
Constant Time Weighted Median Filtering for Stereo Matching and Beyond

Ziyang Ma1∗ Kaiming He2 Yichen Wei2 Jian Sun2 Enhua Wu1

1University of Chinese Academy of Sciences &
State Key Laboratory of Computer Science, Institute of Software, CAS

2Microsoft Research Asia

Abstract

Despite the continuous advances in local stereo match-
ing for years, most efforts are on developing robust cost
computation and aggregation methods. Little attention has
been seriously paid to the disparity refinement.

In this work, we study weighted median filtering for dis-
parity refinement. We discover that with this refinement,
even the simple box filter aggregation achieves comparable
accuracy with various sophisticated aggregation methods
(with the same refinement). This is due to the nice weighted
median filtering properties of removing outlier error while
respecting edges/structures. This reveals that the previously
overlooked refinement can be at least as crucial as aggre-
gation. We also develop the first constant time algorithm for
the previously time-consuming weighted median filter. This
makes the simple combination “box aggregation + weight-
ed median” an attractive solution in practice for both speed
and accuracy.

As a byproduct, the fast weighted median filtering un-
leashes its potential in other applications that were ham-
pered by high complexities. We show its superiority in var-
ious applications such as depth upsampling, clip-art JPEG
artifact removal, and image stylization.

1. Introduction

Since the proposition of a stereo framework in a semi-
nal paper [24] a decade ago, most stereo matching methods
are following the four-step pipeline: 1) matching cost com-
putation; 2) cost aggregation; 3) disparity optimization; 4)
disparity refinement.

Most previous studies are on the first three steps of this
framework. Global stereo methods optimize all disparities
of all pixels simultaneously, and mostly focus on optimiza-
tion techniques (step 3). They generates good results but
are often time-consuming. By contrast, local stereo meth-
ods estimate the disparity of a pixel using simple “Winner-
Take-All” in step 3. To harness this simplicity while im-

∗This work was done when Ziyang Ma was an intern at MSRA.

proving the accuracy, local methods have focused on robust
cost computation (step 1) [2, 13, 8] and edge-aware cost ag-
gregation (step 2) [33, 34, 22, 17, 30].

But the impact of disparity refinement (step 4) has at-
tracted far less attention in the literature. Traditional prac-
tices involve left-right consistency check (e.g., [4]), hole
filling (e.g., [2]), and (unweighted) median filtering (e.g.,
[18]). Recently, Rhemann et al. [22] adopt weighted me-
dian filtering with bilateral weights [26] to refine local ag-
gregation results. But the high complexity of this filter be-
comes the timing bottleneck and sacrifices the speed of fast
local aggregation1. Yang [30] refines the non-local aggre-
gation results by another non-local cost aggregation. In the
related field of optical flow, Sun et al. [25] discover that
the weighted median filtering is a crucial post-processing in
each iteration of optimizing the flows.

In this paper, we present a constant time weighted me-
dian filter for local stereo refinement. Our method provides
new insights for both research and practices of local stere-
o methods. In terms of research, we discover that with our
technique, the refined results of simple box filter cost aggre-
gation [24] can be comparable with the refined results of
various sophisticated cost aggregation (e.g., [34, 22, 30]).
The comparability presents on error statistics (detailed in
Fig. 4) and also on the superiority of the refined box-filter
aggregation results in a fair number of individual cases (de-
tailed in Fig. 5). This is because of the nice weighted medi-
an filtering properties of removing outliers while respecting
edges/structures. Our discovery indicates that the largely
overlooked disparity refinement (step 4) can be at least as
crucial as the other three steps.

In practice, this discovery leads to a fast and high-quality
stereo solution - simple box aggregation followed by our
constant time weighted median refinement. Fig. 1 shows
this solution on the benchmark pair “Tsukuba” [24]. In
this example, with our refinement, the box aggregation and
the more complex guided aggregation [10, 22] are compa-
rably accurate (1.66 vs. 1.62), but the former is much faster

1Actually, in [22] the weighted median filter is only performed near
detected depth edges. Even so, its CPU implementation is very slow and
dominates the time of the whole algorithm. In [22] it is based on GPU.

1



(a) box agg. + LR check + hole-filling

46ms, Err. 4.68

(b) guided agg. + LR check + hole-filling

246ms, Err. 2.08

(c) weighted median filtering of (a)

134ms, Err. 1.66

(d) weighted median filtering of (b)

334ms, Err. 1.62

Figure 1. With our weighted median filtering refinement, simple
box-filter aggregation [24] can be comparably good as sophisti-
cated aggregation [22] using guided filters [10]. (a) Box-filter ag-
gregation followed by left-right check [4] and hole-filling [2]. (b)
Guided-filter aggregation followed by left-right check and hole-
filling. (c) Our weighted median filtering refinement on (a). (d)
Our weighted median filtering refinement on (c). The error is e-
valuated on bad pixel percentage. The running time is reported on
a single-core CPU with C++ implementation.

(134ms vs. 334ms).
The above discussion is made possible by our fast con-

stant time algorithm for weighted median filtering. This
algorithm is driven by the recent progress on fast median
filtering [20, 3, 15], fast algorithms [7, 19, 21, 31] for bilat-
eral filtering [26], and other fast edge-aware filtering [10, 9].
We show that (in Sec. 2) the above fast median/bilateral fil-
tering algorithms can be unified in a framework of high-
dimensional filtering. This framework reveals that the (un-
weighted) median filter can be implemented as a box fil-
ter in a high-dimensional space. Thus we can replace this
box filter with constant time edge-aware filters [10, 9] for
weighted median filtering. Our algorithm is simple and easy
to implement.

As a byproduct, our fast algorithm for weighted median
filtering allows us to treat it as a general image filter and
study its behaviors in various applications. In this paper, we
show its high-quality results in depth upsampling, clip-art
JPEG artifact removal, and image stylization. We believe
our algorithm is potential for many other applications due
to its simplicity and nice properties.

In sum, our paper makes these main contributions: (1)
We discover that the disparity refinement (step 4) can be
at least as important as the other steps in stereo matching.
The combination of simple box aggregation and our weight-
ed median refinement achieves good accuracy and very fast

speed. (2) We present the first constant time algorithm for
weighted median filtering. It provides a practically fast so-
lution to stereo matching and various other applications.

We publish the Matlab code of the constant time weight-
ed median filter on our website2.

2. Constant Time Weighted Median Filtering
We first introduce our constant time algorithm for

weighted median filtering. Then we demonstrate its effect
for stereo refinement (Sec. 3) and other applications (Sec. 4)

2.1. Median Filtering

The (unweighted) median filter [14] has been long con-
sidered as a way of removing “outliers” like salt-and-pepper
noise. This filter replaces the value of a pixel with the
median of its neighbors. For discrete signals (e.g., dispar-
ity/intensities), this median can be computed from a his-
togram h(x, ·) that calculates the population around the po-
sition x = (x, y):

h(x, i) =
∑

x′∈N (x)

δ(V (x′)− i). (1)

Here, N (x) is a local window (usually a box) near x, V is
the pixel value, i is the discrete bin index, and δ(·) is the
Kronecker delta function: δ(·) is 1 when the argument is 0,
and is 0 otherwise. It is straightforward to pick the median
value through accumulating this histogram.

2.2. Weighted Median Filtering

The unweighted median filter treats each neighbor equal-
ly, and may lead to morphological artifacts like rounding
sharp corners and removing thin structures (e.g., Fig. 2(c)).
To address this problem, the weighted median filter [25, 22]
has been introduced. The pixels are weighted in the local
histograms:

h(x, i) =
∑

x′∈N (x)

w(x,x′)δ(V (x′)− i). (2)

Here the weightw(x,x′) depends on an image I that can be
different from V , e.g., the left image in stereo. In [25, 22]
w is the bilateral weight [26] that suppresses the pixels with
different color from the center pixel. As in the unweight-
ed case, the median value is obtained by accumulating this
histogram.

2.3. A Constant Time Algorithm

A brute-force implementation of Eqn.(2) can be time-
consuming: its complexity is O(r2) per pixel with the sup-
port radius r. This high complexity largely limits the appli-
cations and studies of this filter. Next we provide a constant

2research.microsoft.com/en-us/um/people/kahe/



(e) zoom-in(a) left image (b) box agg.+LR check+hole-filling (c) median filtering of (b) (d) weighted median filtering of (b)

(a)

(b) (d)

weights

Figure 2. Unweighted and weighted median filtering. (a) The left image of a stereo pair. (b) The result of box aggregation + left-right check
+ hole-filling. (c) The unweighted median filtering result of (b). (d) The weighted median filtering result of (b). On the right we show a
zoom-in region and a filtering kernel.

(a) noisy input (b) f(x, i) in 3d space

i

y

x

(c) weighted histogram h(x, i)

i

y

x

(d) weighted median result

Figure 3. Constant time weighted median filtering. (a): the map to be filtered (V in Eqn.(2)). (b): the 3-dimensional signal f(x, i) in
Eqn.(3). (c): A guided filter is performed on f(x, i) for each fixed i. (d) The median value is taken from the histogram of each pixel and
gives the final result.

time algorithm (i.e., O(1) per pixel) for weighted median
filtering.

We first discuss the unweighted case Eqn.(1). We con-
sider the argument (x, i) as 3D coordinates where x repre-
sents the 2D spatial coordinates and i represents a 1D range
coordinate (disparity/intensity). Define a signal f(x, i) in
this 3-dimensional space:

f(x, i) , δ(V (x)− i). (3)

Then the computation of the unweighted histogram Eqn.(1)
is essentially a 2D box filtering of f in the spatial domain:

h(x, i) =
∑

x′∈N (x)

b(x,x′)f(x′, i), (4)

where b is a box kernel. The computation of (4) can
be simply done by performing a 2D box filter on f(x, i)
for each fixed i. Because box filtering can be efficiently
performed using integral images [5, 27] or moving sums
in O(1) time, the unweighted median filter is O(1) time.
The existing O(1) median filtering algorithms [3, 20] can
be viewed as an implementation of this formulation.

For weighted median filtering, we can simply replace
the box filter b(x,x′) with any other edge-aware weight
w(x,x′), e.g., the bilateral filter [26], the guided filter [10],
or the domain transform filter [9]. To compute the weighted
histogram Eqn.(2), we only need to perform the specified
edge-aware filter on f(x, i) for each fixed i. If the edge-
aware filter is O(1) time, the resulting weighted median fil-
ter is O(1) time. Fig. 3 illustrates our algorithm.

Choosing Filter Weights Our constant time weighted
median filter is compatible with various weights - it only
requires the corresponding edge-aware filter to be constant
time. In this paper, we consider the following O(1) time
edge-aware filters: the O(1) time solutions [21, 31] to the
bilateral filter [26], the guided filter [10], and the domain
transform filter [9]. The O(1) bilateral filter [21, 31] is
much slower than the other two, unless the range is aggres-
sively quantized. But the quantization impacts the quali-
ty. On the contrary, both the guided filter and the domain
transform filter require no quantization/coarsening. We no-
tice that the domain transform filter is more suitable for im-
age smoothing, but less so for preserving detailed structures
[11]. We also find the accuracy of using the domain trans-
form weights for stereo refinement is not as good as using
the guided filter weights. For these reasons, throughout this
paper we use the guided filter weights as the weights for
median filtering. The guided filter has edge-aware kernels
similar to the bilateral filter [10] (Fig. 2 right).

2.4. Relations to Previous Methods

We show that various fast algorithms for bilateral filter-
ing [7, 19, 21, 31] and median filtering [14, 3, 20, 15] can
be unified in the same framework of high-dimensional fil-
tering. This provides more insights on the relationship be-
tween our method and existing ones.

We consider a more general 3-dimensional filtering for-



method spatial range order
B

ila
te

ra
l Durand & Dorsey, SIGGRAPH ’02 [7] FFT Gaussian conv. range⇒ spatial

Paris & Durand, ECCV ’06 [19] FFT Gaussian FFT Gaussian simultaneously
Porikli, CVPR ’08 [21] O(1) box conv. spatial⇒ range

Yang et al., CVPR ’09 [31] O(1) Gaussian [6] conv. range⇒ spatial

M
ed

ia
n Huang et al., TASSP ’79 [14] O(r) box median

spatial⇒ rangePerreault & Hébert, TIP ’07 [20] O(1) box median
Kass & Solomon, SIGGRAPH ’10 [15] O(1) Gaussian [6] conv. + median

Our weighted median O(1) guided [10] median

Table 1. A summary of various fast bilateral/median filtering algorithms. The ‘spatial/range’ columns show the spatial/range operations
applied. The ‘order’ column shows the order of these operations, e.g., ‘range⇒ spatial’ means the range operation goes first. In the ‘range’
column, ‘conv.’ means arbitrary convolutions (usually Gaussian), and ‘median’ means taking the median from the histogram of each pixel.

mulation:

h(x, i) =
∑

x′∈N (x)

∑
i′∈N (i)

k(x,x′, i, i′)f(x′, i′). (5)

If the 3-dimensional kernel k(x,x′, i, i′) = w(x,x′)δ(i −
i′), Eqn.(5) becomes the computation of a histogram; if
k(x,x′, i, i′) = ks(x−x′)kr(i− i′) for some spatial/range
kernels ks and ks (often Gaussian), it has been shown [19]
that Eqn.(5) is exactly the bilateral filter (plus some proper
manipulations, namely, division and slicing [19]).

The 3-dimensional filtering in Eqn.(5) is linear, sepa-
rable, and commutative (between spatial/range). We show
that various existing fast algorithms for bilateral/median fil-
tering can all be viewed in this formulation (though they can
be originally derived from other ways). They mainly differ
in the linear filtering operations and the computation order-
s (due to the separability and commutativity). We roughly
summarize various fast algorithms for bilateral/median fil-
tering in Table 13.

Strictly speaking, the O(1) complexity in all the above
methods involves a constant scale which is the number
of the discrete values (e.g., the disparity/intensity range).
But in conventional median/bilateral filtering literatures
[3, 20, 21, 31], the argument in the complexity O(·) is often
considered as the kernel radius r. So this constant has been
ignored in the discussion.

2.5. Filter Properties

The weighted median filter inherits some desired prop-
erties from both median filtering and edge-aware averaging
filtering (the guided filter).

The weighted median filter is capable of removing “out-
lier” noise as a median filter. This is particularly desired
for refining local stereo aggregation results, which may
generate erroneous disparity values in arbitrary ranges (see

3For a clearer summarization, in Table 1 we have ignored some oper-
ations applied for individual methods, including division, slicing, down-
sampling/quantizing/coarsening, and upsampling.

Fig. 1(a,b) and Fig. 2(b)). The edge-aware averaging filters
like [26, 10, 9] are not suitable for this noise (in plane re-
gions, this is analogous to box/Gaussian filers vs. traditional
median filters).

On the other hand, the weighted median filter is edge-
aware. This is in contrast to the unweighted median filter.
Due to the edge-aware weights that suppress the impact of
the pixels in different colors (Fig. 2 (e)), the weighted medi-
an filter is capable of capturing the strong edges, sharp cor-
ners, and thin structures from the image I (see Fig. 2(c)).
The unweighted median filter does not have this good prop-
erty and produces morphological artifacts (Fig. 2(b)). Ac-
tually, the unweighted median filter is blind to the image I
and can merely access the noisy map V .

3. Experiments on Stereo Refinement

Thanks to the constant time algorithm for weighted me-
dian filtering, it is feasible for us to study its performance
for refining local stereo results.

3.1. Experimental Settings

For fair comparisons and for clearly understanding the
refinement step, in all experiments throughout this paper
we strictly follow a local stereo matching pipeline [22] de-
scribed as below:

(1): cost computation. We use exactly the same cost as
[22]. It is a blending of truncated color difference and trun-
cated gradient difference.

(2): cost aggregation. We use the cost aggregation as
[22]. We have tested four kinds of O(1) time aggregation:
the box filter, the guided filter [10] (adopted in [22]), the
variable cross filter [34], and the non-local filter [30]. For
box filters we use a 9x9 support. The parameters of all other
filters are as recommended in these papers.

(3): disparity optimization. We simply choose the dis-
parity with the minimal aggregated cost for each pixel
(Winner-Take-All).



9.27

6.75

8.34 8.16

6.19
5.5

6.04 5.63

0

2

4

6

8

10

Box Guided Non-local Cross

Before WM After WM

E
rr
o
r 
(%

)

2.44

1.08

1.75

2.56

0.78 0.76
0.9 0.78

0

1

2

3

Box Guided Non-local Cross

Before WM After WM

19.04

15.91
17.82 17.8

15.51 15.34 15.4 15.43

0

3

6

9

12

15

18

21

Box Guided Non-local Cross

Before WM After WM

10.3

8.76

10.7
10.03

8.79 8.51
9.02 8.61

0

2

4

6

8

10

12

Box Guided Non-local Cross

Before WM After WM

(a) standard (4 pairs) (b) 2001 (6 pairs) (c) 2005 (6 pairs) (d) 2006 (15 pairs)

Figure 4. Error rates on four Middlebury datasets before and after WM, using four different aggregation filters.

(4-i): disparity refinement (i). We do left-right check and
simple hole-filling as in [22].

(4-ii): disparity refinement (ii). On the resulting dispar-
ity map of (4-i), we apply the weighted median (WM) fil-
ter. The parameters of the guided filter used in this WM
are fixed as ε = 0.012, r = max(wid, hei)/40. A 3x3
unweighted median filter is finally applied to remove a few
spikes.

This pipeline follows the public Matlab code4 provided
by [22]. The main modifications are that we apply our WM
filter for refinement, and we investigate four filters in cost
aggregation. The purpose of using this pipeline is for a bet-
ter understanding of the roles of aggregation vs. refinement.
It is possible to improve the quality by, e.g., using advanced
costs, fine-tuning the filter parameters, incorporating medi-
an filters for intermediate-processing, or improving the sim-
ple hole-filling. But these are not our focus and not consid-
ered in this paper.

All the experiments are implemented in C++ and run on
a PC with 8G RAM and an Intel Xeon 2.83GHz CPU us-
ing a single thread. In this implementation, the weighted
median filter takes about 60ms per mega-pixel per disparity
(see [11] for more technical details about implementing the
guided filter).

Our experiments are on the Middlebury stereo bench-
mark [1]. We evaluate all the pairs that have ground-truths
available: the standard 4 pairs, the 2001 set (6 pairs), the
2005 set (6 pairs), and the 2006 set (21 pairs) [23, 12]. We
consider the error metric as the percentage of bad pixels
with error threshold 1.

We notice that local methods are less suitable for texture-
less images. The error of these images would dominate the
error statistics. To remove this bias, we first run the method
of [22] on all image pairs and ignore those with error rate
> 20% (6 pairs in 2006) in the remaining experiments. This
leaves us in total 31 pairs for evaluation.

3.2. Results

Fig. 4 shows the error rates before and after weighted
median filtering. In each dataset we test four different fil-
ters for cost aggregation. We find that before WM, the error

4www.ims.tuwien.ac.at/research/costFilter/

rates of different aggregation methods are significant differ-
ent. Before WM, the guided filter aggregation is the most
competitive in all four datasets, whereas the box filter aggre-
gation is generally poor. But we discover that after WM the
error rates of different aggregation methods are very com-
parable (especially in the 2001, 2005, and 2006 sets). Typ-
ically, the box filter aggregation with WM can be almost as
good as the other sophisticated aggregation methods with
WM. The comparability not only presents on the statistics
(Fig. 4), but also on the fact that the simple “box aggrega-
tion + WM” is more accurate than the sophisticated “guided
aggregation + WM” in a number of cases (12 out of all 31
pairs). Fig. 5 shows some examples. This discovery reveals
that the disparity refinement step is at least as important as
the cost aggregation.

Analysis The above discovery can be explained by the
capability of “outlier” removal of the WM. Before WM, the
box filter aggregation produces more outliers than the oth-
er sophisticated aggregation methods (see Fig. 1(a,b) and
Fig. 5(b,c)). These outliers can be reliably removed by me-
dian filtering in a sufficiently large support, if only the “in-
liers” in this large support are dominant. But a large box
support leads to morphological artifacts (Fig. 2(c)) and of-
ten degrades the results. This issue is nicely addressed by
median filtering in a large edge-aware support (Fig. 2(d)).
It can remove more outliers by a large support without in-
troducing morphological artifacts. So even though the box
filter aggregation produces more outliers, they can still be
removed (unless in the support the outliers are dominant).

3.3. A Fast Practical Solution

The above discovery suggests a very fast solution in
practice - combining the box filter aggregation with WM re-
finement. This solution harnesses the fast speed of box filter
aggregation, and almost does not sacrifice accuracy due to
the WM. Fig. 6 shows the error rates vs. the CPU running
time. It is clear that the “box aggregation + WM” is a com-
pelling choice, considering both speed and accuracy.

GPU implementation The box aggregation and the WM
can both be easily implemented on GPU. Because our WM
uses guided filtering weights and the algorithm of the guid-



Venus 2.88 0.62 0.32 (213ms) 0.34 (641ms)

Sawtooth 2.44 1.50 1.00 (320ms) 1.04 (1010ms)

Dolls 12.75 12.13 11.43 (820ms) 11.83 (2760ms)

(a) left image
(b) box agg.+

LR check+hole-filling

(c) guided agg.+

LR check+hole-filling
(d) weighted median of (b) (e) weighted median of (c)

Reindeer 10.27 9.21 6.21 (830ms) 8.45 (2650ms)

Figure 5. Several benchmark examples where the simple “box aggregation + WM” outperforms the complex “guided aggregation + WM”.
For each image we show the error rate and the running time.

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3

E
rr

or
 (

%
)

CPU running time (seconds)

Box agg. only
Box agg. + WM
Cross agg. + WM
Non-local agg. + WM
Guided agg. + WM

Figure 6. Error rates and CPU running time of four different ag-
gregation methods. The results are averaged on all 31 pairs of all
four datasets.

ed filter is a series of box filters (see [10]), our WM is nat-
urally GPU-friendly. We have implemented “box aggrega-
tion + WM” and “guided aggregation + WM” on a GeForce
GTX580 GPU (512 CUDA cores, 1.5GB VRAM). Table 2
shows the GPU time and error rates in the standard four
pairs. We are not aware of any GPU implementation of the
non-local aggregation [30] and cross aggregation [34], so
their performance on GPU remains unknown.

To the best of our knowledge, the previous fastest G-

Ours and previous work Avg. error GPU time
NonLocalFilter [30] 5.48† n/a
Guided agg. + WM 5.50 54ms

CostFilter [22] 5.55† 65ms†

Cross agg. + WM 5.63 n/a
Non-local agg. + WM 6.04 n/a

Box agg. + WM 6.19 22ms
VariableCross [34] 7.60† n/a

Table 2. The error rates and GPU running time on the standard four
pairs in Middlebury benchmark. (†These numbers are reported by
original papers. Their pipelines can be different from ours, so the
error can be different even using the same cost aggregation.)

PU implementation is in [22]. It takes on average 65ms in
the standard four pairs (reported on GeForce GTX480, 480
CUDA cores, 1.5GB VRAM). Table 2 shows that our GPU
implementation of “box aggregation + WM” takes 22ms,
about 3x faster than [22]. Considering the error rates in Ta-
ble 2 and Fig. 4 & 6, we believe the “box aggregation +
WM” is a very fast practical solution (in both CPU and G-
PU) that slightly trades off accuracy.



(a) Joint Bilateral, Err. 14.43 (b) Depth SR, Err. 10.19 (c) Ours, Err. 8.58 (d) Ground truth

Figure 7. A visual example of depth upsampling (8×), displayed using colormaps. (a) Joint bilateral filter [16]. (b) Depth super-resolution
(SR) [32]. (c) Ours. (d) Ground-truth.

4. More Applications
The weighted median filter is not only applicable for

stereo refinement. It is a general purpose filter that is po-
tential in various applications. In this section we demon-
strate its power on depth upsampling, clip-art JPEG artifact
removal, and image stylization.

4.1. Depth Upsampling

The problem is to upsample a low resolution depth im-
age with the guidance of a registered high resolution col-
or image [16, 32]. This is a practical problem for stereo
matching in high resolution images. The method in [16] us-
es a joint bilateral filter, which is an edge-aware averaging
filter. The method in [32] uses robust truncated costs and
a post quadratic interpolation. We compare both methods
with ours WM. In our method, we simply upscale the low
resolution depth image to the high resolution using bilinear
interpolation, and apply the WM.

We evaluate on the 2×, 4× and 8× downsampled images
of the four standard Middlebury pairs [1] with ground-truth
high resolution depth available. Table 3 shows the quantita-
tive results. It is clear that our simple method outperforms
the two competitors in all cases. Fig. 7 shows a visual ex-
ample. We see that the WM avoids “halos” near depth edges
and better preserves the edge profiles.

Algorithm Tsukuba Venus Teddy Cones
Bilinear 6.40 3.22 13.55 16.63

[16] 5.15 2.54 14.43 16.23
[32] 4.53 1.25 10.19 11.53

Our method 4.35 1.09 8.58 9.34

Table 3. Bad pixel percentage with error threshold 1 for 8× depth
upsampling on the standard four Middlebury pairs [1].

4.2. Clip-Art JPEG Artifact Removal

The JPEG compression may lead to artifacts near step
edges due to the frequency quantization. This is an annoy-
ing problem typically for clip-art cartoon images as in Fig. 8

(a,b). Such artifacts are not Gaussian-alike noise. Even
worse, they are near strong edges that are challenging for
most edge-aware filters. A recent state-of-the-art solution
[28] optimizes a complex L0-regularized energy to address
this problem.

We compare our WM with the method of [28] (Fig. 8).
Despite the simplicity, the WM better recovers the piece-
wise constant colors and the strong step edges, with almost
no smoothing near edges. We observed such improvements
on all test images on the website of [28] (see supplementary
materials).

4.3. Image Stylization

The capability of removing outliers while preserving
edges/structures is suitable for removing textures and gen-
erating piecewise constant images. This is particularly fa-
vored in applications like image stylization or image ab-
straction. In Fig. 9 we show a comparison with a recent
sophisticated method in [29]. We find the simple WM can
produce compelling results.

5. Conclusion
We have proposed the first constant time weighted medi-

an filtering algorithm for stereo refinement and other appli-
cations. For stereo, we discover that the refinement can be
as important as other steps. We expect this work can attract
more attention on stereo refinement, in company with the
recent intensive efforts on aggregation [33, 34, 22, 30]. For
general image filtering, we believe the simple weighted me-
dian filtering is very potential in various applications. We
will develop more applications in the future.

References
[1] http://vision.middlebury.edu/stereo.
[2] S. Birchfield and C. Tomasi. A pixel dissimilarity measure

that is insensitive to image sampling. TPAMI, pages 401–
406, 1998.

[3] D. Cline, K. B. White, and P. K. Egbert. Fast 8-bit median
filtering based on separability. In ICIP, 2007.



(a) input

(b) zoom-in of input (c) L0 regularized (d) ours

Figure 8. Clip-art JPEG compression artifact removal result. (a)
Input. (b) Zoom-in of the JPEG artifacts. (c) The L0 regularized
method [28]. (d) Ours.

(a) input

(b) result of RTV (c) ours

Figure 9. Image stylization. (a) Input. (b) Results of Relative Total
Variation [29]. (c) Ours. The edges are imposed as in [28].

[4] S. D. Cochran and G. Medioni. 3-d surface description from
binocular stereo. TPAMI, pages 981–994, 1992.

[5] F. C. Crow. Summed-area tables for texture mapping. In
SIGGRAPH, pages 207–212, 1984.

[6] R. Deriche. Recursively implementing the gaussian and its
derivatives, 1993.

[7] F. Durand and J. Dorsey. Fast bilateral filtering for the dis-
play of high-dynamic-range images. In SIGGRAPH, pages
257–266, 2002.

[8] N. Einecke and J. Eggert. A two-stage correlation method for
stereoscopic depth estimation. In International Conference
on Digital Image Computing: Techniques and Applications,
pages 227–234, 2010.

[9] E. S. Gastal and M. M. Oliveira. Domain transform for edge-
aware image and video processing. In SIGGRAPH, page 69,
2011.

[10] K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV,
2010.

[11] K. He, J. Sun, and X. Tang. Guided image filtering. TPAMI,
2013.

[12] H. Hirschmuller and D. Scharstein. Evaluation of cost func-
tions for stereo matching. In CVPR, 2007.

[13] H. Hirschmuller and D. Scharstein. Evaluation of stereo
matching costs on images with radiometric differences. T-
PAMI, pages 1582–1599, 2009.

[14] T. Huang, G. Yang, and G. Tang. A fast two-dimensional
median filtering algorithm. IEEE Transactions on Acoustics,
Speech and Signal Processing, pages 13–18, 1979.

[15] M. Kass and J. Solomon. Smoothed local histogram filters.
In SIGGRAPH, page 100, 2010.

[16] J. Kopf, M. Cohen, D. Lischinski, and M. Uyttendaele. Joint
bilateral upsampling. In SIGGRAPH, page 96, 2007.

[17] D. Min, J. Lu, and M. Do. A revisit to cost aggregation in
stereo matching: How far can we reduce its computational
redundancy? In ICCV, 2011.

[18] K. Mühlmann, D. Maier, J. Hesser, and R. Männer. Cal-
culating dense disparity maps from color stereo images, an
efficient implementation. IJCV, pages 79–88, 2002.

[19] S. Paris and F. Durand. A fast approximation of the bilateral
filter using a signal processing approach. In ECCV, 2006.

[20] S. Perreault and P. Hébert. Median filtering in constant time.
TIP, pages 2389–2394, 2007.

[21] F. Porikli. Constant time o (1) bilateral filtering. In CVPR,
2008.

[22] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and
M. Gelautz. Fast cost-volume filtering for visual correspon-
dence and beyond. In CVPR, 2011.

[23] D. Scharstein and C. Pal. Learning conditional random fields
for stereo. In CVPR, 2007.

[24] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV,
pages 7–42, 2002.

[25] D. Sun, S. Roth, and M. Black. Secrets of optical flow esti-
mation and their principles. In CVPR, 2010.

[26] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In ICCV, 1998.

[27] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001.

[28] L. Xu, C. Lu, Y. Xu, and J. Jia. Image smoothing via L0
gradient minimization. In SIGGRAPH Asia, page 174, 2011.

[29] L. Xu, Q. Yan, Y. Xia, and J. Jia. Structure extraction from
texture via relative total variation. In SIGGRAPH Asia, page
139, 2012.

[30] Q. Yang. A non-local cost aggregation method for stereo
matching. In CVPR, 2012.

[31] Q. Yang, K.-H. Tan, and N. Ahuja. Real-time o (1) bilateral
filtering. In CVPR, 2009.

[32] Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth
super resolution for range images. In CVPR, 2007.

[33] K. Yoon and I. Kweon. Adaptive support-weight approach
for correspondence search. TPAMI, pages 650–656, 2006.

[34] K. Zhang, J. Lu, and G. Lafruit. Cross-based local stereo
matching using orthogonal integral images. TCSVT, pages
1073–1079, 2009.


