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Abstract

Modern structure from motion (SfM) remains dependent
on point features to recover camera positions, meaning that
reconstruction is severely hampered in low-texture environ-
ments, for example scanning a plain coffee cup on an un-
cluttered table.

We show how 3D curves can be used to refine camera
position estimation in challenging low-texture scenes. In
contrast to previous work, we allow the curves to be par-
tially observed in all images, meaning that for the first time,
curve-based SfM can be demonstrated in realistic scenes.

The algorithm is based on bundle adjustment, so needs
an initial estimate, but even a poor estimate from a few point
correspondences can be substantially improved by includ-
ing curves, suggesting that this method would benefit many
existing systems.

1. Introduction

While 3D reconstruction from 2D data is a mature field,
with city-scale and highly dense reconstruction now almost
commonplace, there remain some serious gaps in our abil-
ities. One such is the dependence on texture to resolve the
aperture problem by supplying point features. For large-
scale outdoor scanning, or for cameras with a wide field of
view, this is not an onerous requirement, as there is typ-
ically enough texture in natural scenes to obtain accurate
camera poses and calibrations. However, many common
environments in which a naı̈ve user might wish to obtain a
3D reconstruction do not supply enough texture to compute
accurate cameras. In short, we cannot yet scan a “simple”
scene such as a coffee cup on a plain table.

Consider figure 1, showing a simple scene captured with
a consumer camera. Without the calibration markers, which
are there so that we can perform ground-truth experiments,
there are no more than a few dozen reliable interest points.
Furthermore, some of those points are on T-junctions, so
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Figure 1: (a) A typical low-texture scene (one of 21 “Cups”
images, markers are for ground-truth experiments). Sparse
point features lead to poor cameras, and poor PMVS2 re-
construction (c). (b) Reprojection of the 16 curves used to
upgrade cameras, yielding better dense reconstruction (d).

correspond to no real 3D point, further hindering standard
SfM reconstruction. However, the curves in the images are a
rich source of 3D information. For curved surfaces, recon-
structing surface markings provides dense depth informa-
tion on the surface. Even in areas where no passive system
can recover depth, such as the white tabletop in this exam-
ple, the fact of having a complete curve boundary, which is
planar, is a strong cue to the planarity of the interior. The
silhouette curves (which we do not exploit in this work) are
yet another important shape cue.

Related work is covered in detail in §2 but in brief,
while some previous research has looked at reconstruction
of space curves, and other efforts have considered camera
pose estimation from line features, very few papers address
the simultaneous recovery of general curve shape and cam-
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era pose. Those that do have either assumed fully visible
curves (or precisely, known visibility masks) in each image,
or have shown only qualitative camera recovery under an
orthographic model. This paper is the first to show improve-
ment of a state-of-the-art dense reconstruction pipeline (Vi-
sualSFM [21] and PMVS2 [8]) by using curves.

Our primary contribution is a formulation of curve-based
bundle adjustment with the following features:

1. curves are not required to be fully visible in each view;

2. not limited to plane curves—our spline parameteriza-
tion allows for general space curves;

3. point, curves, and cameras are optimized simultane-
ously.

A secondary, but nevertheless important, contribution lies
in showing that curves can provide strong constraints on
camera position, so should be considered as part of the SfM
pipeline. Finally, we note that nowhere do we treat lines as
a special case, but we observe that many of the curves in our
examples include line segments, so that at least at the bundle
adjustment stage they may not need to be special-cased.

A potential criticism of our work is that ”it’s just bundle
adjustment”—we wrote down a generative model of curves
in images and optimized its parameters. However, we refute
this: despite the problem’s long standing, the formulation
has not previously appeared.

Limitations of our work are: we assume the image curves
are already in correspondence, via one of the numerous pre-
vious works on automatic curve matching [19, 12, 2, 5, 10,
12]. We also cannot as yet recover motion without some as-
sistance from points, hence our title is “towards” point-less
reconstruction. However, despite these limitations, we will
show that curves are a valuable component of structure and
motion recovery.

2. Related work
The venerable term “Structure from Motion” is of course

a misnomer. It is the problem of simultaneously recovering
the 3D “structure” of the world and the camera “motion”,
that is the extrinsic and intrinsic calibration of the camera
for each image in a set.

On the “structure” side, curves have often been studied
as a means of enriching sparse 3D reconstructions (figure 2
attempts to illustrate). Baillard et al. [2] showed how line
matching could enhance aerial reconstruction, and Berthils-
son et al. [3] showed how general curves could be recon-
structed. Kahl and August [12] showed impressive 3D
curves reconstructed from real images, and recently Fab-
bri and Kimia [5] and Litvinov et al. [15] showed how re-
construction of short segments could greatly enhance 3D
reconstructions. Other work introduced more general curve
representations such as nonuniform rational B-splines [23],

Figure 2: Two views of final curves, overlaid on dense point
reconstruction. Curves provide a more semantically struc-
tured reconstruction than raw points.

subdivision curves [11], or curve tracing in a 3D probability
distribution [20].

The key to this paper, though, is the use of curves to
obtain or improve the “motion” estimates. Two classes of
existing work pertain: multiple-view geometry for a small
number of views, and curve-based bundle adjustment. It has
been known for decades that structure and motion recovery
need not depend on points. The multiple-view geometry of
lines [6], conics [13], and general algebraic curves [14] has
been worked out. For general curved surfaces, and for space
curves, it is known that the epipolar tangencies [17] provide
constraints on camera position. However, these various re-
lations have a reputation for instability, possibly explaining
why no general curve-based motion recovery system exists
today. Success has been achieved in some important special
cases, for example Mendonça et al. [16] demonstrated re-
liable recovery of camera motion from occluding contours,
in the special case of turntable motion.

Success has also been achieved in the use of bundle ad-
justment to “upgrade” cameras using curves. Berthilsson et
al. [3] demonstrated camera position recovery from space
curves, with an image as simple as a single “C”-shaped
curve showing good agreement to ground truth rotation val-
ues. However, as illustrated in figure 3, because they match
model points to data, they require that each curve be entirely
visible in every image. Prasad et al. [18] use a similar ob-
jective to recover nonrigid 3D shape for space curves on a
surface, and optimize for scaled orthographic cameras, but
show no quantitative results on camera improvement. Fab-
bri and Kimia [5] augment the bundle objective function to
account for agreement of the normal vector at each point,
but retain the model-to-data formulation, dealing with par-
tial occlusion by using curve fragments rather than com-
plete curves. Cashman and Fitzgibbon [4] also recover cam-
eras while optimizing for 3D shape from silhouettes, but
deal with the occluding contour rather than space curves,
and use only scaled orthographic cameras.
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Figure 3: The problem with the model-to-data objective (§2.1). (a) A 2D setup with a single curve (blue) viewed by four
cameras (fields of view shown black) parameterized by 2D translation and optionally scale. (b) Illustration of the cost function
surfaces in each image for the model-to-data objective used in most previous work [5, 18, 3]. Each image is represented by
a distance transform of the imaged points (yellow dots), and the bundle objective sums image-plane distances. Even when
varying only camera translation, the global optimum for the L2 objective (red curves) is far from the truth (blue). If varying
scale as well as translation (analogous to our perspective 3D cameras), the situation is even worse: the global optimum is
achieved by setting the scale to zero. (c) Attempting to model occlusion using a robust kernel reduces, but does not eliminate
the bias. All existing model-to-data techniques must overcome this by explicitly identifying occlusions as a separate step. If
that step is based on rejection of points with large errors, it is already subsumed in (c), i.e. it doesn’t remove the bias.

2.1. Model-to-data versus data-to-model

A key distinction made above was that most existing al-
gorithms (all but [23, 4]) match model to data, probably
because this direction is easily optimized using a distance
transform. By this we mean that the energy function they
minimize in bundle adjustment involves a sum over the
points of the 3D curve, rather than summing over the im-
age measurements. However, as illustrated in figure 3, in
the presence of any partial occlusion, the global optimum
of this formulation does not coincide with the ground truth,
and indeed can be strongly biased. Existing work can avoid
the bias by knowing, for each view, exactly what subset of
the model curve is visible, but this is in general unknow-
able and any attempt to do it using image-plane distances
must amount to some form of robust estimator (fit, reject
large values, re-fit), which does not fix the bias. As shown
below (and by [23, 4]), the data-to-model objective can be
efficiently minimized. Thus, to our knowledge ours is the
first work to optimize camera parameters from curves using
an intrinsically occlusion-resistant objective function.

3. Algorithm
We consider N views of a scene that contains M 3D

curves, e.g. texture edges or sharp object outlines. Our goal
is to reconstruct 3D curves from their image projection and
to refine the camera calibration using these curves. Each 3D
curve is partly visible in several views.

We define a 3D curve as a function C mapping from an
interval Ω ⊂ R to R3. We will use curves whose shape is
parameterized, typically by a set of control vertices, X =
{X1, ..., XK} ⊂ R3, and we will write C(t;X) to show
the dependence on both the curve parameter t and the shape
parameters X. In this work we will use a piecewise cubic
spline, defined as

C(t;X1, ..., XK) =

3∑
k=0

Xbtc+kφk(t− btc) (1)

for fixed smooth basis functions φ0..3, and Ω is the interval
[1,K − 2). Note that despite the apparently discontinuous
floor operator, this is a very simple function, cubic in t and
linear in X, whose derivatives with respect to t and X are
well defined at each t ∈ Ω because the basis functions are
chosen so that the spline is smooth. The definition above
uses fixed uniform knots, but in practice it is easy to switch
to NURBS [23] or subdivision curves [4] if desired. Our
code is quite agnostic to the parameterization of C.

We also consider a quite general representation of cam-
eras, projecting 3D points to 2D images. Each dataset
will comprise N images, and image n has corresponding
unknown camera parameters θn, comprising for example
translation, rotation, focal length and radial distortion. A
projection function π is defined which applies a vector of
camera parameters θ to a 3D point X and projects into R2:

π(X;θ) ∈ R2 (2)



The image data comprises a list of curve segments,
numbered 1 to S. As noted above, we assume corre-
spondence will be provided by an existing algorithm, even
though in practice one would almost certainly iterate re-
construction and correspondence finding, this does not
change the mechanics of our optimization. Let the M
3D curves’ unknown shape parameters be written Xm =
{Xm1, ..., XmK} for m = 1..M .

A detected 2D curve segment s has associated image in-
dex ns (we will sometimes write this n(s) if fonts get too
small) and 3D curve index ms (or m(s)), and a list of 2D
points of length Ps:

Zs = {zsp}Ps
p=1 (3)

Note that because of occlusion, there could be multiple
detections in one image corresponding to the same model
curve, which simply means two detections s, s′ may have
n(s) = n(s′),m(s) = m(s′). The problem statement and
occlusion sensitivity are unaffected.

3.1. Curve and camera bundle adjustment

The objective we would like to optimize is to match the
data to the model, that is to sum over the data, and measure
the distance from each image point to its closest point on
the model. The curve bundle adjustment objective is simply
the sum over all detected curves

E(θ1, ...θN ,X1, ...,XM ) =
∑
s

Es(θn(s),Xm(s)) (4)

For curve s, the objective is the sum of closest-points

Es(θ,X) =

Ps∑
p=1

min
t
‖zsp − π(C(t;X);θ)‖2 (5)

When matching model to data, the equivalent closest-
point operation can be easily implemented using a distance
transform on the image [18, 5, 11]. However, as the t-
minimization here is against the model curve, the distance
transform would be 3D, and would need to be updated on
every optimizer iteration. An analytic solution is nontrivial,
involving a rootfinding operation for every edgel. However,
a simple solution is obtained by using the “lifting” tech-
nique described in [18]. The t variables (or “correspon-
dences”) are renamed

Ps∑
p=1

min
tsp
‖zsp − π(C(tsp;X);θ)‖2 (6)

after which the min and sum can swap (this is exact)

min
Ts

Ps∑
p=1

‖zsp − π(C(tsp;X);θ)‖2 (7)

Figure 4: Jacobian sparsity pattern for “Cups” example

where Ts = [ts1, ..., ts,Ps
] is the vector of all correspon-

dences for detected segment s. The final step is to gather
the correspondences into an overall objective

E(θ1, ...θN ,X1, ...,XM , T1, ..., TS)

Thus our system which used to have say 3MK unknowns in
addition to point-based bundle adjustment, now has 3MK+
100S additional unknowns (assuming Ps ≈ 100 on aver-
age). This apparent explosion in the number of unknowns
is however compensated by the simplification of the objec-
tive. This is a non-linear least squares problem which can
be readily optimized using the Levenberg-Marquardt algo-
rithm, provided we take care to make use of the sparsity of
the Jacobian. An example Jacobian is depicted in figure 4.

3.1.1 Regularization

Control of the smoothness of the reconstructed curve is pri-
marily by choosing the number K of control vertices of the
spline. Too small a value means that complex curves can-
not be modelled, while too large a value could give rise to
overfitting. In practice, overfitting is less of a problem, so
we set K = 12 for all curves in all experiments. Ultimately
of course this should be set automatically, but the fact that a
constant works for a range of situations is encouraging.

One further option for regularization is enabled by the
explicit exposing of the correspondences tsp. Because suc-
cessive points on an image curve are likely to be close in
3D (even in extreme cases like a 2D cusp corresponding to
a smooth 3D section), we have experimented with adding a
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Figure 5: Points on the spline that have correspondences in
the images are shown in green, full spline in black.(a) With-
out regularitazion some parts of the spline may not have
corresponndence in the images. (b) With regularization the
results look better.

regularizer

Ereg(T1, ..., TS) =
∑
s

Ps−1∑
p=1

‖tsp − ts,p+1‖2 (8)

In practice this acts like a “spring” term, keeping cor-
respondences to a subset Ω, with a beneficial effect on
overfitting. The effect of the regularization is illustrated
in figure 5. It is implemented by adding residuals to
the Levenberg-Marquardt objective, and introduces another
large but very sparse block in the Jacobian.

3.2. Implementation: Inital estimate

Given matched 2D curves and approximate cameras, it
is straightforward to use the epipolar constraint to gener-
ate feature correspondences and create a 3D reconstructed
curve. However, we can benefit from the engineering of ex-
isting dense multiview stereo systems such as PMVS2 [8],
and simply identify 3D points which project near to our
matched curves in two or more views. Although noisy, these
points are sufficient to initialize our system (see figure 6).

In order to provide an initial estimate for the correspon-
dences {tsp}, we project the 3D points the view where the
curve is least occluded. It is worth noticing that our method
does not require a view where curve is fully visible. This
is used only to obtain a very rough ordering on the 3D
points on the initial spline, allowing the algorithm to sam-
ple control points in the correct order. The points are then
uniformly sampled on the 2D curve and control points are
initalized using the 3D dense stereo point with projection
closest to this sampled point. This initial 3D spline is pro-
jected onto all images in which the curve appears, and t
is initialized to the t value of the closest point. As initial
camera calibration may be inaccurate, the initial spline can
project far from the curve. Therefore we first align the 2D
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Figure 6: (a) Initial estimates for splines and correspon-
dences T . The rainbow colourmap on the image at edgel p
in curve s indicates the value of tsp. These are before dy-
namic programming, indicating that the initial t estimates
are quite good, even when the shape is poor (see the far let-
ter “T”). (b) Final optimized curve, without priors on Ts.
Some non-monotonicity is visible on the “S” but this does
not prevent us from getting improved camera estimates.
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Figure 7: Curve refinement using dynamic programming.
(a) Curve initialized using DP. (b) Final optimization result.
(c) Reinitialized using optimized control points and cam-
eras. (d) Final optimized curves. The fidelity of the com-
plex curves (text) improves, but we begin to see overfitting
on the simple rectangle. Future work will adaptively adjust
the number of control points.

curve with the projection of the initial spline using an it-
erated closest point algorithm (ICP). Optionally we use a
dynamic programming strategy [7, 4] to refine the curves in
a second optimization pass (see figure 7), but the results on
camera improvement did not use this.

3.3. Implementation: Ceres solver

The Levenberg Marquardt algorithm was implemented
in C++ using the Ceres solver framework [1]. We imple-



mented analytic derivatives for speed and accuracy, and
used the dynamic sparsity option to deal with the non-
constant sparsity of our Jacobian. A typical problem size
(for the “Cups” example) was 400,000 residuals, 140,000
parameters, and 5,000,000 nonzero Jacobian entries. Opti-
mization took 3 minutes to run 65 LM iterations.

4. Experimental results
The method was evaluated on synthetic and real datasets.

4.1. Synthetic setup

We generated a synthetic scene(figure 9) viewed by 20
cameras distributed uniformly on a circle. The scene con-
tains 3D points P sampled nearly on the plane, simulat-
ing a common case in indoor 3D reconstruction where the
floor is textured but there is little texture above the floor
level. To these points were added several randomly gener-
ated splines. These 3D points were projected into images
of size 400px × 300px. To generate the image curves we
densely sampled points on the splines and projected them
onto the views. We added zero-mean Gaussian noise with
standard deviation of 0.2 pixels to all image measurements.
We demonstrate the results on an example with three splines
which were sampled at 400 points each and 200 points sam-
pled nearly on the plane. In order to measure the effect of
including curves in the camera estimation, we sampled a
set of test points that were not included in our optimization.
The test points were uniformly sampled inside the cube [-
1,1][-1,1][-1,1] enclosing the scene.

We initialized unknown parameters of the optimization
with perturbations of the ground truth values, obtained by
adding Gaussian noise. For camera translation and orienta-
tion, 3D points and spline control points we use a standard
deviation of 0.05. Initial cameras are shown in figure 9 next
to the ground truth cameras shown in blue and initial splines
are drawn with dashed line in figure 10. We also randomly
perturbed the correspondences tsp with Gaussian noise with
standard deviation of 0.1.

We compared three different cases. First, we run stan-
dard bundle adjustment using only points. In the second
case we added curves to the result and optimized jointly
with points and curves. In the third case, we first optimize
for curves having fixed the cameras, and then run a joint op-
timization, a strategy one might reasonably consider for a
real world scene. After the optimization, camera translation
and angular error were computed with respect to the known
ground truth. We also computed the 3D errors for the test
points. As the computed reconstruction is unique up to a
similarity transform, in order to compute camera errors and
3D errors of test points we first solved for the transforma-
tion from the reconstruction to the ground truth coordinate
system by minimizing the sum of 3D Euclidean distance
computed at the test points and camera centers. This can

Figure 9: Synthetic scene. Blue cameras are ground truth
cameras and red cameras are used for initialization. Dashed
splines are initial estimates.

Figure 10: Initial estimates for splines.

potentially underestimate the error, but not in a way that
favours any particular algorithm. In addition, we measured
reprojection error on the test points, as this is a metric we
can also compute on test points in real images. If we see
a correlation between reprojection error and the 3D errors
in the synthetic set, we may hope that this is a useful indi-
cator of performance on real data. Reprojection errors are
computed by performing optimal triangulation of the points
based on noise-free projections and reporting the residual.

We did experiments with different numbers of points.
Each experiment was repeated 20 times having different
measurement noise and different set of points visible in
the images, as well as different initialization for points and
curves. The mean and average RMS errors are visualized
in figure 11. As expected, the accuracy of the point-based
calibration deteriorates as the number of visible points de-
creases. Adding curves to the optimization reduces that er-
ror significantly even when many points are available, and
more when the number of points reduces. It is also note-
worthy that strategy of first optimizing curves (one half-
iteration of block coordinate descent) is not as effective as
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Figure 8: (a,b) Two views of “Canteen” scene, with detected edges overlaid. (c) Dense reconstruction with points-only
cameras. (d) Dense reconstruction with points-and-curves cameras. The ground plane has been clipped to show the tabletop
and chairs better.

(a) (b) (c) (d)

Figure 11: Accuracy with decreasing numbers of point features. RMS errors of bundle adjustment with points only (red
bars), with points and curves (blue), and with curves initialized by block coordinate descent (green). a) Reprojection error
of the test points b) 3D error of the test points c) Camera translation error d) Camera angular error. Adding curves clearly
reduces all errors, particularly as the number of points decreases (note descending scale on X axis). Note too that the trend
revealed by reprojection error follows the more stringent 3D metrics.

(e) (f) (g) (h)

Figure 12: Accuracy under increasing occlusion. Curves are 25% occluded, and point tracks are 5 frames. RMS errors
with points only (blue) and points and curves (blue). a) Reprojection error of the test points b) 3D error of the test points c)
Camera translation error d) Camera angular error.

simply jointly optimizing all parameters. We also note that
reprojection error is a good proxy for the 3D errors.

We did another series of experiments that demonstrates
the robustness of our approach to occlusions (see figure 12).

The results were evaluated in the first two of the three above
mentioned cases. Each set of points was visible in only 5
consecutive views and only 75% of the curve was visible
in each image, forming 2-3 curve segments. As a result,



Figure 13: Reprojection error on test markers on the “Cups”
scene. Even with large numbers of points, adding curves
improves the test error, and as the number of points reduces,
the improvement is increasingly significant.

Figure 14: Three of ten views of a modern building (top).
This is a very difficult case for curve-based matching as
most of the curves are nearly parallel to epipolar lines. Our
system produces a reasonable reconstruction of the curves
(bottom), but does not significantly improve the camera es-
timates. Note that the building does actually have a rhom-
boidal floorplan.

the error of the points-only bundle has increased a lot and
exhibits much larger variation, whilst adding curves to it
keeps the errors low despite occlusions.

4.2. Real data

We acquired images of a real scene (figure 1) that doesn’t
have enough texture to be reliably reconstructed, but has 3D
curves. The image sequence consists of 21 images with
resolution 2000x1500. We placed markers in the scene

in order to evaluate the accuracy of our approach. Ini-
tial camera calibration was obtained using publicly avail-
able structure-from-motion software VisualSFM [21, 22].
Curves on the images were found using a local implemen-
tation of the Canny edge detector with subpixel refinement
and Delaunay-based edge linking. Corresponding curves
were picked with the help of GUI tool, where occasional
false connections made by the edge linker were split. We
used the border of the table, the large letters on one cup and
the (curved) rectangle on another one.

To evaluate the algorithm, we used corners of the mark-
ers as test points. The corners were detected using AR-
Toolkit [9] followed by a local implementation of subpixel
refinement. Then the corners were linearly triangulated and
futher optimized using bundle adjustment while keeeping
the cameras fixed (i.e. MLE triangulaton).

Figure 13 shows the reprojection error of the markers
for different number of detected 3D points. As with the
synthetic sequence, the test reprojection error with points
and curves is consistently low, even removing 90% of the
points. Referring back to figure 1, the low reprojection er-
ror translates to a visual improvement in the dense stereo
reconstruction, so we have some confidence that the cam-
eras are indeed improved.

Finally, figure 14 shows a particularly challenging ex-
ample, where the camera motion is restricted to the ground
plane, and the 3D curves are mostly approximately parallel
to the ground. While we observe no improvement or disim-
provement in the cameras, we do get the benefit of curves
in the reconstruction,linking together an unorganized point
cloud, and regularizing the structure along the curves with-
out oversmoothing perpendicular to the curve.

5. Discussion

We have shown that incorporating curve correspon-
dences into bundle adjustment can yield valuable improve-
ments in camera estimation over using points alone. In con-
trast to previous work, our objective function for bundle ad-
justment is a sum over data, rather than over the model, so is
intrinsically more resistant to occlusion. While components
of our objective have been found in previous works, ours is
the first to combine the full perspective camera model with
the data-to-model cost, and to show improvements in the
output of a state-of-the-art dense stereo system using our
cameras.

Future work has two strands. Practically, we should in-
corporate an automated matcher in order to build an end-to-
end system. Theoretically, our objective function does not
penalize overly complex curve models. It would be useful
to automatically adapt model complexity so that the recon-
structed curves are more attractive.



References
[1] S. Agarwal, K. Mierle, and Others. Ceres solver. http:

//ceres-solver.org, 2015. 5
[2] C. Baillard, C. Schmid, A. Zisserman, and A. Fitzgibbon.

Automatic line matching and 3d reconstruction of buildings
from multiple views. In ISPRS Conference on Automatic
Extraction of GIS Objects from Digital Imagery, volume 32,
pages 69–80, 1999. 2
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