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ABSTRACT

The advent of advanced acquisition techniques in 3D media applica-
tions has led to an increasing trend of capturing dynamic objects and
scenes via 3D point cloud sequences. This form of data is composed
of time-indexed frames, each consisting of a collection of points
with position and color attributes. Compression of such datasets is
challenging because of the lack of efficient techniques for exploiting
spatial and temporal correlations between the attributes. In our ap-
proach, we create an intermediate high-resolution representation of
the point clouds, using consistent subdivisional triangular meshes,
that captures all the features of the underlying object or scene. This
representation is easy to obtain, significantly simplifies motion com-
pensation and allows us to design efficient wavelet transforms using
the recently developed framework of Biorthogonal Graph Wavelet
Filterbanks. Preliminary experiments show that our approach can be
an effective compression technique for 3D point cloud sequences.

Index Terms— 3D point cloud sequences, subdivisional meshes,
motion compensation, graph wavelet transform.

1. INTRODUCTION

Recently, 3D free viewpoint videos, captured using arrays of color
and depth cameras, have become increasingly common in various
applications such as virtual reality and immersive communica-
tion [1]. Such datasets are generally represented as a sequence of
3D point clouds, consisting of geometry and color information, that
evolve over time. The enormous resolution required for capturing all
the relevant features of the scene and achieving satisfactory visual
quality makes their storage and transmission quite difficult. This
necessitates the design of efficient compression techniques for such
datasets. This can be particularly challenging since, in this case,
adjacent frames have little spatio-temporal structure, i.e., there is lit-
tle explicit correspondence between points across different frames.
Moreover, the number of points in the cloud or occupied voxels,
may also vary over time. These issues hinder the use of traditional
techniques of motion estimation and compensation used to remove
temporal redundancies in color and geometry. Further, designing
efficient transforms to remove spatial redundancies is also cumber-
some in this scenario because the data points generally occupy a
sparse arbitrarily-shaped volume in 3D space that varies over time.

Compression of 3D point cloud sequences has received little at-
tention to date. There have been works on compressing static point
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clouds, such as those using oct-trees [2–4], hierarchical point clus-
tering [5], and the more recent graph transform-based approach [6].
These approaches can only be used to compress the sequence frame
by frame, thereby not exploiting temporal redundancies to improve
compression. The approach in [7, 8] alleviates this issue by repre-
senting point clouds through a set of graphs and matching features
over them to perform motion estimation and predictive coding. How-
ever, the feature matching step can be quite intensive computation-
ally. There also exist approaches to model point clouds via polygo-
nal meshes before compression. These methods involve registration
of a template mesh to track the point cloud sequence (see [9], ref-
erences therein). Once a consistent dynamic mesh sequence is ob-
tained, its attributes can be compressed using various existing meth-
ods [10, 11]. However, using these approaches to obtain and com-
press a high-resolution mesh representation can have a prohibitively
high complexity, in addition to the overhead of encoding the mesh
topology itself. Meshes with subdivisional topology can help reduce
this overhead since only a coarse template mesh needs to be encoded.
Further, this subdivisional structure is a natural analog of upsam-
pling on meshes, and can be particularly exploited for implementing
a novel class of wavelet transforms [12–17] used for compressing
signals defined on graphs, of which meshes are a special case. A re-
cent example is the work of [18], which compresses a subdivisional
quad-mesh representation of a human body sequence using the re-
cently developed framework of Biorthogonal graph wavelet filter-
banks (GraphBior [17]). This work however is specific to human
body sequences only, since it obtains the consistent mesh represen-
tation using a parametrized skinned-rig model of the human body.

In this paper, we propose a general method for compressing 3D
point cloud sequences that efficiently captures and removes spatio-
temporal correlations in the data. The key aspect of our formulation
is to model the point clouds by an intermediate representation based
on consistently-evolving subdivisional triangular meshes that have a
resolution higher than each of the original point clouds. Essentially,
our approach can be considered as a resampling of the underlying
object or scene to obtain a new set of high-resolution consistently-
evolving point clouds represented by the vertices of the meshes. This
new representation allows us to obtain well-defined correspondences
across frames that is integral for motion estimation and compensa-
tion. Further, we exploit the connectivity of the resampled points
defined by the mesh topology to apply a graph-based wavelet trans-
form for efficiently compressing the geometry and color attributes
and their corresponding motion vectors.

The advantage of our method over previous schemes stems from
the introduction of the subdivisional structure in the mesh topol-
ogy. In particular, this constraint allows us to efficiently compute the
mesh representation in a hierarchical manner from a very coarse base



Fig. 1: Subdivision of a triangular mesh

mesh, which is the only information overhead required at the de-
coder’s side, over the transform coefficients. This makes our method
more general in comparison to [18], since we do not assume any
parametric models for the meshes. Further, we also use a novel
Laplacian-based regularizer while estimating the meshes, thereby
making our procedure robust to noise and missing points. The sub-
divisional structure also allows us to obtain a sequence of bipar-
tite graphs that facilitate the use of GraphBior [17] to compute the
wavelet transform coefficients of the geometry and color attributes.
Note that although the encoded sequence cannot yield an exact re-
production of the input point cloud sequence due to the resampling
step involved in the intermediate representation, choosing a higher
resolution ensures that all features of the underlying structure are
captured and the rendered output is visually equivalent to the input.
This is evident in our experiments from visual comparisons between
the original point clouds and the obtained mesh representations.

2. PROPOSED COMPRESSION SCHEME

A point cloud frame at time t, consisting ofNt points, can be charac-
terized as P(t) = {X(t)

p ,X
(t)
c }, where X

(t)
p ,X

(t)
c ∈ RNt×3 are at-

tribute matrices, whose ith rows X
(t)
p (i),X

(t)
c (i) ∈ R1×3 denote the

position and color of the ith point respectively. Additionally, we de-
note the surface normals for each point by the matrix X

(t)
n ∈ RNt×3,

which can be obtained either through a standard estimation algo-
rithm from the cloud or through the data acquisition technique itself.

2.1. Subdivisional triangular meshes

A subdivisional triangular mesh can be obtained by repeatedly sub-
dividing a given base mesh (see Figure 1). Such a mesh consisting
of Vk vertices and Fk faces at the kth subdivision level, can be
characterized asM(k) = {V(k)

p ,V
(k)
c ,F(k)}, where V

(k)
p ,V

(k)
c ∈

RVk×3 are vertex matrices whose vth rows V
(k)
p (v),V

(k)
c (v) ∈

R1×3 denote the position and the color of the vth vertex respectively,
and F(k) ∈ NFk×3 is the face matrix whose ith row F(k)(i) ∈ N1×3

indicates the indices of the vertices contained in the ith face. The
face matrix F(k) captures the topology of the mesh, and can be used
to define the unweighted vertex-to-vertex adjacency matrix A(k)

and the Laplacian L(k) in the usual sense. In addition, one can also
estimate the normal at each vertex using a combination of the adja-
cent face normals weighted by the corresponding triangle areas. We
represent these vertex normals through the matrix V

(k)
n ∈ RMk×3.

Note that V
(k)
n (v) equals the sum of pair-wise cross-products of

the adjacent vertex positions V
(k)
p (u),∀u ∈ N1(v), where N1(v)

denotes the 1-neighborhood of vertex v.
We use the Loop subdivision rules for subdividing and comput-

ing the attributes of the resultant mesh [19]. In this scheme, each
triangle is subdivided into four by introducing new vertices at the
midpoints of its sides. Thus, the resolution of the meshes increases
as we go to higher levels of subdivision. The new vertex attributes

V
(k+1)
p ,V

(k+1)
c are computed from V

(k)
p ,V

(k)
c using a simple lin-

ear transformation T(k) ∈ RMk+1×Mk with entries depending on
the degree (i.e., number of neighbors) of each vertex (see [19]).

2.2. Representation scheme for point cloud sequences

In our representation model, the point cloud sequence for t =
1, 2, . . . can be modeled by subdivisional triangular meshesM(k,t) =

{V(k,t)
p ,V

(k,t)
c ,F(k,t)} at different levels. For a given base mesh

M(0,t), the final level k = K used for representation is chosen such
that the mesh has higher resolution than the point cloud. Roughly,
the number of vertices VK,t in the mesh must exceed the number
of points Nt in the cloud for each t. We follow a scheme similar
to current video coding techniques, where frames in the sequence
are classified either as reference frames that are intra-coded, or as
predicted frames that are inter-coded. Thus, for the purpose of mo-
tion estimation, we require that the topology of the predicted frames
must be identical to that of the last reference frame, i.e., the number
of vertices Vk,t, faces Fk,t, and the face matrices F(k,t) must match
for all k and t in that set of frames. When this condition is true,
one can define the motion fields for a given frame to be equal to the
difference in vertex attributes of that frame and the previous frame’s
representation. Specifically, for a frame t at level k, the position and
color motion fields can be computed as M

(k,t)
p = V

(k,t)
p −V

(k,t−1)
p

and M
(k,t)
c = V

(k,t)
c −V

(k,t−1)
c , whenever the frames t and t − 1

have equivalent topology.

2.3. Estimation of mesh attributes

In order to estimate the attributes V
(k,t)
p ,V

(k,t)
c of a meshM(k,t)

that models the point cloud P(t) as closely as possible, we first need
a way to determine how close a given mesh is to the point cloud. To
this end, we introduce a correspondence mapping π(k,t) : N → N
from points in P(t) to the vertices inM(k,t). π(k,t)(i) indicates the
vertex to which the ith point in the cloud is assigned and can be ob-
tained using a metric based on geometric features, i.e., the positions
(and if available, the surface normals) of the points. Specifically, let
us define the following metric for determining geometric proximity
between a point i in P(t) and a vertex v inM(k,t):

D(k,t)(i, v) = αp‖X(t)
p (i)−V(k,t)

p (v)‖2F
+ αn‖X(t)

n (i)−V(k,t)
n (v)‖2F , (1)

where αp and αn are scalar weights to control the contribution of
positions and surface normals respectively. Then, for the point i, the
corresponding vertex is given as

π(k,t)(i) = argmin
v

D(k,t)(i, v). (2)

Let us define a correspondence matrix Π(k,t) ∈ {0, 1}Nt×Vk,t with
0/1 entries, i.e., Π

(k,t)
ij = 1 if π(k,t)(i) = j, and 0 otherwise. Then,

the deviations in geometry and color between a point cloud P(t) and
its mesh representationM(k,t) are given by

δ(k,t)p = ‖Π(k,t)V(k,t)
p −X(t)

p ‖2F , (3)

δ(k,t)c = ‖Π(k,t)V(k,t)
c −X(t)

c ‖2F . (4)

Based on the equations above, one can conclude that finding the best
mesh model at level k = K involves estimating V

(K,t)
p , V

(K,t)
c ,

Π(K,t) that minimize the geometry and color deviations δ(K,t)p and



δ
(K,t)
c independently. Since this problem can be undetermined, we

grow this mesh hierarchically from k = 0 to k = K along with the
introduction of certain regularization terms.

Reference frames: We begin by describing the mesh estima-
tion procedure for reference frames. The first step involves creating
a “skeletal mesh model” for the point cloud, i.e., a coarse base mesh
M(0,t) = {V(0,t)

p ,F(0,t)} using Poisson Surface Reconstruction
with a low oct-tree depth [20]. This procedure is fast and generates
a coarse, colorless triangular mesh that approximately captures the
underlying geometrical structure of the point cloud. The color at-
tributes V

(0,t)
c can be initialized to a neutral value, such as uniform

grayscale. Once we have the base mesh, we assign the correspon-
dences π(0,t) using the global search procedure in (2). This assign-
ment is computationally feasible since the base mesh has a very low
resolution for k = 0. To minimize the deviations (3) and (4) at each
level k, we alternately update the vertex attributes V

(k,t)
p ,V

(k,t)
p and

the correspondences π(k,t), which we describe next.
Given a current state of the meshM(k,t) and correspondences

π(k,t), we perform updates on the geometry and color attributes as
V

(k,t)
p ← V

(k,t)
p + ∆

(k,t)
p and V

(k,t)
c ← V

(k,t)
c + ∆

(k,t)
c , where

∆
(k,t)
p ,∆

(k,t)
c ∈ RVk,t×3 are update matrices given by

∆(k,t)
p = argmin

∆

[
‖Π(k,t)(V(k,t)

p + ∆)−X(t)
p ‖2F

+ λ(k)
p Tr(∆TL(k)∆)

]
, (5)

∆(k,t)
c = argmin

∆

[
‖Π(k,t)(X(k,t)

c + ∆)−X(t)
c ‖2F

+ λ(k)
c Tr(∆TL(k)∆)

]
. (6)

λ
(k)
p , λ(k)

c are the regularization parameters for position and color re-
spectively. The equations above have a closed form solution, which
involves solving the following linear systems:(

Π(k,t)TΠ(k,t) + λ(k)
p L(k)

)
∆(k,t)
p = Π(k,t)TR(k,t)

p , (7)(
Π(k,t)TΠ(k,t) + λ(k)

c L(k)
)

∆(k,t)
c = Π(k,t)TR(k,t)

c , (8)

where R
(k,t)
p = X

(t)
p −Π(k,t)V

(k,t)
p denotes the position residuals,

and R
(k,t)
c = X

(t)
c −Π(k,t)V

(k,t)
c denotes the color residuals. Note

that the matrix Π(k,t)TΠ(k,t) is diagonal with entries equal to the
number of assigned points for each vertex. Thus, in the absence of
regularization, the updates for the mesh attributes essentially involve
averaging the residuals with respect to the assigned correspondence
points in the cloud. The mesh Laplacian regularizer Tr(∆TL(k)∆)
ensures that attributes of nearby points evolve smoothly in a similar
fashion. This is useful if there are vertices in the mesh with no cor-
responding points in the cloud, which is likely for meshes at higher
levels of subdivision. The updates in this case, are interpolated from
the updates of the neighbors. Since a smoother representation results
in a lower bit rate, the regularizer can also be regarded as a rate term
added to the distortion metric during minimization.

Next, we update the correspondences for the updated mesh.
Since, at higher levels, the exhaustive search in (2) can be computa-
tionally intensive, we resort to a local update as follows:

π(k,t)(i)← argmin
v ∈ {π(k,t)(i)}∪Nd(π(k,t)(i))

D(k,t)(i, v) (9)

For a point i, (9) essentially restricts the search domain to an in-
clusive d-depth local neighborhood (d ≥ 1) of the current vertex
π(k,t)(i) assigned to it.

Initial mesh

Subdivide

Vertex updates

Correspondence 
updates

Update mesh SubdivideUpdate mesh Update mesh

SubdivideUpdate mesh SubdivideUpdate mesh Update mesh

Level 0 Level 1 Level 2

Reference
Frame

Predicted
Frame

Fig. 2: Schematic flow of the mesh estimation procedure.

After a few iterations of vertex and correspondence updates un-
til satisfactory convergence, the mesh M(k,t) is subdivided to ob-
tainM(k+1,t) using the Loop subdivision rule [19]. The new corre-
spondences π(k+1,t) can be obtained simply by performing the local
search procedure stated in (9). The mesh estimation and subdivision
processes are repeated until we reach the desired level of detail.

Predicted frames: The mesh representation for predicted
frames is obtained in a similar manner. Here, we begin with the
lowest level mesh representation of the previous frame as the coarse
base mesh and repeat the estimation and subdivision steps to reach
the desired level of representation. To obtainM(K,t) for a predicted
frame P(t), we use the 0th level mesh estimate of the previous frame
M(0,t−1) as the coarse base mesh. The correspondences are once
again assigned through the global search step in (2). Note that the
initial base mesh may not be perfectly aligned geometrically with
the point cloud, leading to some erroneous correspondence assign-
ments. Increasing the weight αn of the normals in the geometric
proximity metric (1) may help in such situations.

In order for motion estimation to be accurate, we need to con-
sider texture misalignment in certain patches of the mesh due to lat-
eral shifts. An example of such a scenario would be a rolling striped
ball. In our approach, this can be handled by modifying the corre-
spondence update step to include color matching with the previous
frame. Specifically, we add an extra term to the proximity metric
D(k,t)(i, v) in (1) to obtain

D(k,t)
c (i, v) = D(k,t)(i, v)

+ αc‖V(k,t)
c (π(k,t)(i))−V(k,t−1)

c (v)‖2F , (10)

where V
(k,t−1)
c is the best level-k mesh representation for the previ-

ous frame. The correspondences are then updated using D(k,t)
c (i, v)

in (9). This modification basically assigns points to vertices while
taking into account the similarity in colors between vertices of the
adjacent frames. A point is more likely to be reassigned to a vertex
whose color in the previous frame is closer to the currently assigned
vertex, resulting in gradual texture-based alignment across frames.

Finally, to ensure that the motion fields are smooth for compres-
sion gains, we add µ(k)

p Tr((M
(k,t)
p + ∆)TL(k)(M

(k,t)
p + ∆) and

µ
(k)
c Tr((M

(k,t)
c +∆)TL(k)(M

(k,t)
c +∆) to the objective functions

of the vertex updates in (5) and (6) respectively, where M
(k,t)
p =

V
(k,t)
p − V

(k,t−1)
p and M

(k,t)
c = V

(k,t)
c − V

(k,t−1)
c are the posi-

tion and color motion vectors between the current vertex attributes
and the attributes of the previous frame. These additional regulariza-
tion terms, at each iteration, tend to make the updated motion fields
M

(k,t)
p +∆ and M

(k,t)
c +∆ smooth over the mesh, thereby making

the final motion fields smooth. The resulting optimization problems,
as before, also admit closed form solutions. A schematic overview
of the complete mesh estimation procedure is illustrated in Figure 2.



Fig. 3: Obtaining G(k) (right) fromM(k) (left)

2.4. Compression using graph wavelet transforms

We now describe briefly how our intermediate mesh representation
can be used to design graph wavelet transforms for compression.
The key property of our representation that we exploit is the subdi-
visional structure that, with certain approximations, allows us to cre-
ate a natural sequence of unweighted bipartite graphs, similar to the
scheme in [18]. These graphs are suitable for implementing Graph-
Bior filterbanks [17] that provide a vertex-frequency localized trans-
form with several favorable properties such as critical sampling, per-
fect reconstruction, near orthogonality and compact support in the
vertex domain [17, Table I]. The design is applicable for bipartite
graphs, while one has to resort to bipartite subgraph decompositions
for arbitrary graphs.

In order to implement the filterbanks, we first obtain an un-
weighted bipartite graph G(k) for each level of the subdivisional tri-
angular mesh M(k) by ignoring certain edges in the mesh. Let us
consider the subdivision ofM(k−1) to obtainM(k). This step in-
volves introducing new vertices at the midpoints of all triangles in
M(k−1) along with new edges that connect them. However, if we
ignore the new edges, the resultant graph G(k) is bipartite, since each
new vertex is connected to only a pair existing vertices as shown in
Figure 3. Note that G(k) is a subgraph of the meshM(k) with the
same number of vertices. In addition, G(k−1) is a subgraph of G(k),
and thus we get the following nested sequence of bipartite graphs
G(0) ⊂ G(1) ⊂ · · · ⊂ G(K−1) ⊂ G(K), over which we can apply
the zero-DC GraphBior filterbank. For the 0th level, we simply ap-
ply a full Graph Fourier Transform (GFT) [21]. After transforming
the vertex attributes for reference frames and motion vectors for pre-
dicted frames, the coefficients are uniformly quantized with different
step sizes at each level to balance the quantization noise, since the
filterbanks are not perfectly orthogonal. The quantized coefficients
are then entropy coded using the RLGR coder [22]. We plan to in-
vestigate context-adaptive entropy coding schemes that exploit mesh
connectivity in future work.

3. EXPERIMENTS

We evaluate our compression scheme on a 204-frame point cloud
sequence capturing various motions performed by a person. Each
frame of this dataset has between 175,000 and 225,000 voxelized
points. Starting from frame 1, every 30th frame is designated as a
reference frame (a better alternative would be to consider the mesh
fitting error with respect to the previous frame). A base mesh con-
sisting of 720 to 750 vertices (1440 to 1500 faces) is obtained for
these reference frames using Poisson Surface Reconstruction. In
Figure 4, we illustrate the original point clouds and the obtained sub-
divisional mesh representations for a reference frame (frame number
31) and a predicted frame (frame number 32). We observe that our
mesh estimation procedure produces a detailed representation of the
data. However, we observed folds or “webbings” in the mesh in cer-
tain regions of high geometrical detail (for example, the fingers of
the hands), because the base mesh is very coarse for these regions.
These folds do not have any corresponding points from the origi-
nal point cloud and can be removed through simple post-processing

(a) (b)

Fig. 4: Original point clouds (left) and obtained mesh representa-
tions (right) for (a) reference frame 31 and (b) predicted frame 32.
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Fig. 5: Rate-distortion curve for geometry and color (Y-component)
for the Man sequence.

which may impose a slight penalty on the compression efficiency.
We also perform preliminary compression experiments on this

sequence. We compress the vertex positions and colors of the esti-
mated subdivisional meshes using GraphBior (6,6) filterbanks [17]
and the RLGR coder for different quantization step sizes. Figure 5
shows the rate distortion curves obtained. Note that the distortion
is computed between the estimated mesh and its transformed, quan-
tized version. Since our intermediate mesh representation is a re-
sampling of the original point cloud, comparing the quality of the fit
mesh, or the decoded output against the input point cloud, in terms
of distortion, is not straightforward. This requires defining a metric
that measures the distance between two point clouds, while taking
into account resampling. We plan to investigate this as part of future
work, and provide comparisons with existing compression schemes.

4. CONCLUSION

In this paper, we provide a framework for compression of 3D point
cloud sequences. Our approach involves representing sets of frames
by a consistently-evolving high-resolution subdivisional triangular
mesh. This representation helps us facilitate efficient implementa-
tions of motion estimation and graph wavelet transforms. The sub-
divisional structure plays a crucial role in designing a simple hierar-
chical method for efficiently estimating these meshes, and the appli-
cation of Biorthogonal Graph Wavelet Filterbanks for compression.
Preliminary experimental results show promising performances of
both the estimation and the compression steps, and we believe this
work shall open new avenues of research in this emerging field.
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