
Improving Document Ranking for Long Queries
with Nested Query Segmentation

Rishiraj Saha Roy1?, Anusha Suresh2, Niloy Ganguly2, and
Monojit Choudhury3

1 Max Planck Institute for Informatics, Saarbrücken, rishiraj@mpi-inf.mpg.de
2 Indian Institute of Technology (IIT), Kharagpur,
{anusha.suresh, niloy}@cse.iitkgp.ernet.in

3 Microsoft Research India, Bangalore, monojitc@microsoft.com

Abstract. In this research, we explore nested or hierarchical query seg-
mentation4, where segments are defined recursively as consisting of con-
tiguous sequences of segments or query words, as a more effective rep-
resentation of a query. We design a lightweight and unsupervised nested
segmentation scheme, and propose how to use the tree arising out of the
nested representation of a query to improve ranking performance. We
show that nested segmentation can lead to significant gains over state-
of-the-art flat segmentation strategies.

1 Introduction

Query segmentation [1–5] is one of the first steps towards query understand-
ing where complex queries are partitioned into semantically coherent word se-
quences. Past research [1–5] has shown that segmentation can potentially lead
to better IR performance. Till date, almost all the works on query segmenta-
tion have dealt with flat or non-hierarchical segmentations, such as: windows xp

home edition | hd video | playback, where pipes (|) represent flat segment
boundaries. For short queries of up to three or four words, such flat segmentation
may suffice. However, slightly longer queries of about five to ten words are in-
creasing over the years (' 27% in our May 2010 Bing Australia log) and present
a challenge to the search engine. One of the shortcomings of flat segmentation
is that it fails to capture the relationships between segments which can provide
important information towards the document ranking strategy, particularly in
the case of a long query.

These relationships can be discovered if we allow nesting of segments inside
bigger segments. For instance, instead of a flat segmentation, our running exam-
ple query could be more meaningfully represented as Fig. 1. Here, the atomic
segments – windows xp and hd video, are progressively joined with other words
to produce larger segments – windows xp home, windows xp home edition,
and hd video playback. It is intuitive from this representation that windows

? This research was completed while the author was at IIT Kharagpur.
4 An extended version of this paper is available at www.abc.com

Fig. 1. Nested segmentation tree.

xp and hd video are non-negotiable (atomic units) when it comes to matching
within documents, and the strength of ties between word pairs can be said to
weaken as they move farther in terms of the (unique) path through the tree. We
define some of the important concepts below.

Tree distance. The tree distance5 td(t1, t2;n(q)) between two terms t1 and
t2 in n(q), the nested segmentation of a query q, is defined as the shortest
path (i.e., the number of hops) between t1 and t2 (or vice versa) through the
nested segmentation tree for q (like Fig. 1). A tree ensures a unique shortest
path between t1 and t2, which is through the common ancestor of t1 and t2. For
example, td(xp, video; n(q) in Fig. 1) = 7. The minimum possible tree distance
between two terms is two. Note that td between t1 and t2 can vary for the same
q, depending on n(q).

Query distance. The query distance qd(t1, t2; q) between two terms t1 and
t2 in a query q is defined as the difference between the positions of t1 and t2 in
q, or equivalently, the number of intervening words plus one.

Document distance. Let t1 and t2 be two terms in the query q, which are
also present (matched) in a retrieved document D. Let there be k instances of or-
dered pairwise occurrences of t1 and t2 (ordered pairs of positions of t1 and t2, (p1,
p2) where p1 < p2) in D at minimum distances [6] disti = dist1, dist2, . . . , distk,
such that the disti-s are in ascending order. We combine the ideas of minimum
distance and multiple occurrences of a term pair to formulate the following def-
inition of accumulative inverse document distance (AIDD) for t1 and t2 in D:

AIDD(t1, t2;D)t1 6=t2 =
1

dist1
+

1

dist2
+ . . .+

1

distk
(1)

By this method, a document with several (t1, t2) near to each other will have
a high AIDD. Since our concept is based on minimum distance, we do not need
a document length normalizer. A threshold on k is nevertheless necessary to
avoid considering all pairwise distances of t1 and t2, as distant pairs could be
semantically unrelated. To avoid scoring unrelated occurrences of a term pair,
we consider matches only if (t1, t2) occur within a given window size, win.

5 For all distances, when the same word appears multiple times in a query, each word
instance is treated as distinct during pairwise comparisons.

2 Algorithm and IR application

2.1 Splitting and joining flat segments

Since flat segmentation is a well-researched problem, we develop our algorithm
for nested segmentation by starting with a flat segmentation of the query and
trying to split within a flat segment and join adjacent flat segments recursively.
Our main motivation for designing simple segment nesting strategies stems from
the fact that most flat segmentation algorithms compute scores for n-grams as
a key step of their respective methods (generally n ≤ 5) [3–5]. In doing so, most
often, the scores of the contiguous lower order n-grams (n − 1, n − 2, . . .) are
also known. For splitting a flat segment, we exploit these scores to deduce
the structure within a flat segment. In this work, we specifically use the state-
of-the-art Co-occurrence Significance Ratio (CSR) measure [7] to score n-grams.
We adopt a simple greedy approach in this research. The n-gram (here n ≤ 3)
that has the highest CSR score within a flat segment (where the number of
words in the n-gram is less than the number of words in the corresponding flat
segment) is immediately grouped together as a unit, i.e. a sub-segment. We define
a sub-segment as a smaller segment created by the division of a larger segment.
Recursively, this newly grouped sub-segment’s left and right n-grams (possibly
null) and the sub-segment itself are processed in the same greedy fashion till
every string to be processed cannot be divided further.

Joining flat segments is essential to completing the nested segmenta-
tion tree, which in turn ensures a path between every pair of words in the
query. The bigram at a flat segment boundary, i.e. the last word of a flat seg-
ment and the first word of the next flat segment, can be effectively used to
take the segment joining decision. In our running example, if we wish to de-
cide whether to join windows xp home edition and hd video, or hd video

and playback, we check the relative order of the scores of the (ordered) bi-
grams formed by the underlined words only. The bigram with the higher score
(in this case video playback) dictates which pair should be joined. This pro-
cess is similarly repeated on the new parenthesized segments obtained until
the whole query forms one unit. Here we use pointwise mutual information
(PMI) [5] to score bigrams. It often happens that the last (or the first) word
in a segment is a determiner, conjunction or preposition (DCP) (list used from
http://goo.gl/Ro1eeA). In these cases, it is almost always meaningful to com-
bine such a segment with the next segment (or the previous segment) to make a
meaningful super-segment (a larger segment created by the joining of two smaller
segments). Examples are (bed and) (breakfast) and (sound) (of music).
We prioritize such cases over the bigram scores during the joining process.

2.2 Using nested segmentation in IR

We define a score Re-rank Status Value (RrSV) of every document D that was
retrieved in response to an unsegmented query q, determined by the following
principle – a pair of words that has a low tree distance in the nested representation

of the query should not have a high document distance. In other words, while re-
ranking a document, the document distance (Eq. 1) between a pair of words
should be penalized by a factor inversely proportional to its tree distance. The
RrSV for a document D is thus defined as

RrSVD =
∑

ti,tj∈q∩D
ti 6=tj

td(ti,tj ;n(q))<δ

AIDD(ti, tj ;D)

td(ti, tj ;n(q))
(2)

where ti-s are query terms matched in the document and n(q) is the nested
segmentation for q. However, we do not wish to penalize D when the words
are close by in the document and are relatively far in the tree. This analysis
drives us to create a tree distance threshold (cut-off) parameter δ. In other
words, if td(a, b;n(q)) < δ, only then is the word pair a and b considered in
the computation of RrSV . The original rank for a page (obtained using TF-
IDF scoring, say) and the new rank obtained using RrSV are fused using the
method in Agichtein et al. [8], using w as a tuning parameter. We refer to
this entire strategy as the Tree model. We use three re-ranking baselines: Flat
segmentation (word pairs are limited to cases where both words come from a
single flat segment), document distances only (no scaling using tree distance; Doc
model), and query distances (scaling document distances using query distances
(Sec. 1); Query model).

3 Datasets and experimental results

3.1 Datasets

Our nested segmentation algorithm requires a query log as the only resource,
for computing the various n-gram scores. For our experiments, we use a query
log sampled from a Bing Australia in May 2010. This raw data slice consists of
16.7M queries (4.7M unique). In order to ensure the replicability of our results,
we report our IR evaluation on publicly available datasets only and use open
source retrieval systems. We used the dataset released by Saha Roy et al. [2], and
refer to it as SGCL12 (author last name initials and year), using Apache Lucene
v.3.4.0 as the search engine. The first 250 queries were used as the development
set for tuning model parameters (k, win, δ and w) and the last 250 queries
were used as the test set. We also used a collection of 75 TREC queries sampled
from the Web tracks of 2009 to 2012, with ≥ 3 words and at least one relevant
document in the top-100 results. The Indri search engine was used along with
the ClueWeb09 dataset. 35 queries were used as the development set for tuning
model parameters and the remaining 40 queries were used as the test set, and
the results are averaged over ten random 35-40 splits.

3.2 Experiments and results

We used the outputs of three recent flat segmentation algorithms as input to
the nested segmentation algorithm and final nested segmentations for these

Table 1. Comparison of flat and nested segmentations on SGCL12 and TREC-WT.

Dataset Algo Hagen et al. [5] Mishra et al. [4] Saha Roy et al. [2] Huang et al. [9]

SGCL12 Unseg Flat Nested Flat Nested Flat Nested Nested

nDCG@5 0.6839 0.6815 0.6982 0.6977 0.6976 0.6746 0.7000† 0.6996

nDCG@10 0.6997 0.7081 0.7262† 0.7189 0.7274 0.7044 0.7268† 0.7224

nDCG@20 0.7226 0.7327 0.7433† 0.7389 0.7435 0.7321 0.7433† 0.7438

MAP 0.8337 0.8406 0.8468† 0.8411 0.8481† 0.8423 0.8477 0.8456

TREC-WT Unseg Flat Nested Flat Nested Flat Nested Nested

nDCG@5 0.1426 0.1607 0.1750† 0.1604 0.1752† 0.1603 0.1767† 0.1746

nDCG@10 0.1376 0.1710 0.1880† 0.1726 0.1882† 0.1707 0.1884† 0.1845

nDCG@20 0.1534 0.1853 0.1994† 0.1865 0.2000† 0.1889 0.2010† 0.1961

MAP 0.2832 0.2877 0.3298† 0.3003 0.3284† 0.3007 0.3296† 0.3263

Statistical significance of nested segmentation (under the one-tailed paired t-test, p < 0.05) over

flat segmentation and the unsegmented query is marked using †.

queries were obtained. Documents are retrieved using unsegmented queries, and
re-ranked using the proposed technique and the baselines. Results are compared
in terms of nDCG@k (k = 5, 10, 20; the IDCG is computed using the optimal
ranking from all judgments for a query) and MAP (URLs with ratings > 0 were
considered as relevant). For each dataset, the four parameters k, win, δ and w
were optimized using the grid search technique for maximizing nDCG@10 on
the development set. Partial data and complete code for this project is available
at http://cse.iitkgp.ac.in/resgrp/cnerg/qa/nestedsegmentation.html.

(a) Improvements over flat segmentation: Some of the sample outputs
from our nested segmentation algorithm are as follows: ((garden city) (shop-

ping centre)) (brisbane qld), (the ((chronicles of) riddick)) (dark

athena), and ((sega superstars) tennis) ((nintendo ds) game). In Ta-
ble 1, for each algorithm, Flat refers to the re-ranking strategy for flat segmen-
tation by the corresponding algorithm, and Nested refers to the tree re-ranking
strategy when applied to the nested segmentation generated when the corre-
sponding flat segmentation was used as the start state. We observe that nested
segmentation significantly outperforms the state-of-the-art flat segmentation al-
gorithms in all cases. Importantly, improvements are observed for both datasets
on all metrics. This indicates that one should not consider proximity measures
for only pairs of terms that are within a flat segment. Thus, our experiments
provide evidence against the hypothesis that a query is similar to a bag-of-
segments [4]. We also note that both the flat and nested segmentations perform
better than the unsegmented query, highlighting the general importance of query
segmentation for IR.

(b) Comparison with past work: We apply our re-ranking framework on
the nesting output by Huang et al. [9] and show results in Table 1. We observed
that their method is outperformed by the proposed nested segmentation (from
all input flat segmentation strategies) on several metrics. We observed that while
the average tree height is 2.96 for our nesting strategy, the same is about 2.23 for
Huang et al. (SGCL12). Note that due to the strict binary partitioning at each
step for Huang et al., one would normally expect a greater average tree height
for this method. Thus, it is the inability of Huang et al. to produce a suitably
deep tree for most queries (inability to discover fine-grained concepts) that is

responsible for its somewhat lower performance. Most importantly, all nesting
strategies faring favorably (none of the differences for Huang et al. with other
nesting methods are statistically significant) with respect to flat segmentation
bodes well for the usefulness of nested segmentation.
(c) Comparison of re-ranking strategies: We find the Tree model performs
better than Doc and Query models. We observed that the number of queries on
which Doc, Query and Tree perform the best (possibly multiple strategies) are
102, 94, 107 (SGCL12, 250 test queries) and 30, 29.7, 30.8 (TREC-WT, 40 test
queries, mean over 10 splits) respectively.

4 Conclusions

This research is one of the first systematic explorations of nested query segmen-
tation. We have shown that the tree structure inherent in the hierarchical seg-
mentation can be used for effective re-ranking of result pages (' 7% nDCG@10
improvement over unsegmented query for SGCL12 and ' 40% for TREC-WT).
Importantly, since n-gram scores can be computed offline, our algorithms have
minimal runtime overhead. We believe that this work will generate sufficient in-
terest and several improvements over the present scheme would be proposed in
the recent future. In fact, nested query segmentation can be viewed as the first
step towards query parsing, and can lead to a generalized query grammar.

Acknowledgments

The first author was supported by Microsoft Corporation and Microsoft Research
India under the Microsoft Research India PhD Fellowship Award.

References

1. Li, Y., Hsu, B.J.P., Zhai, C., Wang, K.: Unsupervised query segmentation using
clickthrough for information retrieval. In: SIGIR ’11. (2011) 285–294

2. Saha Roy, R., Ganguly, N., Choudhury, M., Laxman, S.: An IR-based evaluation
framework for web search query segmentation. In: SIGIR ’12. (2012) 881–890

3. Tan, B., Peng, F.: Unsupervised query segmentation using generative language
models and Wikipedia. In: WWW ’08. (2008) 347–356

4. Mishra, N., Saha Roy, R., Ganguly, N., Laxman, S., Choudhury, M.: Unsupervised
query segmentation using only query logs. In: WWW ’11. (2011) 91–92

5. Hagen, M., Potthast, M., Stein, B., Bräutigam, C.: Query segmentation revisited.
In: WWW ’11. (2011) 97–106

6. Cummins, R., O’Riordan, C.: Learning in a pairwise term-term proximity framework
for information retrieval. In: SIGIR ’09. (2009) 251–258

7. Chaudhari, D.L., Damani, O.P., Laxman, S.: Lexical co-occurrence, statistical sig-
nificance, and word association. In: EMNLP ’11. (2011) 1058–1068

8. Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating
user behavior information. In: SIGIR ’06. (2006) 19–26

9. Huang, J., Gao, J., Miao, J., Li, X., Wang, K., Behr, F., Giles, C.L.: Exploring web
scale language models for search query processing. In: WWW ’10. (2010) 451–460

