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ABSTRACT

This paper addresses the problem of motion estimation in 3D point
cloud sequences that are characterized by moving 3D positions and
color attributes. Motion estimation is key to effective compression
of these sequences, but it remains a challenging problem as the tem-
porally successive frames have varying sizes without explicit corre-
spondence information. We represent the time-varying geometry of
these sequences with a set of graphs, and consider 3D positions and
color attributes of the points clouds as signals on the vertices of the
graph. We then cast motion estimation as a feature matching prob-
lem between successive graphs. The motion is estimated on a sparse
set of representative vertices using new spectral graph wavelet de-
scriptors. A dense motion field is eventually interpolated by solving
a graph-based regularization problem. The estimated motion is fi-
nally used for color compensation in the compression of 3D point
cloud sequences. Experimental results demonstrate that our method
is able to accurately estimate the motion and to bring significant im-
provement in terms of color compression performance.

Index Terms— 3D sequences, voxels, spectral graph wavelets,
motion compensation

1. INTRODUCTION

Dynamic 3D scenes such as humans in motion are increasingly be-
ing captured by arrays of color plus depth video cameras [1]. The
resulting captured geometry, unlike computer-generated geometry,
has little explicit spatio-temporal structure, and is often represented
by sequence of point clouds, where there may be different numbers
of points in each frame, and no explicit association between points
over time. Performing motion estimation, motion compensation, and
compression of such data is a challenging task.

Unfortunately, the compression of 3D point cloud sequences has
been largely overlooked so far in the literature. A few works have
been proposed to compress static 3D point clouds. Some examples
include the 2D wavelet transform based scheme of [2], and the oc-
tree based geometry compression algorithms of [3], [4], which focus
on the compression of the 3D geometry positions. More recently, the
authors in [5] have proposed to use a graph transform to remove the
spatial redundancy for compression of the 3D point cloud attributes,
with significant improvement over traditional methods. However,
all the above methods consider each frame of the sequence inde-
pendently, without exploiting the temporal redundancy that exists
in geometry sequences. There does exist literature for compressing
dynamic 3D meshes with either fixed connectivity and known cor-
respondences (e.g., [6–10] ) or varying connectivity (e.g., [11, 12]).
However, there is only one work to our knowledge that exploits tem-

poral and spatial redundancy of point cloud sequences [13]. The au-
thors compress the geometry by comparing the octree data structure
of consecutive point clouds and encoding their structural difference.
Since their coding scheme is based on the set difference between oc-
tree stuctures and not the motion of the voxels, reducing the temporal
correlation for coding the color attributes is not straightforward.

In this paper, we focus on the compression of the 3D color
attributes and propose a novel motion estimation and compensa-
tion scheme that exploits temporal correlation in sequences of point
clouds. We consider points as vertices in a graph G, with edges
between nearby vertices. Unlike a traditional polygonal mesh, this
graph need not represent a surface. Attributes of each point n,
including 3D position p(n) = [x, y, z](n) and color components
c(n) = [r, g, b](n), are treated as signals residing on the vertices of
the graph. As frames in the 3D point cloud sequences are correlated,
the graph signals at consecutive time instants are also correlated.
The estimation of the correlation is however a challenging task as
the frames usually appear in different sizes and no explicit corre-
spondence information is available in the sequence.

We propose a novel algorithm for motion estimation and com-
pensation in 3D point cloud sequences. We cast motion estimation
as a feature matching problem on dynamic graphs. In particular, we
compute new local features at different scales with spectral graph
wavelets (SGW) [14] for each node of the graph. Spectral features
are stable to small perturbations of the edges or nodes of the graphs,
and different instances of such features have been used successfully
in graph matching problems [15] or in mesh segmentation and sur-
face alignment problems [16]. We then match our SGW features in
different graphs with a criteria that is based on the Mahalanobis dis-
tance and trained from the data. We first compute the motion on a
sparse set of matching nodes, and we interpolate the motion of the
other nodes of the graph by solving a new graph-based quadratic
regularization problem, which promotes smoothness of the motion
vectors on the graph in order to build a consistent motion field. We fi-
nally exploit the estimated motion information in the predictive cod-
ing of the color information, where we take benefit of the temporal
redundancy by coding only the difference between the actual color
information and the results of the motion compensation. We show by
experimental results that the integration of our new motion compen-
sation scheme in a state-of-the-art encoder [5] results in significant
improvement in terms of rate-distortion compression performance of
the color information in 3D point cloud sequences.

The rest of the paper is organized as follows. Section 2 first
describes the representation of 3D point clouds using graphs, and in-
troduces spectral graph wavelet descriptors. The motion estimation
and composition scheme is presented in Section 3. Experimental
results and conclusions are given in Section 4 and 5, respectively.
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2. GRAPH-BASED REPRESENTATION OF 3D POINT
CLOUDS

We represent the set of points in each frame using a weighted and
undirected graph G = (V, E ,W ), where V and E represent the ver-
tex and edge sets of G. Graph-based representations are flexible and
well adapted to data that lives on an irregular domain [17]. Each
node in V corresponds to a point in the point cloud, while each edge
in E connects neighbouring points. In our datasets, the point clouds
are voxelized, that is, their 3D positions are quantized to a regular,
axis-aligned, 3D grid having a given stepsize. Each quantization
cell is called a voxel, a voxel containing a point is said to be occu-
pied, and an occupied voxel is identified as a vertex in the graph.
Two vertices are connected by an edge if they are 26-neighbors in
the voxel grid, that is, if the distance between them is a maximum
of one step along any axis. Thus the distance between connected
pixels is either 1, 1/

√
2 or 1/

√
3 times the stepsize. The matrix

W is a matrix of positive edge weights, with W (i, j) denoting the
weight of an edge connecting vertices i and j. This weight captures
the connectivity pattern of nearby occupied voxels and are chosen
to be inversely proportional to the distances between voxels, follow-
ing the definition proposed in [5]. Finally, we compute the graph
Laplacian operator defined as L = D−W , whereD is the diagonal
degree matrix whose ith diagonal element is equal to the sum of the
weights of all the edges incident to vertex i [18]. It is a real sym-
metric matrix that has a complete set of orthonormal eigenvectors
with corresponding nonnegative eigenvalues. We denote its eigen-
vectors by χ = [χ1, χ2, ..., χN ], and the spectrum of eigenvalues by

Λ :=
{

0 = λ0 < λ1 ≤ λ2 ≤ ... ≤ λ(N−1)

}
.

We consider the components of the 3D coordinates p =
[x, y, z]T ∈ R3×N and respectively the color attributes c =
[r, g, b]T ∈ R3×N , as signals that reside on the vertices of the
graph G. These signals are used to define features on each node of
the graph in the motion estimation process. A meaningful definition
of a feature on a node of a graph requires a multi-resolution analysis
of the graph signals with respect to that particular node. Due to the
irregular graph domain, classical wavelet descriptors are however
not applicable in these irregular settings. The analysis of signals
defined on the vertices of an arbitrary weighted graph should rather
be performed with specific tools such as the spectral graph wavelets
(SGW) [14]. We therefore propose to construct SGW-based descrip-
tors built on SGW-features Wf (s, n) for each node in the graph.
Such features are computed by taking the inner product between a
given signal f and the graph wavelet ψs,n of scale s placed at that
particular node n, i.e.,

Wf (s, n) =< f, ψs,n >, (1)

where the spectral graph wavelets are operator-valued functions of
the graph Laplacian defined as

ψs,n = T s
g δn =

N−1∑
`=0

g(sλ`)χ
∗
` (n)χ`. (2)

The graph wavelets are determined by the choice of a generating
kernel g, which acts as a band-pass filter in the spectral domain, and
a scaling kernel h that acts as a lowpass filter. The scaling is defined
in the spectral domain, i.e., the wavelet operator at scale s is given
by T s

g = g(sL). Spectral graph wavelets are finally realized through
localizing these operators via the impulse δ on a single vertex n.

3. MOTION ESTIMATION AND COMPENSATION IN 3D
POINT CLOUD SEQUENCES

We use the spectral graph wavelets described in Sec. 2 to define
spectral features at different resolutions and compute point-to-point
correspondences between graphs of different frames by matching lo-
cal invariant descriptors. We select a subset of matching nodes to
define a sparse set of motion vectors that describe the temporal cor-
relation in the sequence. A dense motion field is then interpolated
from the sparse set of motion vectors in order to enable motion com-
pensated color prediction.

3.1. Feature extraction and matching on graphs

For each node i of a graph G, we define the following octant indicator
function

o1,i(j) = 1{x(j)≥x(i),y(j)≥y(i),z(j)≥z(i)}(j),

where 1{·}(j) is the indicator function on node j ∈ G, evaluated in
the set {·} that depends on the 3D coordinates of the voxels. We
consider all possible combinations of inequalities that results in a
total of 23 indicator functions, i.e., ok,i(j), k = [1, 2, ..., 8]. These
functions provide a notion of orientation of j with respect to i, which
is clearly provided by the voxel grid.

We compute features based on both geometry and color infor-
mation in each orientation. In particular, for each node i and each
geometry and color component f ∈ {x, y, z, r, g, b} in a specific
orientation k, we compute the spectral graph wavelet coefficients

φi,s,ok,i,f =< f · ok,i, ψs,i >, (3)

where k = 1, 2, ..., 8, s = s1, ..., smax and · denotes the pairwise
product. The feature vector is the concatenation of these wavelet co-
efficients, including the features obtained from the scaling function,
i.e., φi = {φi,s,ok,i,f} ∈ R8×6×(smax+1).

Given two graphs Gt, Gt+1, each representing a frame in the 3D
sequence, we use the above definition of features to find correspon-
dences between vertices. We compute the matching score between
two nodes m ∈ Gt, n ∈ Gt+1 as the Mahalanobis distance of the
corresponding feature vectors, i.e.,

σ(m,n) = (φm − φn)TP (φm − φn), (4)

where P−1 is a covariance matrix estimated from training features
that are known to be in correspondence. We define as the best match
for n ∈ Gt+1, the node n∗ ∈ Gt with the minimum Mahalanobis
distance, i.e.,

n∗ = argmin
m∈Gt

σ(m,n).

The choice of this distance metric is motivated by the combination
of both geometry and color features, which are measured in different
units. Hence, by learning the covariance matrix, we discover the
relation between different feature components in each sequence.

We now compute motion vectors only on a sparse set of match-
ing points, i.e., we take into consideration only accurate matches and
ignore the rest. The selection of the sparse set of matching nodes is
based on the intuition that a sampling of the nodes that covers all
the 3D space can help later in interpolating the motion across all the
nodes of the graph. We thus cluster the vertices of Gt+1 in different
regions and we keep only a representative vertex per region. Clus-
tering is performed by applying K-means in the 3D coordinates of
the nodes. K is usually set equal to the desirable sparse number of
nodes. In order to avoid inaccurate matches, a representative vertex
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is included in the sparse set only if its best score is smaller than a
predefined threshold. Therefore, our sparse set of matching points
tend to be accurate and well distributed spatially.

3.2. Computation of the motion vectors

Next, we study the interpolation of the dense motion field from the
sparse set of matching nodes. Interpolation is basically done by
treating the motion vector in each direction as a signal that varies
smoothly on the graph. We estimate the entries of these signals for
each matching pair (n∗, n), as v(n) = pt+1(n) − pt(n∗), with pt

and pt+1 the 3D coordinate signals on Gt and Gt+1, respectively.
To allow some signal smoothing on these known entries, we model
the matching score in their local neighborhood, with respect to node
n ∈ Gt+1. In particular, for each node m ∈ Gt that belongs to the
two-hop neighborhood of n∗ i.e., m ∈ N 2

n∗ , we express σ(m,n) in
terms of the best match score σ(n∗, n), and the geometric distance
of m from n∗ using the second-order Taylor series expansion

σ(m,n) ≈ σ(n∗, n) + (pt(m)−pt(n∗))TM−1
n (pt(m)−pt(n∗)).

We estimate Mn as the normalized covariance matrix of the 3D off-
sets,

Mn =
1

|N 2
n∗ |

∑
m∈N2

n∗

(pt(m)− pt(n∗))(pt(m)− pt(n∗))T

σ(m,n)− σ(n∗, n)
.

We define Q =


M−1

1 · · · 03×3

...
. . .

...

03×3 · · · M−1
Nt

 , where M−1
l = 03×3 if

node l does not belong to the sparse set of motion vectors.
Finally, we interpolate the dense set of motion vectors v̂∗ by

smoothing the sparse set of motion vectors on the graph

v̂∗ = argmin
v∈R3Nt

(v − v∗)TQ(v − v∗) + µ

3∑
i=1

(Siv)TLt(Siv), (5)

where {Si}i=1,2,3 is a selection matrix for each of the 3D compo-
nents respectively, and v∗ = [v∗(1), v∗(2), · · · , v∗(Nt)]

T ∈ R3Nt ,
is the concatenation of the motion vectors, with v∗(l) = 03×1, if l
does not belong to the sparse set. We note that the optimization prob-
lem consists of two terms: a fitting term that penalizes the excess
matching score on the sparse set of matching nodes, and a regular-
ization term that imposes smoothness of the motion vectors in each
of the position components independently. Similar regularization
techniques, that are based on the notion of smoothness of the graph
Laplacian, have been widely using in the semi-supervised learning
literature [19, 20]. The optimization problem is convex and it has a
closed form solution given by

v̂∗ =
(
Q+ µ

3∑
i=1

ST
i LtSi

)−1
Qv∗, (6)

which can be solved iteratively using MINRES-QLP [21] for effi-
ciency on large systems.

3.3. Motion compensation for color prediction

We use the estimated motion vectors to warp the graph Gt to Gt+1.
In particular, the position of node m on the warped graph G̃t is esti-
mated by using the corresponding position in Gt and the motion

p̃t(m) = pt(m) + v̂∗(m).

(a) (b) (c) (d)

Fig. 1. Superimposition of the reference and target frame in two
datasets ((a), (c)), and target frame and motion estimated reference
frame ((b), (d)). Each small cube corresponds to a voxel in the mo-
tion compensated frame.

The color is transferred directly from Gt to G̃t i.e., c̃t(m) = ct(m).
These values can then be used to predict the color values at the nodes
of Gt+1. For each n ∈ Gt+1, we predict ĉt+1(n) by finding the
nearest neighbors NNn of pt+1(n) in terms of the 3D positions p̃t,
and attributing to n their average color i.e.,

ĉt+1(n) =
∑

m∈NNn

1

|NNn|
c̃t(m),

where |NNn| is the cardinality of NNn, that is usually set to 3.

4. EXPERIMENTAL RESULTS

We illustrate the performance of our motion estimation and compen-
sation scheme on two different datasets, i.e., the man sequence and
the yellow dress, which were both constructed by a real-time high
resolution sparse voxalization algorithm [1].

We first provide some illustrative results of the motion esti-
mation performance. For each dataset, we select two consecutive
frames, namely the reference and the target frame. For each frame,
we voxelize the point cloud in the frame to a voxel stepsize that
generates a set of approximately 8500 occupied voxels out of a total
of 75000 initial 3D points with color attributes. The exact voxel
number depends on the size of the actual frames. The graph for each
frame is constructed as described in Section 2. We define spectral
graph wavelets of 4 scales on these graphs, and for computational
efficiency, we approximate them with Chebyshev polynomials of
degree 30 [14]. We select the number of representative feature
points to be around 500, which corresponds to fewer than 10% of
the total occupied voxels, and we compute the sparse motion vectors
on the corresponding nodes. We estimate the motion on the rest of
the nodes by smoothing the motion vectors on the graph based on
Eq.(5). In Fig. 1(a), we superimpose the reference and the target
frame for the man sequence and in Fig. 1(c), the corresponding
frames for the yellow dress sequence. Accordingly, in Figs. 1(b),
1(d) we superimpose the target frame and the voxel representation
of the motion compensated reference frame. We observe that our
algorithm is able to compensate quite accurately the motion. In
particular, in both datasets the motion compensated reference frame,
which is represented in a voxelized form, is close to the target frame.

In the next set of experiments, we use motion compensation
for color prediction, as described in Section 3.3. That is, using the
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Fig. 2. Comparison of the color prediction performance obtained
from the (i) motion compensated reference frame, (ii) reference
frame, and (iii) average of the reference frame.

smoothed motion field, we warp the reference graph Gt to the target
graph Gt+1, and predict the color of each node in Gt+1 as the aver-
age of the nearest nodes in Gt. In Fig. (2), we illustrate the signal-
to-noise ratio (SNR) of the color prediction for different voxel step-

sizes defined as SNR = 20 log10
‖target color‖

‖prediction error‖ . In particular,
we compute the SNR by predicting the color of the target frame from
the 3D positions of (i) the motion compensated reference frame, and
(ii) the reference frame. For the sake of completeness, we show as
well the SNR that is obtained by having as prediction the average
of the color of the reference frame. The results are indicative of the
dependency of the motion estimation on the voxel stepsize and the
graph construction. When the stepsize is small, many nodes of the
graph are isolated, which reduces the efficiency of the smoothing
step that computes the dense motion field. As a result the color pre-
diction error is similar to that obtained by predicting simply based
on the reference frame. A more efficient construction of the graph
could however improve the performance. On the other hand, when
the motion is correctly estimated, motion compensation can signifi-
cantly reduce the prediction error.

We finally use the prediction obtained from our motion estima-
tion and compensation scheme to compress the color attributes of the
target frame, for a voxel stepsize of 20. An overview of the predic-
tive color coding structure is shown in Fig. 3. We assume that the set
of occupied voxels (i.e., the geometry information) has already been
coded according to the method described in [13], with the difference
that coding is based on the set difference of the target frame and the
motion compensated reference frame. We exploit the smoothness of
the motion vectors on the graph, by coding them in the graph Fourier
domain, which has been shown to be efficient in compressing smooth
signals [22]. The graph Fourier coefficients are uniformly quantized,
entropy coded with the RLGR entropy coder [23] and sent to the de-
coder. The set of occupied voxels of the target frame and the motion
vectors can therefore be reconstructed at the decoder. The cost of the
motion vectors is included in the geometry coding (to be described
more fully elsewhere), which depending on the sequence results in
either a small gain or a small penalty in the range of 0.01-0.3 bits per
vertex over the coding rate of state-of-the-art geometry coding [13].
This essentially means that the coding of the motion vectors is basi-
cally transparent, and that almost no overhead has to be included for
predictive coding of the color.

Compression of color attributes is thus obtained by coding the
residual of the target frame with respect to the color prediction ob-
tained with the scheme described in Section 3. Quantization and
entropy coding of the residuals are performed using the recently in-
troduced graph-based compression scheme of [5]. This algorithm

Fig. 3. Schematic overview of predictive color coding
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Fig. 4. Compression performance (dB) vr. bits per vertex for inde-
pendent and differential coding of the target frame on both datasets.

removes the spatial redundancy of the voxels by applying the graph
transform on small blocks of voxels. This step, combined with the
differential coding step, exploits both temporal and spatial correla-
tion for color coding. In our experiments, we choose small blocks of
16 × 16 × 16 voxels. We measure the PSNR obtained for different
coding rates of the color information, for both independent and dif-
ferential coding. The results are shown in Fig. 4 for both datasets.
We observe that differential coding provides a gain of approximately
10 dB at low bit rate, for the same number of bits per vertex, with
respect to independent coding. Given the very small potential over-
head introduced by the coding of the motion vectors, these results
clearly confirm the benefit of motion compensation for color com-
pression in 3D point cloud sequences.

5. CONCLUSIONS

In this paper, we have proposed a novel algorithm for motion es-
timation on 3D point cloud sequences. Our algorithm is based on
the assumption that 3D models are representable by a sequence of
weighted and undirected graphs and the geometry and the color of
each model can be considered as graph signals residing on the ver-
tices of the corresponding graphs. Correspondence between a sparse
set of nodes in each graph is first determined by matching descriptors
based on spectral features that are localized on the graph. The mo-
tion on the rest of the nodes is interpolated by exploiting the smooth-
ness of the motion vectors on the graph. Motion compensation is
finally used to perform color prediction. Experimental results have
shown that the proposed method is efficient in estimating the motion
and it eventually provides significant gain in compressing the color
information with respect to independent coding of frame sequences.
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