task trails in three search applications: determining user
satisfaction, predicting user search interests, and query sug-
gestion. Experiments are conducted on large scale datasets
from a commercial search engine. Experimental results show
that: (1) Sessions and queries are not as precise as tasks in
determining user satisfaction. (2) Task trails provide higher
web page utilities to users than other sources. (3) Tasks rep-
resent atomic user information needs, and therefore can pre-
serve topic similarity between query pairs. (4) Task-based
query suggestion can provide complementary results to other
models. The findings in this paper verify the need to extract
task trails from web search logs and suggest potential appli-
cations in search and recommendation systems.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Measurement

Keywords
Search log mining, task trail, task evaluation, log analysis

1. INTRODUCTION
Web search has become a popular tool for finding infor-

mation in our daily lives. Web search logs record the search-
ing activities from users. Previous studies have shown that
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Time Event Value Task

09:03:26 Query facebook 1
09:03:39 Click www.facebook.com 1
09:06:34 Query amazon 2
09:07:48 Query faecbook.com 1
09:08:02 Click facebook.com/login.php 1
09:10:23 Query amazon kindle 2
09:10:31 Click kindle.amazon.com 2
09:13:13 Query gmail log in 3
09:13:19 Click mail.google.com/mail 3
09:15:39 Query amazon kindle books 2
09:15:47 Click amazon.com/Kindle-eBo... 2
09:17:51 Query i’m picking up stones 4
09:18:54 Query i’m picking up stones lyrics 4
09:19:28 Query pickin’ up stones lyrics 4

Table 1: An example of session in web search logs.

search logs can be used in various applications including
user satisfaction analysis [10], page utility estimation [33],
user search interest prediction [34], query suggestion [4],
web page re-ranking [36], web site recommendation [35], etc.
However, most of previous work analyzed web search logs
at session or query level, but few of them have considered
search logs at task (atomic user information need) level.

Consider the example shown in Table 1, which is a real
user search session from Bing (http://www.bing.com). The
user began this session with query “facebook” and finished
the session with several attempts to search for lyrics of a
song. From the table, we can see that one session may con-
tain multiple or interleaved tasks. The reasons behind that
are: (1) web search logs are ordered chronologically; (2)
users often open multiple tabs or browsers and conduct con-
current tasks. The studies on search logs need to consider
this common user behavior. On one hand, treating the whole
session as an atomic unit cannot reflect the details of multi-
tasking. As shown in Table 1, query “gmail log in” seems to
have no correlation with its adjacent queries. Besides, failing
in searching for lyrics of a song does not mean that the user
did not find useful information for query “facebook”. On the
other hand, dividing sessions at query level may lose infor-
mation of reformulation by users. For example, in Table 1,
even if the user had no click on query“amazon”, he still man-
aged to find relevant information by reformulating “amazon”
into “amazon kindle books” and made a click. Statistically,
we find about 30% of sessions contain multiple tasks and
about 5% of sessions contain interleaved tasks.

Segmenting sessions into tasks is non-trivial because
queries are often short and ambiguous. Beyond timeout



based method, several work tried to improve session bound-
ary detection by adding features such as query reformulation
patterns [15, 17]. Jones et al. [19] proposed to extract tasks
from sessions by using features based on time stamp, query
terms, etc. Lucchese et al. [24] proposed to leverage infor-
mation from Wikipedia and Wikidictionary to further im-
prove the performance of task identification. Although pre-
vious studies have addressed the problem of session bound-
ary detection [15, 17] and task identification [19, 24], few of
them systematically compared the effectiveness of using task
trails, session trails, and query trails for search applications.

In this paper, we compare task, session, and query trails
for three search applications: determining user satisfac-
tion, predicting user search interests, and query suggestion.
We conduct experiments on large scale datasets from Bing
(http://www.bing.com). Implicit feedback signals such as
clicks, dwell time [10] and success scores in a hidden Markov
model [12] are mined to measure user satisfaction and page
utility. Meanwhile, ODP [1] category information is adapted
to measure topic similarity for predicting user search in-
terests. We further explore query suggestion results gen-
erated by using task, session, and click through bipartite
graph as sources. Different query suggestion models are built
by co-occurrence, log likelihood ratio and random walk ap-
proaches. Experimental results show the advantage of using
task trails for these applications.

Specifically, the main contribution of this paper is that we
conduct extensive analyses and comparisons for verifying the
effectiveness of task trails on large scale datasets. Our main
findings are: (1) Sessions and queries are not as precise as
tasks in determining user satisfaction. About 40% of multi-
task sessions contain both successful and unsuccessful tasks,
and about 60% of multi-query tasks contain both clicked and
unclicked queries. (2) Task trails provide higher web page
utilities to users than other sources. Users gain higher page
utilities following task trails. (3) Tasks represent atomic user
information needs, and therefore are capable of preserving
topic similarity between query pairs. Topic similarities of
query pairs from the same task are significantly higher than
those from different tasks. (4) Task-based query suggestion
can provide complementary results to other models. These
findings suggest the potential applications of task trails in
search and recommendation systems.

The rest of this paper is organized as follows. In Section 2,
we discuss related work on mining useful information from
session and query trails. In Section 3 we explain the datasets
used in this paper and report several statistical results re-
garding task trails. The methods, metrics, and baselines
used in our analyses are described in Section 4. In Section 5
we present experimental results in details. We draw conclu-
sions and show possible future directions in Section 6.

2. RELATED WORK
The term session was proposed in [5, 31] to segment user

activities. Catledge et al. [5] analyzed user browsing logs
captured from client-side user events of NCSA’s XMosaic.
They found that 25.5 minutes timeout is good for separat-
ing consecutive user activities into different sessions. Later
studies [17, 35, 4, 23, 36] often used 30 minutes timeout as
the cut-off threshold.

User behaviors in session trails can be used to determine
user satisfaction. Fox et al. [10] studied relationship be-
tween implicit feedback signals and explicit user satisfac-

tion ratings. According to “gene analysis” on patterns of
user behaviors, they found that dwell time on search re-
sult pages is a good indicator for user satisfaction. Hassan
et al. [12, 13] formulated user search processes by Markov
models and learned successful and unsuccessful user search
behavior models.

Query co-occurrence information mined from session trails
can be used for generating query suggestion. Huang et
al. [16] proposed to use co-occurred query pairs from sessions
as suggestions. Jones et al. [20] extracted query substitution
for sponsored search and applied log likelihood ratio (LLR)
to improve relevance of query pairs. Boldi et al. [3] proposed
query flow graph to represent web search logs and applied
query flow graph in finding logical sessions and query rec-
ommendation. Transitions between web pages mined from
session trails can be used for estimating page importance.
Liu et al. [23] modeled user behaviors within sessions from
web browsing logs as a continuous-time Markov process and
proposed an algorithm named BrowseRank to improve per-
formance of web page ranking.

Sequential information mined from session trails can be
used for context-aware applications. Shen et al. [30] pro-
posed context sensitive information retrieval framework
based on language model and tested their approach on
TREC datasets. Xiang et al. [36] proposed several ranking
principles for context-aware ranking in web search, where
the principles promote or demote web pages based on rela-
tionship of query pairs within sessions. Cao et al. [4] com-
bined both click-through and session logs to mine concept
sequences for context-aware query suggestion. After group-
ing similar queries into concepts via their efficient algorithm,
suggestions can be generated at concept level.

A query trail [35, 33] is starting from a query and ending
with another query. It consists of a query result page, a first
clicked page, intermediate pages, and a destination page.
Queries and their first clicked pages are often recorded in
search engines as click-through logs, which can be used for
ranking, query suggestion, and so on. Gao et al. [11] pro-
posed to smooth click graphs to improve relevance estima-
tion of query document pairs. Mei et al. [27] performed ran-
dom walks on click through bipartite graph and used hitting
time based method for query suggestions. Queries and their
destination pages can be mined for popular destination rec-
ommendation. White et al. [35] conducted a user study by
suggesting destination web sites to users and found the desti-
nation suggestions outperform other methods in exploratory
tasks. The authors further evaluated relevance, topic cover-
age, topic diversity, novelty, and utility of full query trails
over sub-trails and trail origins [33]. They found that follow-
ing the query trails, users can find more useful information.
On the other hand, Olston and Chi proposed ScentTrail [28]
to combine searching and browsing activities into a single
interface, and they found it can help users in finding in-
formation faster than by only searching or browsing alone.
Donato [8] proposed to identify those complex tasks as re-
search missions which need users to explore multiple pages.
Kotov et al. [21] proposed to model and analyze cross-session
search tasks, and they applied classification approach to pre-
dict the re-visiting likelihood of different tasks.

Considering the multitasking behaviors in sessions, Jones
and Klinkler [19] proposed to classify query pairs into same
task via features based on time, word, web search results,
etc. Their approach achieved more than 90% accuracy in



task boundary detection and same task identification. Luc-
chese et al. [24] proposed to identify task-based sessions by
combining content (query word, edit distance) and seman-
tic (Wikipedia) features. In this paper, we adapt methods
described in [19, 24] to extract tasks from sessions where a
query distance function is learned by the SVM model and
then queries in sessions are clustered into tasks.

The study described in this paper differs from previous
work in that we focus on comparison of task, session, and
query trails in terms of determining user satisfaction, pre-
dicting user search interests and generating query sugges-
tions, rather than identifying session boundary [15, 17], ex-
tracting tasks from session [19, 24], or estimating web page
relevance [30, 23, 36]. As a result, task trails can be con-
sidered as an additional information source to session and
query trails for both search and recommendation systems.

3. DATA AND STATISTICS
In this section, we start from describing datasets, and then

report several statistics on the datasets regarding task trails.

3.1 Log Datasets
We extract two log datasets for the experiments. The

first dataset D0 consists of user browsing logs from a widely
used browser plug-in toolbar. It contains URL visits by
anonymized users who opted in to provide data. The second
dataset D1 consists of web search logs from Bing, which con-
tains user activities on the search engine. Both log entries
may contain several fields: (1) user anonymized unique iden-
tifier (machine ID). (2) A unique browser identifier. (3) User
clicked/visited URLs as well as queries related to user clicks.
(4) Referrer URLs where current URLs come from. (5) Time
stamps of user events. For preserving user privacy, intranet
and secure URLs (such as URLs beginning with https:) are
not recorded. Both datasets are from May to June 2011 in
United States search market where main language is En-
glish. To further clean the data, we preprocess datasets as
follows: (a) filter those sessions which have no search event
(such as checking emails) or too many search events (which
are likely generated by robots); (b) filter those entries with
non-English language settings, e.g., users searched by other
languages; (c) only keep those sessions with search events
from “Web” search vertical and filter verticals like “Image”,
“Video”, etc. since the majority of user searches are from
“Web” vertical, which has been studied extensively in pre-
vious work; (d) only keep sessions with search events from
Google, Bing and Yahoo! since these are main search en-
gines in U.S. market.

3.2 Session and Task Extraction
We apply a widely used timeout threshold to segment

session: two consecutive user activities are separated as
different sessions if the time interval between them ex-
ceeds 30 minutes [5, 4, 34, 36]. After session segmenta-
tion, dataset D0 contains 30, 071, 190 sessions and 2, 673, 335
unique users, while dataset D1 contains 488, 648, 153 ses-
sions and 159, 668, 543 unique users. Although the magni-
tude of D0 is smaller than D1, it contains more information
than D1, for example, (1) queries and clicks from different
search engines; (2) post-query clicks, which are URL vis-
its beyond search result clicks. We use this information in
experiments of determining user satisfaction, deriving page
utility, and predicting user search interests.

Task is defined as an atomic user information need
in this paper. Our task extraction framework can be de-
scribed as follows. First, we learn to measure similarities
between query pairs. Second, queries within sessions are
grouped into tasks via a clustering algorithm. This approach
is motivated by [19, 24], where Jones and Klinkner [19] pro-
posed to classify queries into tasks using a binary classi-
fication approach, while Lucchese et al. [24] proposed to
cluster queries into the same task based on empirically de-
signed query distance functions. Our approach takes ad-
vantage of machine learning approach in classifying whether
two queries are from same task and use clustering approach
to merge similar queries into same task. Basically, we mea-
sure query similarities by time and word based features, and
learn a SVM classifier to determine the weight of features.
Detailed features for query similarity and the performance
of SVM classifier can be found in Section 5.1.

Based on the learnt query similarity function, we can build
a undirected graph queries within a session. The vertices
of graph are queries and the edges are similarity between
queries. By dropping the weak edges where the similar-
ity is smaller than the threshold, we can extract all con-
nected components of the graph as tasks. As discussed and
tested in [24], this approach performs better than Query
Flow Graph [3], K-means [25], DBScan [26]. However, the
time complexity of constructing the graph and extract con-
nected component can be O(k ·N2) where N is the number
of queries and k is the dimension of features.

Algorithm 1: Query Task Clustering (QTC).

Input: Queries Q, cut-off threshold b;
Output: A set of tasks Θ ;
Initialization: Θ = ∅; Query to Task Table L=∅;

1: for len = 1 : |Q| − 1 do
2: for i = 1 : |Q| − 1 do
3: // if two queries are not in the same task
4: if L[Qi] 6= L[Qi+len] then
5: // compute similarity takes O(k)
6: s← sim(L[Qi], L[Qi+len]);
7: if s ≥ b then
8: merge Θ(Qi) and Θ(Qi+len);
9: modify L;
10: // break if there is only one task
11: if |Θ| = 1 break;
12: return Θ;

In this paper, we propose a Query Task Clustering ap-
proach (QTC) as shown in Algorithm 1. Based on the obser-
vation that consecutive query pairs are more likely belong-
ing to same task than non-consecutive ones, QTC prefers
to first compute the similarities for consecutive query pairs
by timestamps. For example, given a series of queries {q1,
q2, q3, q4}, QTC will first compute for pairs {q1 → q2,
q2 → q3, q3 → q4}, it can reduce the computational cost
from O(k · N2) to O(k · N) if there is only one task in the
session. Based on the statistics that about 50% sessions only
have one task, QTC is efficient to identify them. For ses-
sions with multiple tasks, QTC is also faster than standard
implementation. For example, if the sequences {q1, q2, q3,
q4} can be grouped into {q1} and {q2, q3, q4}, the standard
approach enumerate all 6 query pairs but QTC only needs
to compute 5 pairs while pair {q2 → q4} is skipped. That
is because it skips computing the similarity of query pairs



Statistics D0 D1

Avg. # of Queries in Sessions 5.81 2.54
Avg. # of Queries in Tasks 2.06 1.60
Avg. # of Tasks in Sessions 2.82 1.58
% of Single-Task Sessions 53.29 70.72
% of Multi-Task Sessions 46.71 29.28
% of Interleaved Task Sessions 15.25 4.78
% of Single-Query Tasks 48.75 71.86
% of Multi-Query Tasks 51.24 28.13

Table 2: Basic statistics of Browse and Search Logs.
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Figure 1: Search Distribution in Browse (solid-line)
and Search(dash-line) Logs. Please note the per-
centage of sessions is computed in total but the per-
centages of multi-task and interleaved-task sessions
are computed per length of sessions.

from the same task. In addition, QTC needs extra O(N)
space for storing a query to task mapping table, which is
affordable in current applications.

3.3 Task Statistics
After task extraction, dataset D0 contains 67, 464, 863

tasks and dataset D1 contains 770, 759, 594 tasks. We then
report several basic statistics on D0 and D1. Table 2 shows
the detailed numbers. From the table, we can see that aver-
age numbers of queries in sessions and tasks of D0 are big-
ger than those of D1. The reason is that sessions in D0 are
usually longer than sessions in D1 since users often browse
before and after searching. Meanwhile, percentages of multi-
task sessions in D0 and D1 are about 50% and 30%, respec-
tively, which indicate that a large part of sessions consists
of multitasking activities. Furthermore, about 15% and 5%
of tasks are interleaved in D0 and D1, respectively, which
hint that users sometimes perform several tasks at the same
time. Besides, about 50% of tasks in D0 and 30% of tasks in
D1 contain multiple queries, which means that users often
reformulate their queries during their search processes.

Furthermore, Figure 1 draws the distribution regarding
the relationship between tasks and session length (in terms
of number of queries). From the figure, we observe that: (1)
As the length of sessions increases, the percentage of sessions
decreases, which is in accordance with previous studies [4,
22, 24]. (2) On the other hand, as the number of queries
in sessions increases, the percentage of multitask and inter-
leaved tasks also increases. While the number of queries in

Reformulation Patterns D0 D1

% of Identical 66.37 50.45
% of Shorter 12.48 16.77
% of Longer 21.45 32.76

Table 3: Query Refinement Pattern within Tasks
from Browse and Search Logs.

sessions is greater than three, more than half sessions con-
tain multiple tasks.

Next, we analyze query refinement patterns within multi-
query tasks. We categorize consecutive query pairs within
tasks into three types according to their query length: iden-
tical, shorter, and longer. The results are shown in Ta-
ble 3. More than half ajacent query pairs are identical, where
about 90% of identical pairs are from refreshing search result
pages or clicking back button, and about 10% of identical
patterns are from pagination. Besides, we can find that
longer reformulation patterns are about twice more than
shorter reformulation patterns. Based on these statistics,
we believe that it is more effective to recommend longer and
more specific queries to users than queries that are more
general and have fewer words.

4. EXPERIMENTAL DESIGN
As described before, we design several experiments to eval-

uate the effectiveness of task trails in three search applica-
tions. In this section, we describe the methods and tools as
well as baselines used in the experiments.

4.1 Methods
To measure user satisfaction, we use several user implicit

feedback signals such as clicks, dwell time, and so on. To
predict user search interests, we organize user information
needs by queries they submitted and summarize queries into
topics. To compare the performance of query suggestion, we
further investigate models based on task trails in compari-
son to methods based on session and click through bipartite
graph. We describe the details in the following sections.

4.1.1 Analyzing User Satisfaction
To understand whether a user is satisfied or not after the

search process, we adapt several implicit feedback [10, 12]
as measurements.

• Clicks. Previous work [11] showed clicks on search
results often indicte the relevance between queries and
clicked pages.

• Dwell Time. Previous research [10] showed that
dwell time of clicked results is a good indicator of user
satisfaction. It is because during the information seek-
ing process users are like to stay longer on useful pages.
White et al. [33] conducted their study on estimating
page utilities by using 30 seconds as indicator of de-
riving page utility. We therefore take 30 seconds dwell
time on clicks of search results as a user satisfied signal.

• HMM Success Score. As shown in [12, 13], user
search activities can be modeled as a sequential pro-
cess. Therefore, we can build two HiddenMarkov mod-
els to compute the likelihood of user success and fail-
ure. The Markov model takes {queries, clicks, dwell
time (>30 seconds)} as states {Q, SR, SR Long},



respectively. Based on labeled dataset containing
both successful and unsuccessful search processes from
users, we train two HMM models. Then given a new
user task, we compare the likelihood from successful
and unsuccessful models and determine the label of
user tasks accordingly. See [13] for more details.

Based on above implicit feedback signals, we can com-
pute AllClickRate,30sClickRate at both session and task
level. Take AllClickRate as an example, if one query has
more than one click, then it is judged as clicked. Sessions
contain clicked query are labeled as clicked sessions, and
AllClickRate for sessions is the percentage of clicked ses-
sions. The same calculation are conducted for AllClickRate
of tasks. By using the task success labels based on Hidden
Markov model, we can study the percentage of multitask
sessions with both successful and unsuccessful tasks. As re-
ported in [13], the HMM model can achieve 80% and 93%
precision for labeling successful and unsuccessful cases with
70% recall, respectively.

Besides, we also compute web page utility of a query trail
as the percentage of pages where users stayed longer than
30 seconds [10, 33]. Both task and session can be considered
as a sequence of query trails. Each query trail begins by
a query following several clicks and ends by another query.
Therefore, we can compute average utility on: (1) Sequence-
Full (all query trails of sequences), (2) Sequence-Origin (first
query trails of tasks or sessions), and (3) Sequence-Follow
(other query trails except first one in tasks or sessions). Av-
erage utilities from different sources can be compared to
know which source provides highest web page utilities for
users in finding useful information.

4.1.2 Predicting User Search Interests
User search interests can be captured for improving rank-

ing or personalization of search systems [30, 34, 36]. Previ-
ous work has taken advantage of queries and clicks preced-
ing user current query as context to perform context-aware
ranking [36]. One of key aspects in context-aware ranking
is to promote or demote the rank of URLs based on their
relationship with current query’s context. As studies in [30,
36], the relationship can be measured using topic similarity.

Since queries submitted by users reflect user information
needs, we can use queries to represent user search interests.
On the other hand, queries are often short and ambiguous.
Therefore we can summarize user search interests at topic
level. By taking previous co-session or co-task queries as
context information to user’s current query, we can construct
different context models. To know which context model can
predict user search interests better, we can compare topic
similarities of co-session and co-task query pairs.

Without loss of generality, we take ODP [1] category as
topics for summarizing user search interests. Queries are
mapped into ODP categories by taking advantage of their
search results. For each query, we first scratch its top ten
search results from search engines Google and Bing, and ob-
tain a union set of URLs. Then we crawl content information
of each URL. Topics of all URLs are obtained by ODP cat-
egory looking up and content matching. A content based
ODP classifier is built similar to [29]. We combine a map-
ping of URL to ODP category from the training data and a
classifier for each target category with features of unigram,
bigram and trigram language model. We choose second level
ODP categories with 385 sub topics where topics in “/world”

ODP Topic t P (t|Q)

kids and teens/pre-school 0.1415
games/puzzles 0.1344
kids and teens/computers 0.1116
reference/education 0.1042
games/resources 0.1032

Table 4: Top 5 ODP topics for query“cool math”(Q)
with corresponding topic probability P (t|Q).

and “/regional” are excluded. Afterwards, topics of queries
are obtained from topics of their top search results equally.
Finally, we normalize topic distribution to let

∑
t
P (t|Q) = 1

(Here t is short for topic) for each query Q. As an exam-
ple, top five topics of query “cool math” with corresponding
P (t|Q) are shown in Table 4.

After representing each query as a topic distribution, we
can compute topic similarity between query pairs Qx and
Qy by Histogram Intersection [32]:

Sim(Qx, Qy) =
∑

t

min(P (t|Qx), P (t|Qy)) (1)

Histogram intersection is used here for its simplicity in
both computation and explanation. The higher the value
is, the more similar two queries are. We further introduce
similarity for top K topics as:

Sim@k(Qx, Qy) =
∑

t∈Qk
x∩Qk

y

min(P (t|Qx), P (t|Qy)) (2)

HereQk
x denotes top K topics which have highest probabil-

ity of P (t|Qx). This measure can reflect similarity between
query pairs in their most relevant topics. Bennett et al. [2]
mentioned that due to space limitation in real applications,
we may only store top K topics for each query. Therefore,
we take Equation 2 as a metric for topic similarity.

4.1.3 Query Suggestion
To compare difference among tasks, sessions and click-

through logs in generating query suggestions, we build sev-
eral suggestion models. Since sessions and tasks both con-
tain several queries, we can leverage the co-occurrence in-
formation for suggestions. Besides, query-URL clicks can be
mined from query trails for constructing the click through bi-
partite graph. Then queries sharing lots of co-clicked URLs
can be used as suggestions. The details of suggestion models
are described as follows.

• Co-occurrence. Huang et al. [16] showed the effec-
tiveness of using co-occurred queries within sessions as
suggestions. One of its shortages is that it may sug-
gest popular but useless queries. We can also build
task level co-occurrence model.

• Log Likelihood Ratio (LLR). Dunning [9] showed
LLR can achieve good statistical results on text anal-
ysis. Jones et al. [20] took LLR to measure rele-
vance between query terms. Using LLR to measure
correlation between query pairs can ease the prob-
lem of providing popular but useless queries. Given
two queries q1 and q2, LLR makes null hypothesis
H1 : Pr(q2|q1) = Pr(q2|¬q1) and the alternative hy-



pothesis H2 : Pr(q2|q1) 6= Pr(q2|¬q1). Likelihood ra-
tio for test λ = maxp L(H1)/maxp1,p2 L(H2) is used
in LLR = −2 lnλ. Simply speaking, higher LLR indi-
cates closer correlation between query pairs. A score
of 3.84 for LLR indicates 95% confidence for reject-
ing null hypothesis H1, and two queries are significant
related. To further increase the quality, we only mine
query pairs having LLR larger than 100 as suggestions.

• Random Walk. Previous work [6, 27] showed that
random work approaches on click through bipartite
graph can generate good query suggestions. Given a
click-through bipartite graph, query to URL transi-

tion probability is computed as P (u|q) = #(q,u)
#(q)

, and

URL to query transition probability is computed as

P (q|u) = norm(#(q,u)
#(u)

· iqf(u)). Here #(·) is short for

count and norm(·) is short for normalization. We in-
troduce iqf [7] to decrease weights of popular URLs
connected to many queries. The transition weights
between query pairs P (qj |qi) =

∑
u P (qj |u) · P (u|qi).

After constructing matrix P with all P (qj |qi), random
walk model [6] can propagate as:

ri+1(q) = α · P · ri(q) + (1− α) · r0(q) (3)

Here ri(q) is a transition vector at i-th iteration for
query q. α was usually set to be 0.7 in previous
work [14, 7]. Iterations can continue until converge
or stop after maximum steps. Finally we can provide
suggestions for query q via rn(q).

We compare query suggestion results to show difference
among tasks, sessions, and click through bipartite graph.
To keep it simple, we do not merge all sources into hybrid
methods such as [22] to further improve the performance of
query suggestion.

5. EXPERIMENT RESULTS
In this section, we present experimental results and find-

ings in details. Firstly, we introduce our approach for ex-
tracting tasks from sessions. Then we present the results of
evaluating the effectiveness of task trails.

5.1 Performance of Task Extraction
To learn a good similarity function for queries, we con-

struct a labeled dataset for task classification. 10,368 ses-
sions are randomly sampled from log dataset and all query
pairs in those sessions are extracted. There are totally
17,924 query pairs. 26 annotators are organized as judge
pools and each query pair is shown to at least three of them.
Each time, one annotator is given by two queries with query
words as well as top ten search results to judge whether they
are submitted for same task. As described in Section 3.2,
we define task as atomic information need and give out de-
tailed examples in our labeling guidelines. Briefly speaking,
the guidelines allow annotators to label query pairs as same
task if: (1) they are repeated; (2) one contains a narrowing
intent of another; (3) one contains a widening intent of an-
other; (4) one contains alternative intent of another; (5) one
is a typo of another. On the other hand, the annotators are
not allowed to label query pairs as same task if: (1) they are
unrelated; (2) they contain different atomic intentions (e.g.,
“seattle city”→“space needle”). Labels include 1 (same task),
-1 (different task) or 0 (unknown), and label of each query

Query A Query B

+1
gmail.com login gmail
florida statutes florida evidence code

-1
facebook.com fallout 3 books
definitions of tarsorraphy attwireless

0
sunday night football nbc sports nfl
snowmobiling in Minnesota snowmobile parts

Table 5: Examples of labeled query pairs.

Feature Description Weight

temporal features
timediff 1: time difference in seconds -0.1121
timediff 2: category for 1/5/10/30 mins -0.0623

word features
lv 1: Levenshtein distance of two queries 0.0106
lv 2: lv 1 after removing stop-words. -0.1951
prec 1: average rate of common terms. -0.2870
prec 2: prec 1 after removing stop words. 1.2058
prec 3: prec 1 (If term A contains B, A=B) 0.5292
rate s: rate of common characters from left 1.6318
rate e: rate of common characters from right 0.4014
rate l: rate of longest common substring 0.4941
b 1: 1 if one query contains another, else 0 0.6361

Table 6: Features of query pair.

pairs is obtained by voting. Finally we obtain 5,668 positive
pairs, 9,370 negative pairs, and 1,334 unknown pairs. The
unknown pairs are ignored, while positive and negative pairs
are used. For better understanding labeled results, we show
some examples of labeled query pairs in different categories
in Table 5. Although previous work [19, 24] conducted their
studies by manually labeling whole session into tasks, we
choose to label query pairs since: (1) it can ease effort of
human annotators, and (2) the goal of our first step is to
obtain a query similarity function between query pairs, so
pair-wised labeling can provide adequate information.

We construct 11 features to measure similarity between
queries. These features can be classified into two categories:
1) temporal; 2) query words. We present details of features
in Table 6, where 215 frequent searched but useless words
are selected as stop words. The column weight in the table
gives out the weight of each feature for similarity function.
We obtain the weights by training a linear SVM model [18].
We choose linear-SVM as classifier because of its good per-
formance in many applications and theoretical soundness.
The whole labeled dataset is split into 5 folds for cross val-
idation. Each time 3 folds are used for training, 1 fold for
validation in tuning parameter (C in SVM) and the rest 1
fold for testing.

Studies on these features show that using temporal fea-
tures can only achieve about 70% accuracy, word features
can achieve 91% accuracy, and combining them can achieve
93% accuracy in classifying queries into tasks. The perfor-
mance of temporal features is in accordance with [19, 24]: no
matter how long or short the timeout threshold is, it cannot
achieve good precision in identifying tasks. ROC curves of
features for task classification are shown in Figure 2. As a
result, average precision on testing folds are higher than 93%
by using all features. Therefore, given two queries, we can
compute their similarity from features described in Table 6
and judge whether they are from same task or not. Ad-
vanced features such as Wikipedia, web search results can
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Figure 2: ROC of features for task classification.

be added into this model. Since we already achieve good
classification performance, we keep current model for exper-
iments in this paper. Then we use Algorithm 1 to group
queries into taks. We omit the comparison of different clus-
tering algorithms since it is not our focus in this paper.

5.2 Findings
5.2.1 Determining User Satisfaction
After task extraction, we compute AllClickRate and

30sClickRate at both session and task level as described
in Section 4.1. The results on both D0 and D1 are shown
in Table 7. As we can see, in both logs, all implicit mea-
sures have big differences between session and task. Take
AllClickRate as an example, the differences between tasks
and sessions comes from multi-task sessions where some
tasks contain clicks, but others do not. Then we extract
multi-task sessions to continue study. Table 8 shows the
percentage of multi-task sessions with both successful and
unsuccessful tasks in AllClick and 30sClick. As we can
see, 35% of multi-task sessions in D1 have both clicked and
unclicked tasks, which can occupy more than 10% of all ses-
sions in D1.

Next, all tasks are labeled as successful or unsuccessful by
using Hidden Markov models as described in Secion 4.1.1.
Based on statistics on multitask session, we find that 27% of
multitask session in D0 contain both successful and unsuc-
cessful tasks, and 42% of multitask sessions in D1 contain
both successful and unsuccessful tasks. The results indicate
that extracting tasks from sessions is non-trivial, especially
in using logs for determining user satisfaction.

Furthermore, we compute the percentage of successful
tasks having both clicked and unclicked queries. We find
that the percentages of successful multi-query tasks which
contains both clicked and unclicked queries are 62% and 30%
on D0 and D1, respectively. The results indicate that tak-
ing individual query as a unit to judge user satisfaction is
insufficient. Therefore, to determine user satisfaction, It is
more precise to choose at task level comparing with session
and query level.

On the other hand, we study sessions and tasks in deriv-
ing web page utilities. As described in Section 4.1, aver-
age web page utility of one query trail is computed as the
percentage of clicked pages having dwell time longer than
30 seconds. Then we compare several sources in providing
utilities: (1) Sequence-Full, which contains all query trails;

D0 D1

Implicit Measures Session Task Session Task

All Click (%) 93.86 84.96 82.73 77.75
30s Click (%) 82.37 67.09 76.38 70.04

Table 7: Implicit rates for user satisfaction.

Implicit Measures D0 D1

All Click (%) 18.65 35.21
30s Click (%) 34.69 47.55

Table 8: Percentage of multitask sessions which have
tasks with different implicit feedback signals.

(2) Sequence-Origin of sessions, which contains first query
trails of sessions; (3) Sequence-Follow of sessions, which con-
tains query trails except first one of sessions; (4) Sequence-
Origin of tasks, which contains first query trails of tasks; (5)
Sequence-Follow of tasks, which contains query trails except
first one of tasks.

To conduct this experiment, we use dataset D0 since those
click events beyond search result clicks are recorded. We fil-
ter D0 by selecting sessions with at least two query trails
where each query trail contains at least one clicked page.
The filtering is important for comparing the utilities of dif-
ferent sources. After that, we obtain 182,533 sessions which
are in high quality for utility calculation and adequate in
numbers for significant test.

The results of utility comparison are presented in Table 9.
On average there are more than half pages deriving utility
to users (Sequenct-Full), which is in accordance with [33]. If
we only have a look at first queries, the average utility de-
creases at both session and task level. That is to say, users
tend to find useful pages in the rest of search processes. Fol-
lowing original queries, utilities of sessions and tasks both
increase and the utility of tasks is even higher. Significant
test shows that the source of tasks excluding first query
(Sequence-Follow of tasks) outperforms all other sources in
deriving utilities (all p-values < 10−5). Therefore, following
task trails, users can find more useful information.

5.2.2 Predicting User Search Interests
As described in Section 4.1, user search interests can be

represented by their queries. Further summarizing queries
into topics can help understanding user search interests at a
higher level. Given two queries submitted by one user, they
may come from: (1) different sessions (inter-sessions); (2)
same session (intra-session); (3) different tasks in different
sessions (inter-tasks among sessions); (4) different tasks in
same session (inter-tasks within sessions); (5) same task in
same session (intra-task). All these five sources can provide
query pairs. Besides, capturing user search interests at topic
level is useful to understand user behaviors. For example,
average topic similarity between query pairs from different
sessions can help tracing the user search interests during a
relative long period. Topic similarity between query pairs
from same session can reflect user search interests in a rela-
tive short time.

We use dataset D0 in this experiment since queries in
D0 may come from different search engines and then record
the whole picture of user search processes. We pick out
users with all sessions have two or more queries, since single-
query sessions cannot generate query pairs. Finally we get
21,787 users with 52,510 sessions, 118,330 tasks, and 79,037
distinct queries. As we know, users often repeat their queries
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Figure 3: Topic similarities of query pairs from different sources. For each K in Sim@K, the left-most bar is
for inter-sessions, and right-most bar is for intra-task.

Source Avg. Utility(%)

Sequence-Full 55.50
Sequence-Origin of Sessions 49.41
Sequence-Follow of Sessions 57.38
Sequence-Origin of Tasks 53.58
Sequence-Follow of Tasks 58.47

Table 9: Utilities of different sources based on ses-
sions and tasks (N=182,533).

multiple times and search popular queries like “facebook”,
“youtube” in their daily lives. For a fair comparison, we
further construct two datasets for experiments: (a) the first
one S1 contains all unique queries from sessions. That is to
say, identical queries from one session is not counted twice
or more in computing topic similarity. (b) the second one S2

adds a filtering step on S1 by removing all popular queries
like “facebook” from sessions.

To avoid bias from users with many sessions, we compute
topic similarities of different sources and get average values
at user level. Besides, we compute similarity Sim@K with
different K: 1, 3, 5, 10, and so on. Given two queries Qx

and Qy, Sim@1 means that the similarity is only computed
on the highest P (t|Q). As shown in Equation 2, if the top
1 topics t of Qx and Qy are different, then Sim@1 is zero.
The same to Sim@K at top 3, 5, 10, etc.

The results of topic similarity are shown in Figure 3. From
the figure we can find several trends: (1) Topic similarities
of query pairs are increased along with K. This is straight-
forward based on the definition of Sim@K, since the big-
ger K is, the more topics are involved. (2) Inter-Session
similarity is comparable or even higher than Intra-Session
similarity on first dataset S1. Based on studies of real ex-
amples, the reason is that users are likely to search popu-
lar queries such as “facebook” or “hotmail” among different
sessions. When we filter those popular queries, similarity
of intra-session is increased to be higher than inter-session
at second dataset S2. However, we can still observe that
topic similarities of both inter-session and intra-session are
low, which indicates that timeout cut-off based session is
not good to preserve topic similarity. (3) Topic similari-
ties of intra-session, inter-task among session, and inter-task
within session are comparable. As described in Section 5.1,
queries are grouped into tasks mainly based on query word
features, which means queries from different tasks are not

similar in lexicon. Since queries from different tasks have
low topic similarity, it further hints they are not searched
for the same user information need. (4) Topic similarity of
intra-task is highest among all sources, which indicates task
trails, representing user atomic information needs, can well
preserve user search interests. Significant test results show
that source of intra-task has highest topic similarity among
all sources (all p-values < 10−5).

5.2.3 Query Suggestion
As described in Section 4.1.3, we compare several models

for generating query suggestions: (1) session co-occur; (2)
session LLR; (3) task co-occur; (4) task LLR; (5) random
walk at initial state (at 0-th iteration); (6) random walk with
exact solution (at n-th iterations).

We choose dataset D1 from search logs for this experi-
ment, since (a) D1 is about ten times larger than D0, and
(b) D1 can provide sufficient information for all query sug-
gestion models. To make D1 less noisy, we conduct pruning
steps on all methods [4, 22]. In session-based co-occurrence
and LLR methods, we prune query pairs with co-occurrence
less than 5 times. In task-based co-occurrence and LLR
methods, we prune query pairs with task co-occurrence less
than 5 times. In random walk approach, we prune edges
of query-URL pairs clicked less than 5 times. After prun-
ing, we construct all models as described in Section 4.1.3.
Please note that co-occurrence and LLR methods are used
on sessions and tasks with more than 2 queries, while ran-
dom walk approach can leverage information from sessions
having only one query with clicks.

Firstly, we compare the coverage of all methods in query
suggestions. Instead of counting the percentage of testing
cases each model is able to provide suggestions, we com-
pare the number of indexed queries in session-based, task-
based, and random walk approaches. The results are shown
in Table 10. By the number of distinct query, session-based,
task-based, and random walk methods preserve only 0.7%,
0.5% and 2% queries from D1, respectively. However, by the
frequency of queries, session-based, task-based, and random
walk methods keep 52%, 49% and 58% of query occurrences,
respectively. These results indicate that after pruning, all
methods can generate suggestions for high and middle fre-
quent queries but are not capable of offering suggestions to
most tail queries. Since random walk approach can make
use of information from single-query sessions, it can gener-



Methods Distinct # of Q. Frequent # of Q.

Session-based 2,115,815 650,550,492
Task-based 1,517,291 609,960,534
Random walk 6,104,997 720,678,502
Total 298,563,791 1,239,776,369

Table 10: Coverage of all methods in terms of num-
ber of queries. Q is short for queries.

ate suggestions on more testing queries than session-based
and task-based methods.

Secondly, we compare the quality of query suggestions
generated on a hold-out testing set. Testing queries are
sampled from high, middle and low frequent parts of an-
other search logs dataset D2 in July 2011. High frequenct
queries are submitted more than 100,000 times; middle fre-
quent queries are submitted more than 100 times; and rest
queries are low frequent. We pick out 100 testing queries
from each frequent part where every test query has at least
one suggestion by all models. To avoid providing dupli-
cated suggestion for all models, we conduct the same post-
processing step on suggestions. Specifically, we scan all sug-
gestions sequentially and filter duplications. Each sugges-
tion is calculated a smallest Levenshtein Edit Distance with
other suggestions ranked higher than it, then it is labeled
as duplicated and discarded if the edit distance is too small
comparing to its length. This simple method can remove
duplicate suggestion “amazonkindle” when there is another
suggestion “amazon kindle”.

All models provide at most 5 suggestions. We then invite
3 annotators to label whether these suggestions are mean-
ingful (1) or meaningless (0). Each time, annotators are
shown with query words and search results of a testing query
and a suggested query. Those suggested queries which are
either too similar or too irrelevant to testing queries are
judged as meaningless. The final judge is obtained by vot-
ing and the quality of each model is computed via number
of meaningful suggestions divided by total number of sug-
gestions. We show the results in Table 11. From the ta-
ble, we observe that: (1) Session co-occurrence method per-
forms worst. This is reasonable since session co-occurrence
model generates many popular but meaningless queries as
suggestions. LLR method can ease the problem and increase
suggestion quality. To better understand the difference be-
tween co-occurrence and LLR methods, we show an example
in Table 12. (2) Random walk approach performs best on
low frequent queries, which indicates that random walk ap-
proach has a good property for easing the sparsity of query
logs [27]. (3) Task-based methods perform best on high and
middle frequent queries, while task co-occurrence and LLR
methods do not have much difference, since popular but ir-
relevant queries are usually not grouped into same task.

Next, we present several queries from hot, middle, and
low frequency categories with their suggestions. These ex-
amples are shown in Table 13. From suggestions generated
by different methods, we find that: (1) Session-based models
often generate related queries in a broad range such as pro-
vide “verizon” as suggestion to “att”. (2) Random walk ap-
proach sometimes generates suggestions which are too sim-
ilar to test queries, such as providing “at & t” as suggestion
to “att”. That is why random walk approach does not per-
form best on high and middle frequent queries(see Table 11).
(3) For low frequent queries, task-based and session-based
methods generate nearly same suggestions. (4) Task-based

Source High Middle Low Total

Session Co-occur 54% 62% 67% 61%
Session LLR 71% 73% 72% 72%
Task Co-occur 84% 83% 72% 80%
Task LLR 86% 85% 73% 82%
RandWalk(0) 69% 71% 85% 75%
RandWalk(n) 74% 77% 88% 80%

Table 11: Quality of query suggestions.

Methods
Test Cases Session Co-occur Session LLR

amazon

facebook ebay
ebay walmart
google target
youtube best buy
yahoo barnes and nobel

Table 12: Suggestions of Session-based models.

methods often generate more specific queries for further nar-
rowing down user information need, which are different from
session-based and random walk approaches. As a result, sug-
gestions provided by task-based methods can be treated as
complementary to results from session-based and random
walk approaches.

6. CONCLUSIONS & FUTURE WORK
In this paper we proposed to use task trail as an additional

source to better understand user search behaviors. Users of-
ten perform multitasking behaviors during their search pro-
cesses. Statistical results on 0.5 billion sessions from web
search logs showed that: (a) about 30% of sessions contain
multiple tasks, and (b) about 5% of sessions contain inter-
leaved tasks. To evaluate the effectiveness of task trails, we
compared task, session and query trails in determining user
satisfaction, predicting user search interests, and query sug-
gestion. Comparing to session and query trails, task trail is
more precise to determine user satisfaction. Following the
task trails, users are more likely to find useful information.
Meanwhile, since tasks represent atomic user information
needs, they can well preserve topic similarity between query
pairs. Further, we found that task-based query suggestion
can provide complementary results to other models. These
findings verify the need to extract task trails from web search
logs and suggest potential applications of using task trails
in search and recommendation systems. As our future work,
we plan to (1) combine task, session and query trails into
search applications such as query suggestion, and (2) group
similar user task trails to perform task driven search, sug-
gestion, and web site recommendation.
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