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Abstract

We describe a new animation technique for supporting
interactive exploration of a graph. We use the well-
known radial tree layout method, in which the view is
determined by the selection of a focus node. Our main
contribution is a method for animating the transition to a
new layout when a new focus node is selected. In order
to keep the transition easy to follow, the animation
linearly interpolates the polar coordinates of the nodes,
while enforcing ordering and orientation constraints. We
apply this technique to visualizations of social networks
and of the Gnutella file-sharing network, and discuss the
results from our informal usability tests.
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1. Introduction

Understanding network structure is a long-standing
problem in information visualization. Application areas
such as social network theory and communication
network topology are concerned with understanding a
node’s degree of connectivity and network distance from
other nodes. Visualizations for such applications should
provide a representation of “nearness” that users can
easily comprehend, and should respond well to graph
structures that change over time.

One approach to graph visualization is to use 3D
representations or distortion techniques to fit a large
number of nodes in a single view. However, most of
these approaches, such as the Cone Tree [18] and the
Hyperbolic Browser [13] require a tree structure with
fixed parent-child relationships. The H3 system [16] can
visualize general graph structure, but it temporarily hides
the non-tree cross-links in order to do so. Dynamic layout
techniques have been developed for systems that
incrementally display graphs or support interactive editing
[1, 15, 17], though they generally expect an entire graph
to be laid out and displayed at once.

An alternative to trying to fit an entire graph into one

view is to provide interactive exploration of subregions of
the graph. Even if a graph is small enough to display all
at once, it can be difficult to understand all of its
relationships from only a single view. The ability to
interactively view a graph from different perspectives can
yield new insights.

In this paper, we use a visualization paradigm in which
the view of a graph is determined by the selection of a
single node as the center of interest, or focus. The main
contribution of this work is a new technique for animating
the transitions from one view to the next in a smooth,
appealing manner. The algorithm augments the well-
known radial layout method [7, 8, 12] by linearly
interpolating the polar coordinates of the nodes and
enforcing constraints on the new layout to keep it as
similar as possible to the previous layout.

When combined with a method for aggregating or
eliding nodes far away from the focus, our technique can
also provide an effective way to explore very large
graphs. Figure 1 shows our implementation in action,
applied to visualization of the Gnutella network [11].

2. Method

We assume that we are given a graph that consists of
one connected component. The graph may dynamically
change over time with the insertion or deletion of nodes.
We refer to any two nodes joined by an edge in the graph
as “neighbors.” In this visualization approach, the viewer
can navigate the graph by selecting any visible node to
become the focus node. The graph is then rearranged to
reflect network distances from the newly chosen focus.

2.1. Layout Technique

For the purpose of layout, we treat the graph as a tree
rooted at the focus node. We determine the parent-child
relationships in the tree by performing a breadth-first
traversal of the graph starting from the focus. Every node
except the focus will have one neighbor as its parent,
possibly some other neighbors as its children, and
possibly other “non-tree” neighbors that are neither.
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Figure 1: Visualization of the Gnutella network.

Figure 2. lllustration of the radial layout technique for two different graphs.



After layout, lines are drawn to show all the edges in
the graph, with non-tree edges drawn in a different color
than edgesin the tree.

2.1.1. Radial Layout. Since the focus of attention is a
single node, it is natural to place this focus node at the
center of the display and lay out the other nodes around it.
A straightforward method for laying out the other nodes,
called “radial drawing” in [7], is used here. Nodes are
arranged on concentric rings around the focus node. Each
node lies on the ring corresponding to its shortest network
distance from the focus. Immediate neighbors of the
focus lie on the smallest inner ring, their neighbors lie on
the second smallest ring, and so on. Our implementation
draws these rings explicitly to make the network distance
apparent.

The angular position of a node on its ring is
determined by the sector of the ring allocated to it. Each
node is allocated a sector within the sector assigned to its
parent, with size proportional to the angular width of that
node’s subtree. A method similar to this is described in
some detail as “radial placement” in [22], where all the
nodes are the same size, and so the angular width of a
node’s subtree is simply the number of leaf nodes among
its descendants.

2.1.2. Space Allocation. Our algorithm allows nodes to
be drawn with varying sizes. To minimize the possibility
of larger nodes occluding smaller ones, we take the size of
each node into account when allocating space on the
rings. The angular width of each individual node is its
diameter divided by its distance from the focus. We can
compute this for every node since we know the network
distance from each node to the focus. We find the width
of any subtree by computing the angular width of its top
node, the total angular width of its child subtrees, and
choosing the larger of these two quantities. Each node is
placed at the center of the angular sector allocated to it.

Figure 2 illustrates this layout method for two example
graphs. In both cases, node A is the focus, and it is
allocated all 360 degrees to distribute among its children.
Node B has many children of its own, and so it is given
more angular space than its siblings are. The region
assigned to node B’s subtree is lightly shaded. Node B’s
children lie on the second ring; node C, one of these
children, is assigned the slice of the second ring shown in
darker shading. All of node C’s descendants are then
arranged within that shaded region.

Our algorithm comfortably accommodates the addition
and deletion of nodes. Radial layout is a reasonable
choice for dynamically changing graphs since the addition
or deletion of a node perturbs its siblings only a small
amount, especially as the graph becomes dense.

2.2. Animation Technique

To explore the graph, a user selects a visible node to
become the new focus. The new layout tree is found by
performing a breadth-first search from the new focus,
thereby computing the network distance from the new
focus to each node. The edges between nodes are
reinterpreted as a new set of parent-child relationships.
The new layout is determined by assigning each node to
the appropriate ring and allocating angular sectors of rings
as discussed above.

While this is sufficient to show the graph from the
perspective of the new focus, simply switching to this new
view can cause a highly disorienting rearrangement. To
reduce this disorientation, we use animation to perform a
smooth transition, and also enforce some constraints on
the new layout to keep it similar to the current layout so
that the transition will be easier to follow.

Animation has been used effectively in other work to
help maintain orientation in data visualizations and in user
interfaces. The Cone Tree and Perspective Wall in the
Information Visualizer [2, 14, 18] use 3-D animation to
aid the user in tracking objects. Eades and Huang use
animation in force-directed graphs to smooth transitions
as the user changes focus [9].

Some other interactive graph browsers also preserve
invariants to help keep the user oriented. For example, in
H3, when a node is selected, an animated transition moves
it to the center of a sphere. The transition includes a
rotational component so that when the node reaches the
center its ancestors are on its left while its descendants
appear on the right [16].

The Hyperbolic browser [13] places nodes and links
within a hyperbolic space; changing the focus node in
effect changes which portion of the space is currently
centered. By contrast, in our system changing the focus
nodes usually changes the layout of the nodes relative to
one another. This is not necessary in the hyperbolic
browser as it is applied to tree structures only, whereas
our method is designed to display graphs with their
associated crossing lines.

2.2.1. Transition Paths. The simplest transition between
layouts would move each node along the straight-line path
from its old position to its new position. Such linear
interpolation, however, can yield confusing animation. In
most transitions, many nodes stay on the same ring or
move to an adjacent ring, yet straight-line movement
could cause a node to leave its ring and travel far away
from it before returning. Straight-line movement would
also cause many nodes to crowd into an unreadable clump
in the center of the display and then separate as they
approach their final positions.



Figure 3. Interpolation in rectangular coordinates (left) can yield a confusing animation.
Interpolation in polar coordinates (right) works better for radial layouts.

Since the nodes are radially positioned, it makes more
sense to linearly interpolate the polar coordinates of the
nodes, rather than their rectangular coordinates. Thus, a
node that stays on the a ring follows the circumference of
the ring, while a node that changes rings smoothly spirals
from one ring to another. When sibling subtrees maintain
their ordering, this also preserves the boundary between
the regions allocated to sibling subtrees throughout the
transition, so that nodes moving in toward the center do
not collide with other nodes that are on their way out.

The radial layout algorithm generates an implicit
expectation that radial distance should convey network
distance from the focus at al times; interpolating in polar
coordinate space is consistent with this expectation. The
result is a much smoother animation in which groups of
nodes rotate about the center of graph together. The
clustering of nodes in this way dramatically reduces the
cognitive effort to understand the animation, since it
permits the human visual system to chunk constituent
objects into a unit. It also causes nodes to move in arcs
rather than straight lines, borrowing an effective technique
from traditional animation [3].

2.2.2. Transition Constraints. We devise two
congtraints to maintain the best possible consistency
between the old and new layouts.

First, we choose an orientation for the new layout that
reduces rotational travel. Consider the current parent of
the selected new focus. This parent must end up on the
first ring since it is an immediate neighbor of the new
focus. We orient the new layout so that the direction of
the edge joining the new focus and its parent remains
constant. Figure 4 shows an example where node A is
selected to become the new focus. Node A’s current
parent is node B; the new layout is oriented so that the
edge AB maintains the same direction.

Second, because the graph is not necessarily a tree,
some of a node’s new children might currently be its non-
tree neighbors. This could cause edges to cross over as
nodes change roles from being a neighbor to being a

direct child. To avoid this problem, we examine the
directions of each of the edges to the node’s neighbors in
the current layout, starting from the edge joining the node
to its new parent and proceeding clockwise. We then
maintain this ordering of children in the new layout.

This ensures that the tree edges in the new layout will
not coincide with each other during the transition. In
Figure 5, node A, currently residing on ring 1, is selected
to become the new focus. Consider what happens to node
B, a child of node A, during this transition. Before the
transition, edges 1 through 8 are edges to node B3
children, and edges 9 and 10 are non-tree edges. During
the transition, node B heads for ring 1 while its neighbors
(except for node A) all head for ring 2. Notice how edges
1 through 10 maintain their relative order. This ensures
that the tree edges in the new layout will not coincide with
each other during the transition.

2.2.3. Animation Timing. Finally, we want to provide
the best possible visual constancy at the beginning and the
end of the animation. Applying another technique of
traditional animation to interaction [3], we use slow-in,
slow-out timing rather than straight linear timing. As
Figure 6 shows, this was implemented by using a segment
of the arctangent function to govern the animation§
progress over time. The animation begins slowly,
smoothly accelerates, and then decelerates at the end.
Most of the movement occurs in the middle third of the
time interval. This provides good visual cues to help the
user anticipate the movement of nodes into their new
positions.

2.2.4. Scalability. This technique seems to work well
for several hundred nodes. For larger graphs, it can be
disorienting to jump directly from a central node to a
peripheral one. In such a case, it may be better to perform
a series of transitions to intermediate focus nodes along
the path in the graph from the old focus node to the new
focus node. The technique could also be made to scale
better by judiciously aggregating or hiding peripheral
nodes in the display.
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3. Applications

We implemented the above techniques in a prototype
visualization tool, which we applied to two different types
of datasets. The first is a real-time visualization of a
local part of the Gnutella file-sharing network consisting
of a dynamic data set of about two hundred nodes. The
second is a visudization of social network ties between
families consisting of a static data set of 16 nodes.

Implementation was done in Python [19] using Tkinter
as the user interface toolkit. Python is an excellent
prototyping tool and it proved to be highly portable: our
program ran correctly on multiple platforms without a
single change even though it involved threading,
networking, and graphical user interface code.

3.1. Gnutélavision

We first applied these layout and animation techniques
to visualizing and exploring the Gnutella [4, 11] network.
This network has previously been visualized as a static
layout [5, 20]. Graph nodes represent hosts in order to
display the topology of the virtual network; the nodes and
connections are colored in order to show their status and
behavior. Each host is drawn as a circle with area
proportional to the number of files available. Nodes
appear in the graph as hosts are discovered, brighten as
connections are established, and darken as connections
are dropped. Query keywords received from a particular
host are displayed above itscircle.

At a glance, users can see how many nodes in their
immediate network are up and responding. Watching the
visualization for a few moments gives the user a good
sense of which nodes are likely to relay queries and which
remain silent, which provide many files and which have
few. The concentric rings displayed in the background
help the user to determine distance from the focus by the
shortest known path. The rings also help to make the
focus node visually obvious.

Users can click on an individual node to obtain more
detailed information (such as its IP address and port
number, the number of files offered, the total number of
kilobytes of data offered, and a count of the types of
messages we have seen from the node). Refocusing on a
node helps to illustrate how that node is connected to the
other nodes that have been discovered thus far.

The visualization tool aso alows users to track
searches through the network. In Gnutella, search queries
can get forwarded to many hosts, but the messages do not
identify the originator of the query. When we see a query
message arrive from a particular node, we do not know if

1 A movie explaining the animation technique can be
found at http://bailando.sims.berkel ey.edu/infovis.html

this node actually originated the query or is simply
passing it along to us. To see how a particular request
propagates through the network, the user can insert a test
query containing a special identifying string by clicking
on a node. The selected node will turn red, and other
nodes turn red when they are observed to forward the
same reguest.

Our visuaization quickly made many things apparent
about the network. We learned that the network was
filled with impatient nodes, constantly connecting and
disconnecting.  There were very few large nodes
displayed; most hosts were not sharing any files. We saw
that searches were propagated unevenly, at best: some
nodes would quickly relay our searches to the rest of the
network, while others would simply drop the search.
Often a test query would not reappear for quite a while,
followed by a long series of echoes every few seconds.
We also observed that most user search queries are very
simple and general, consisting of one or two terms.

3.2. Social Networks

Visualization techniques have been used extensively
for understanding social networks [10]. In this domain,
radial trees are known as “target sociograms” and are used
for examining social networks from a single actor's
perspective. We believe that interactive exploration of
social networks using the techniques we have discussed
can make such diagrams even more useful.

As an example, we used Padgett’s “Florentine
families” data set from Wasserman and Faust [21], which
represents marital and business ties between powerful
banking families in Renaissance Italy. Here our technique
is able to produce perspectives on the network from two
different foci (in this case the Barbadori and Medici
families), with smooth transitions between the views. The
placement of the nodes on rings makes it easy to see at a
glance which families are closely connected to the focus.
In addition, the different views help make apparent certain
features of the social network. For example, it is clear
that the Barbadori family is a unique bridge for business
between the Medicis and the Peruzzis, and that the Medici
family is closely tied to many other families through both
business and marital links.

4. User Experience

When we demonstrated the Gnutellavision system,
informal user interviews revealed a great deal of
enthusiasm for the tool. Users were interested in the
content of the search queries, appreciated the ability to
refocus the layout, and found the use of node size to
represent the number of files to be intuitive. Users were
generally very curious about the others on the network
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once they had a visual representation. The visualization
seemed to offer a greater sense of “connectedness” to
others who participate in the network and provided a
qualitatively different experience compared to existing
interfaces for interacting with the network. Almost all of
the users asked if we planned to incorporate the
visualization into a full-fledged Gnutella client. Further
details about Gnutellavision can be found in [6].

We also questioned ten users specifically about the
effectiveness of our animation techniques as applied to
both the social network visualization, using the smaller
graph of 16 nodes, and the Gnutella visualization, using a
larger dynamically generated graph of approximately two
hundred nodes.

First, we asked users to explore visualizations with
slow-in, slow-out timing and without, and to specify a
preference. Eight users preferred the slow-in, slow-out
timing, stating for example that it was more “pleasing” or
“more fun to use.” When asked to evaluate interpolation
in polar vs. rectangular coordinates, seven users chose
rectangular coordinates for the smaller graph, but eight
chose polar coordinates for the larger graph. For the
smaller graph, many users expected the nodes to move in
straight lines and were surprised when they did not. For
the large graph, however, most users preferred transitions
using polar coordinates, because they preferred that the
nodes “swing around the center,” instead of “all clumping
into a mess in the middle and then moving away.” When



evaluating ordering constraints, users expressed no
preference either way for the small graph, but six users
expressed a preference for ordering congtraints in the
larger graph.

Next, we asked users to choose between using a
visualization with all three techniques (dow-in dow-out
timing, polar interpolation, and ordering constraints)
present or absent. In the small graph, five chose the
version with all features present and five chose the
version with features absent. When asked about the larger
graph, however, nine preferred the version with al of the
techniques present.

These results indicate that our animation techniques do
help to reduce confusion and to improve user experience
while exploring a graph, and that the benefits become
more significant as the size of the graph increases
(presumably because a small graph can be viewed in its
entirety independent of the animation techniques).

5. Conclusions

We have designed, implemented, and tested techniques
for interactively exploring graphs in a focus-plus-context
style.  We presented a new method for animating the
transitions from one view to the next in an appealing
manner that reduces confusion. We combined the
techniques of interpolation in polar coordinate space,
dow-in, slow-out motion timing, and the enforcement of
constraints on the layout to produce transitions that are
smooth and easy to follow.

We successfully applied these techniques to
visualizations of social networks and the Gnutella file-
sharing network. Informal user testing supports our
hypotheses that animation, the use of polar coordinates for
interpolation, the ordering constraints on nodes, and the
dow-in, slow-out timing al improve the ability to
maintain context while exploring the graph. A natural
extension of this work is to combine this technique with
methods for aggregating or eliding nodes [22] to alow
exploration of very large graphs.
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