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Abstract
We consider the maximum likelihood parame-
ter estimation problem for a generalized Thur-
stone choice model, where choices are from com-
parison sets of two or more items. We provide
tight characterizations of the mean square error,
as well as necessary and sufficient conditions for
correct classification when each item belongs to
one of two classes. These results provide insights
into how the estimation accuracy depends on the
choice of a generalized Thurstone choice model
and the structure of comparison sets. We find that
for a priori unbiased structures of comparisons,
e.g., when comparison sets are drawn indepen-
dently and uniformly at random, the number of
observations needed to achieve a prescribed esti-
mation accuracy depends on the choice of a gen-
eralized Thurstone choice model. For a broad set
of generalized Thurstone choice models, which
includes all popular instances used in practice,
the estimation error is shown to be largely insen-
sitive to the cardinality of comparison sets. On
the other hand, we found that there exist general-
ized Thurstone choice models for which the esti-
mation error decreases much faster with the car-
dinality of comparison sets. We report results of
empirical evaluations using schedules of contests
as observed in some popular sport competitions
and online crowdsourcing systems.

1. Introduction
We consider the problem of estimating the strengths of
items based on observed choices of items, where each
choice is from a subset of two or more items. This accom-
modates pair comparisons as a special case, where each
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comparison set consists of two items. In general, the out-
come of each comparison is a top-1 list that singles out
one item from given set of compared items. There are
many applications in practice that are accommodated by
this framework, e.g., single-winner contests in crowdsourc-
ing services such as TopCoder or Taskcn, or hiring deci-
sions where one applicant gets hired among those who ap-
plied for a job, e.g., in online labour marketplaces such as
Fiverr and Upwork, as well as numerous sports competi-
tions and online gaming platforms.

In particular, we consider the choices according to a gener-
alized Thurstone choice model. This model accommodates
several well known models, e.g. Luce’s choice model,
and Bradley-Terry model for pair comparisons; see dis-
cussion of related work in Section 1.1. A generalized
Thurstone choice model is defined by a parameter vec-
tor θ = (θ1, θ2, . . . , θn) ∈ Rn, where θi represents the
strength of item i, and a cumulative distribution function
F . For every given non-empty subset of items S, the choice
is assumed to be an item in S that exhibits the best per-
formance, where the performance of each item i ∈ S is
defined as the sum of the strength parameter θi and an in-
dependent sample from the cumulative distribution func-
tion F . Many well known models of choice are special in-
stances of generalized Thurstone choice models for specific
choices of F ; see a catalogue of examples in Section 2.3.

In this paper, our goal is to characterize the accuracy of
a parameter estimator of a generalized Thurstone choice
model. In particular, we want to understand how is the es-
timation accuracy affected by the choice of a generalized
Thurstone model, and the structure of the comparison sets.
Our results show that the choice of a generalized Thurstone
model can have a substantial effect on the parameter esti-
mation accuracy.

More specifically, our main contributions in this paper can
be summarized as follows.

We provide tight lower and upper bounds for the mean
square error of the maximum likelihood parameter estima-
tor (Section 3). These results provide necessary and suffi-
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cient conditions for the estimation of the parameter within a
prescribed accuracy. Moreover, they reveal how the choice
of a generalized Thurstone choice model and the structure
of comparison sets affect the estimation accuracy. In par-
ticular, we find that a key parameter is an eigenvalue gap
of a pair-weight matrix. This pair-weight matrix is defined
such that each element of this matrix that corresponds to a
pair of items is equal to a weighted sum of the number of
co-participations of the given pair of items in comparison
sets of different cardinalities. The weight associated with
a comparison set is a decreasing function of the cardinality
of the comparison set, which depends on the choice of the
generalized Thurstone choice model.

As a corollary, we derive tight characterizations of the
mean square error for the case when all comparison sets
are of equal cardinalities and the comparison sets are unbi-
ased, e.g., each comparison set is sampled independently,
uniformly at random without replacement from the set of
all items. Such comparison sets are in spirit of tournament
schedules like round-robin schedules that are common in
various sports competitions. We also consider the parame-
ter estimation problem for a generalized Thurstone choice
model where each item is either of a high or a low class
(Section 4). We establish necessary and sufficient condi-
tions for correct classification of all items, when compar-
ison sets have equal cardinalities and are drawn indepen-
dently, uniformly at random without replacement from the
set of all items. These conditions are shown to match those
derived from the bounds for the mean square error up to
constant factors.

These results provide a clear picture about the effect of a
choice of a generalized Thurstone choice model and the
cardinality of comparison sets. Perhaps surprisingly, we
find that for a large set of special instances of generalized
Thurstone choice models, which includes all popular cases
used in practice, the mean square error decreases with the
cardinality of comparison sets, but rather weakly. In partic-
ular, the mean square error is shown to be largely insensi-
tive to the cardinality of comparison sets of three or more
items. On the other hand, we exhibit instances of general-
ized Thurstone choice models for which the mean square
error decreases much faster with the cardinality of compar-
ison sets; in particular, decreasing inversely proportionally
to the square of the cardinality (Section 5).

We present experimental results using both simulation and
real-world data (Section 6). In particular, we validate the
claim that the mean square error can be significantly af-
fected by the choice of a generalized Thurstone model, and
evaluate the eigenvalue gap for pair-weight matrices for
comparison sets as observed in several real-world datasets.

1.1. Related Work

The original Thurstone choice model was proposed by
(Thurstone, 1927) as a model of comparative judgement
for pair comparisons. The key property of this model is
that each item is assumed to be associated with a perfor-
mance random variable defined as the sum of a strength
parameter and a noise random variable. Specifically, in
the original Thurstone model, the noise is assumed to be
a Gaussian random variable. This amounts to the winning
probability of one item against another item in a pair com-
parison that is a cumulative Gaussian distribution function
of the difference of their corresponding strength parame-
ters. Similar model but with winning probabilities accord-
ing to a logistic cumulative distribution function was orig-
inally studied by (Zermelo, 1929), and following the work
by (Bradley & Terry, 1952; 1954) is often referred to as
the Bradley-Terry model. A generalization of this model to
comparisons of two or more items was studied by (Luce,
1959) and is referred to as the Luce’s choice model (Luce,
1959). Other models of choice have also been studied, e.g.,
Dawkins’ choice model (Dawkins, 1969). Relationships
between the Luce’s choice model and generalized Thur-
stone choice models were studied in (Yellott, 1977). Some
of these models underlie the design of popular rating sys-
tems, e.g., Elo rating system (Elo, 1978) that was origi-
nally designed and has been used for rating skills of chess
players but also for various other sport competitions, and
TrueSkill (Graepel et al., 2006) that is used by a popular
online gaming platform. All these models are instances of
a generalized Thurstone model, and are special instances
of generalized linear models, see, e.g., (Nelder & Wedder-
burn, 1972), (McCullagh & Nelder, 1989), and Chapter 9
in (Murphy, 2012). See Chapter 9 (Vojnović, 2016) for an
exposition to the principles of rating systems.

Several studies argued that different models of pair compar-
isons yield empirically equivalent performance, e.g. (Stern,
1992), suggesting that the choice of a generalized Thur-
stone model does not matter much in practice. Our results
show that there can be a significant fundamental difference
between generalized Thurstone choice models with respect
to the parameter estimation accuracy.

More recent work has focused on characterizing the param-
eter estimation error and deriving efficient computational
methods for parameter estimation for different models of
pair comparisons, e.g., (Negahban et al., 2012) and (Rajku-
mar & Agarwal, 2014) for pair comparisons according to
Bradley-Terry model, and (Hajek et al., 2014) for full rank-
ing outcomes according to a generalized Thurstone model
with double-exponential distribution of noise. Our work is
different in that we consider the parameter estimation er-
ror for generalized Thurstone choice models that allow for
comparisons of two or more items and different distribu-
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tions of individual performances.

2. Problem Formulation and Notation
2.1. Basic Definitions

We denote withN = {1, 2, . . . , n} the set of all items. The
input data consists of a sequence of m ≥ 1 observations
(S1, y1), (S2, y2), . . ., (Sm, ym), where for each observa-
tion t, St ⊆ N is a subset of items, and yt is the item
observed to be chosen from St; we refer to St as a compar-
ison set and to yt as a choice.

For every S ⊆ N and i ∈ S, we denote with wi,S the
number of observations such that the comparison set is S
and the chosen item is i. In particular, for pair comparisons,
we denote with wi,j the number of observations such that
the comparison set is {i, j} and the chosen item is i.

2.2. Generalized Thurstone Choice Model

A generalized Thurstone choice model, denoted as TF , is
defined by a parameter vector θ = (θ1, θ2, . . . , θn) that
takes value in a parameter set Θn ⊆ Rn, and a cumula-
tive distribution function F of a zero-mean random vari-
able that takes value in R. Here θi represents the strength
of item i ∈ N . We denote with f the density function of
the cumulative distribution function F .

According to TF , the observations are such that for each
observation, conditional on that the comparison set of this
observation is S, the choice is item i ∈ S with probability1

pi,S(θ) = p|S|(θi − θS\{i}) (1)

where

pk(x) =

∫
R

f(z)

k−1∏
l=1

F (xl + z)dz, for x ∈ Rk−1. (2)

A generalized Thurstone model of choice TF follows from
the following probabilistic generative model. For every ob-
servation with comparison set S, each item in this set is
associated with independent random variables (Xi, i ∈
S) that represent individual performances of these items,
where each Xi is a sum of θi and a zero-mean noise ran-
dom variable εi with cumulative distribution function F .
The choice i ∈ S is the item that exhibits the largest per-
formance, i.e. pi,S(θ) = P[Xi ≥ maxj∈S Xj ], which
corresponds to the asserted expression in (1).

Note that the probability distribution of choice depends
only on the differences between the strength parameters.

1Hereinafter, θA denotes the vector θA = (θi, i ∈ A) for a
non-empty set A ⊆ N , and, for brevity, with a slight abuse of
notation, a− θA denotes the vector (a− θi, i ∈ A), for a ∈ R.

Hence, the probability distribution of choice for a param-
eter vector θ is equal to that under the parameter vector
θ + c · 1, for any constant c, where 1 is the all-one vec-
tor. To allow for identifiability of the parameter vector, we
admit the assumption that θ is such that

∑n
i=1 θi = 0.

2.3. Special Generalized Thurstone Choice Models

Several special generalized Thurstone models of choice
are given as follows. (i) Gaussian noise with variance
σ2: f(x) = exp(−x2/(2σ2))/(

√
2πσ). (ii) Double-

exponential distribution of noise with parameter β > 0:
F (x) = exp(− exp(−(x + βγ)/β)), where γ is the
Euler-Mascheroni constant, which has variance σ2 =
π2β2/6. (iii) Laplace distribution of noise with parame-
ter β: F (x) = 1

2e
x
β , for x < 0, and F (x) = 1− 1

2e
− xβ , for

x ≥ 0, which has variance σ2 = 2β2. (iv) Uniform distri-
bution of noise on [−a, a]: f(x) = 1/(2a), for x ∈ [−a, a],
which has variance σ2 = a2/3.

For the special case of a generalized Thurstone model TF
with a double-exponential distribution of noise and a com-
parison set of cardinality k, we have

pk(x) =
1

1 +
∑k−1
i=1 e

−xi/β
, for x ∈ Rk−1.

Hence, for a comparison set S ⊆ N ,

p|S|(θi − θS\{i}) =
eθi/β∑
l∈S e

θl/β
, for i ∈ S,

which corresponds to the well-known Luce’s choice model.

In particular, for pair comparisons, we have the following
two well known cases: (i) for the Gaussian distribution of
noise, we have p2(x) = Φ(x/(

√
2σ)) where Φ is the cu-

mulative distribution function of a standard normal random
variable, and (ii) for the double-exponential distribution of
noise, we have p2(x) = 1/(1 + e−x/β), which is a special
case of the Luce’s choice model and is commonly referred
as the Bradley-Terry model.

2.4. Maximum Likelihood Estimation

For given input observations, the log-likelihood function,
up to an additive constant, is equal to

`(θ) =
∑
S⊆N

∑
i∈S

wi,S log(p|S|(θi − θS\{i})). (3)

The maximum likelihood estimator of the parameter vector
θ is defined as a parameter vector θ̂ that maximizes the log-
likelihood function over the set of parameters Θn, i.e. θ̂ =
argmaxθ∈Θn

`(θ). In particular, for pair comparisons, we
can write the log-likelihood function as follows:

`(θ) =

n∑
i=1

n∑
j=1

wi,j log (p2(θi − θj)) . (4)
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2.5. Some Key Definitions

We shall see that for the maximum likelihood parameter
estimation problem, a special type of a matrix plays an
important role. For every pair of items {i, j} and a posi-
tive integer k, let mi,j(k) denote the number of observed
comparison sets of cardinality k each containing the pair of
items {i, j}. Let w : {1, 2, . . . ,m} → R+ be a decreasing
function, we refer to as a weight function, which is given.
We define the pair-weight matrix M = [mi,j ] ∈ Rn×n

+ as
follows:

mi,j =

{
n
m

∑
k≥2 w(k)mi,j(k), if i 6= j

0, if i = j.
(5)

Note that if all comparison sets are of cardinality k, then
each non-diagonal element (i, j) of the pair-weight ma-
trix is equal to, up to a multiplicative factor, the number
of observed comparison sets that contain the pair of items
{i, j}. For pair comparisons, this corresponds to the num-
ber of pair comparisons. The normalization factor n/m
corresponds to a normalization with the mean number of
comparison sets per item.

We say that a set of comparison sets is unbiased, if for each
positive integer k and pair of items {i, j}, there is a com-
mon number of comparison sets of cardinality k that con-
tain the pair of items {i, j}.2 Let µ(k) be the fraction of of
comparison sets of cardinality k. Then, for any unbiased
set of comparison sets, for every positive integer k and pair
of items {i, j}, it must hold

mi,j(k) =

(
n−2
k−2

)(
n
k

) µ(k)m =
k(k − 1)

n(n− 1)
µ(k)m.

Hence, for every pair of items {i, j}, it holds that

mi,j =
1

n− 1

∑
k≥2

w(k)k(k − 1)µ(k). (6)

We shall use the notation M to denote the expected value of
a pair-weight matrix M, where the expectation is with re-
spect to the distribution over the set of comparison sets. We
say that comparison sets are a priori unbiased if M is an
unbiased matrix. For example, sampling each comparison
set independently by uniform random sampling without re-
placement from the set of all items results in an a priori
unbiased set of comparison sets. Note that any unbiased
set of comparison sets is a priori unbiased.

2An example of unbiased comparison sets is a fixture of games
in some popular sport competitions that consists of games be-
tween pairs of teams such that each team plays against each other
team equal number of times; e.g., fixtures of games in national
football leagues like the one in Section 6.

We shall show that for the parameter estimation accuracy,
the following parameters play an important role:

γF,k =
1

k3(k − 1)(∂pk(0)/∂x1)2
(7)

where
∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx. (8)

We shall see that the algebraic connectivity of pair-weight
matrices is a key factor that determines the estimation ac-
curacy, for a suitable choice of the weight function that de-
pends on the generalized Thurstone choice model TF . In
particular, we shall see that the weight function should be
set as defined by3

w(k) =

(
k
∂pk(0)

∂x1

)2

. (9)

2.6. Additional Notation

For a matrix A, we denote with λi(A) its i-th smallest
eigenvalue. We denote with ΛA the Laplacian matrix of
matrix A, i.e., ΛA = diag(A1)−A.

For any symmetric, non-negative, and irreducible matrix
A, its Fiedler value is defined as the smallest non-zero
eigenvalue of the Laplacian matrix ΛA, i.e., equal to
λ2(ΛA).

3. Mean Square Error
In this section, we derive upper and lower bounds for the
mean square error for the maximum likelihood parameter
estimator of a generalized Thurstone choice model. For
a generalized Thurstone choice model TF with parameter
θ?, for any estimator θ̂, the mean square error MSE(θ̂, θ?)
is defined by

MSE(θ̂, θ?) =
1

n
‖θ̂ − θ?‖22. (10)

3.1. Pair Comparisons

In this section, we consider generalized Thurstone mod-
els TF for pair comparisons, with the parameter set Θn =
[−b, b]n, for b ≥ 0.

We defineGD = (N,ED) to be a directed graph, with edge
(i, j) ∈ ED if and only if wi,j > 0; and the undirected
graph GU = (N,EU ) where edge (i, j) ∈ EU if and only
if wi,j + wj,i > 0. Let M be the pair-weight matrix with
the weight function w(k) = 1/k2.

3For example, for the Luce’s choice model this amounts to
w(k) = 1/(βk)2; for a large class of generalized Thurstone
choice models, the weight function is such thatw(k) = Θ(1/k2);
see discussion in Section 5.
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G1. GD is strongly connected, i.e., for every pair of ver-
tices i and j, there exist paths in each direction be-
tween i and j.

G2. GU is connected, i.e., for every pair of vertices i and
j, there exists a path that connects them.

Note that if GD is strongly connected, then GU is con-
nected, and the converse does not necessarily hold. Note
also that when GU is connected, i.e., condition G2 holds
true, then, λ2(ΛM) > 0.

When log(p2(x)) is strictly concave for x ∈ [−2b, 2b], i.e.,
maxx∈[−2b,2b]

d2

dx2 log(p2(x)) < 0, `(θ) is strictly concave
under G2.

Let us define cF,b = A/B where

A = max
x∈[−2b,2b]

d

dx
log(p2(x))

and

B = min
x∈[−2b,2b]

∣∣∣∣ d2

dx2
log(p2(x))

∣∣∣∣ .
Theorem 1. Suppose that observations are according to
a generalized Thurstone model TF with parameter θ? ∈
[−b, b]n, for n ≥ 2. If log(p2(x)) is a strictly concave
function and G2 holds, then with probability at least 1 −
2/n, the maximum likelihood estimator θ̂ satisfies

MSE(θ̂, θ?) ≤ c2F,b
n(log(n) + 2)

λ2(ΛM)2

1

m
. (11)

The result in Theorem 1 generalizes the characterization of
the mean square error in (Negahban et al., 2012) and (Hajek
et al., 2014) for the Bradley-Terry model to a generalized
Thurstone choice model for pair comparisons.

Since the Bradley-Terry model is a generalized Thur-
stone choice model with noise according to the double-
exponential distribution, we have p2(x) = 1/(1 + e−x/β),
for which we derive A = 1/[β(1 + e−2b/β)] and B =
e−2b/β/[β2(1+e−2b/β)2], and hence cF,b = β(e2b/β +1).

Condition (11) implies that for MSE(θ̂, θ?) ≤ ε2 to hold
for given ε > 0, it suffices that

m ≥ 1

ε2
c2F,b

1

λ2(ΛM)2
n(log(n) + 2). (12)

The Fiedler value λ2(ΛM) reflects how well is the pair-
weight matrix M connected. If each pair is compared an
equal number of times, then from (6), we have mi,j =
1/(2(n− 1)) for i 6= j, and in this case, λ2(ΛM) = · · · =
λn(ΛM) = n/(2(n − 1)). Hence, from the condition in
(12), it suffices that

m ≥ 4

ε2
c2F,b n(log(n) + 2).

3.2. Arbitrary Cardinalities of Comparisons Sets

In this section, we derive upper and lower bounds for the
mean square error when each comparison set consists of
two or more items. Let K denote the set of distinct values
of cardinalities of comparison sets observed in input data,
or that can occur with a strictly positive probability if com-
parison sets are sampled from a distribution.

We consider a generalized Thurstone choice model TF that
satisfies the following assumptions:

A1 There exist AF,b ≥ AF,b > 0 such that for all S ⊆ N
with |S| ∈ K and {y, i, j} ⊆ S,

∂2

∂θi∂θj
log(py,S(0)) ≥ 0

and, for all θ ∈ [−b, b]n, it holds

AF,b ≤
∂2

∂θi∂θj
log(py,S(θ))

∂2

∂θi∂θj
log(py,S(0))

≤ AF,b.

A2 There exist BF,b ≥ BF,b > 0 such that for all θ ∈
[−b, b]n, S ⊆ N with |S| ∈ K and y ∈ S,

BF,b ≤
py,S(θ)

py,S(0)
≤ BF,b.

A3 There exist CF,b ≥ CF,b > 0 such that for all θ ∈
[−b, b]n, S ⊆ N with |S| ∈ K and y ∈ S,

CF,b ≤
‖∇py,S(θ)‖2
‖∇py,S(0)‖2

≤ CF,b.

Let DF,b = CF,b/(AF,bBF,b).4

The following theorem establishes an upper bound for the
mean square error.
Theorem 2. Assume A1, A2 and A3. Let MF be the pair-
weight matrix with the weight function (9). Suppose that

m ≥ 32
σF,K
BF,b

1

λ2(ΛMF
)
n log(n),

then, with probability at least 1− 3/n,

MSE(θ̂, θ?) ≤ 32D2
F,bσF,K

n(log(n) + 2)

λ2(ΛMF
)2

1

m

where σF,K = 1/mink∈K γF,k.

4(i) In particular, if F is the double-exponential distribution,
then ∂2 log(py,S)/∂θi∂θj = pi,S(θ)pj,S(θ)/β2 ≥ 0 and it is ad-
missible to take AF,b = e−4b/β , AF,b = e4b/β , BF,b = e−2b/β ,
BF,b = e2b/β , CF,b = e−4b/β , CF,b = 4, and σF,K = 1/β2;
(ii) In general, in the limit as b goes to 0, all the lower- and upper-
bound parameters in A1, A2, A3 go to 1. Thus, in this limit, they
are non-essential for the results presented in this section.
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If, in addition to the assumptions of Theorem 2, all com-
parison sets are of cardinality k ≥ 2, then, the statement of
the theorem holds with

σF,K
λ2(ΛMF

)
=

(
1− 1

k

)
1

λ2(ΛM)

and
σF,K

λ2(ΛMF
)2

=

(
1− 1

k

)2

γF,k
1

λ2(ΛM)2

where γF,k is defined in (7), and M is the pair-weight ma-
trix with the weight function w(k) = 1/k2.

If, in addition, each comparison set is sampled indepen-
dently, uniformly at random without replacement from the
set of all items, then the statement of Theorem 2 holds with

σF,K
λ2(ΛMF

)
= 1− 1

n
and

σF,K
λ2(ΛMF

)2
=

(
1− 1

n

)2

γF,k.

In the following theorem, we establish a lower bound.

Theorem 3. Any unbiased estimator θ̂ satisfies

E[MSE(θ̂, θ?)] ≥ 1

AF,bBF,b

(
n∑
i=2

1

λi(ΛMF
)

)
1

m
.

If all comparison sets are of cardinality k, then any unbi-
ased estimator θ̂ satisfies the inequality in Theorem 3 with

n∑
i=2

1

λi(ΛMF
)

=

(
1− 1

k

)
γF,k

n∑
i=2

1

λi(ΛM)
.

If, in addition, each comparison set is drawn independently,
uniformly at random from the set of all items, then any
unbiased estimator θ̂ satisfies the inequality in Theorem 3
with5

n∑
i=2

1

λi(ΛMF
)

= γF,k

(
1− 1

n

)2

n.

4. Classification of Items of Two Classes
In this section, we consider a generalized Thurstone choice
model TF with parameter θ that takes value in Θn =
{−b, b}n, for parameter b > 0. This is a special case where
each item is either of two classes: a low or a high class.
We consider a classification problem, where the goal is to
correctly classify each item as either of low or high class,
based on observed input data of choices.

5This tells us that under the given assumptions, for the mean
square error to be smaller than a constant, it is necessary that the
number of comparisons satisfies m = Ω(γF,kn).

Suppose that θi = b for all i ∈ N1 and θi = −b for all
i ∈ N2 where N1 ∪ N2 = N and |N1| = |N2| = n/2.
Without loss of generality, assume thatN1 = {1, . . . , n/2}
and N2 = {n/2 + 1, . . . , n}.

We consider a point score ranking method that outputs an
estimate N̂1 of the set of items of high class and N̂2 that
contains the remaining items, which is defined by the fol-
lowing algorithm:

1. Observe outcomes of m observations and associate
each item with a point score defined as the number of
comparison sets in which this item is the chosen item.

2. Sort items in decreasing order of the point scores.

3. Output N̂1 defined as the set of top n/2 items (with
uniform random tie break) and N̂2 defined as the set
of remaining items.

Theorem 4. Suppose that b ≤ 4/(k2∂pk(0)/∂x1) and

b max
x∈[−2b,2b]k−1

‖∇2pk(x)‖2 ≤
∂pk(0)

∂x1
. (13)

Then, for every δ ∈ (0, 1], if

m ≥ 64
1

b2

(
1− 1

k

)
γF,k n(log(n) + log(1/δ))

the point score ranking method correctly identifies the
classes of all items with probability at least 1− δ.

The bound of the theorem is tight as established in the fol-
lowing theorem.

Theorem 5. Suppose that b ≤ 1/(6k2∂pk(0)/∂x1) and
that condition (13) holds. Then, for every even number of
items such that n ≥ 16, and δ ∈ (0, 1/4], for any algorithm
to correctly classify all items with probability at least 1−δ,
it is necessary that

m ≥ 1

62

1

b2

(
1− 1

k

)
γF,k n(log(n) + log(1/δ)).

5. Discussion of Results
In this section, we discuss how the number of observations
needed for given parameter estimation error tolerance de-
pends on the cardinality of comparison sets. We found in
Section 3.2 and Section 4 that for a priori unbiased sched-
ules of comparisons, where each comparison set is of car-
dinality k and is drawn independently, uniformly at random
from the set of all items, the required number of observa-
tions to bring down the mean square error or correctly clas-
sify items of two classes with high probability, the number
of observations is of the order γF,k, defined in (7).
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The values of parameters ∂pk(0)/∂x1 and γF,k for our
example generalized Thurstone choice models TF in Sec-
tion 2.3 are presented in Table 1.

Table 1. The values of parameters for our examples of TF .
F ∂pk(0)

∂x1
γF,k

Gaussian O( 1
k2−ε ) Ω( 1

k2ε )
Double-exponential 1

βk2 β2 k
k−1

Laplace 1−1/2k−1

βk(k−1) β2 k−1
k(1−1/2k−1)2

Uniform 1
2a(k−1) 4a2 k−1

k3

Note that for both double-exponential and Laplace distribu-
tions of noise γF,k = Θ(1), and for Gaussian distribution
of noise γF,k = O(1/kε). On the other hand, for uniform
distribution of noise, γF,k = Θ(1/k2).

In general, the value of parameter γF,k admits the following
lower and upper bounds.

Proposition 6. For the value of parameter γF,k, the fol-
lowing two claims hold:

1. For every cumulative distribution function F with an
even and continuously differentiable density function,
we have γF,k = O(1).

2. For every cumulative distribution function F with a
density function such that f(x) ≤ C for all x ∈ R,
for a constant C > 0, γF,k = Ω(1/k2).

We observe that both double-exponential and Laplace dis-
tributions of noise are extremal in achieving the upper
bound of O(1) for the value of parameter γF,k, asymptoti-
cally for large k. On the other hand, a uniform distribution
of noise is extremal in achieving the lower bound Ω(1/k2)
for the value of parameter γF,k. More generally, we can
show that γF,k = Θ(1/k2) for any cumulative distribution
function F with the density function such that f(x) ≥ C
for every point x of its support, for a constant C > 0.

6. Experimental Results
In this section, we present our experimental results using
both simulations and real-world data. Our first goal is to
provide experimental validation of the claim that the mean
square error can depend on the cardinality of comparison
sets in different ways depending on the choice of a gener-
alized Thurstone model, which is suggested by our theory.
Our second goal is to evaluate Fiedler values of different
pair-weight matrices observed in practice, which we found
to play an important role.
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Figure 1. Mean square error for two different generalized Thur-
stone choice models TF : (left) F is a double-exponential distri-
bution, and (right) F is a uniform distribution. The vertical bars
denote 95% confidence intervals. The results confirm two quali-
tatively different relations with the cardinality of comparison sets
as suggested by the theory.

6.1. MSE versus Cardinality of Comparison Sets

We consider the following simulation experiment. We fix
the values of the number of items n and the number of com-
parisons m, and consider a choice of a generalized Thur-
stone model TF for the value of parameter θ? = 0. We
consider comparison sets of the same cardinality of value k
that are independent uniform random samples from the set
of all items. For every fixed value of k, we run 100 repeti-
tions to estimate the mean square error. We do this for the
distribution of noise according to a double-exponential dis-
tribution (Bradley-Terry model) and according to a uniform
distribution, both with unit variance.

Figure 1 shows the results for the setting of parameters
n = 10 and m = 100. The results clearly demonstrate
that the mean square error exhibits qualitatively different
relations with the cardinality of comparison sets for the
two generalized Thurstone models. Our theoretical re-
sults in Section 3.2 suggest that the mean square error
should decrease with the cardinality of comparison sets as
1/(1 − 1/k) for the double-exponential distribution, and
as 1/k2 for the uniform distribution of noise. Observe that
the latter two terms decrease with k to a strictly positive
value and to zero value, respectively. The empirical results
in Figure 1 confirm these claims.

6.2. Fiedler Values of Pair-weight Matrices

We found that Fiedler value of a pair-weight matrix is an
important factor that determines the mean square error in
Section 3.1 and Section 3.2. Here we evaluate Fiedler value
for different pair-weight matrices of different schedules of
comparisons. Throughout this section, we use the defini-
tion of a pair-weight matrix in (5) with the weight func-
tion w(k) = 1/k2. Our first two examples are representa-
tive of schedules in sport competitions, which are typically
carefully designed by sport associations and exhibit a large
degree of regularity. Our second two examples are repre-
sentative of comparisons that are induced by user choices
in the context of online services, which exhibit much more
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Figure 2. Fiedler value of the pair-weight matrices for the game
fixtures of two sports in the season 2014-2015: (left) football Bar-
clays premier league, and (right) basketball NBA league.

irregularity.

Sport competitions We consider the fixtures of games
for the season 2014-2015 for (i) football Barclays premier
league and (ii) basketball NBA league. In the Barclays pre-
mier league, there are 20 teams, each team plays a home
and an away game with each other team; thus there are 380
games in total. In the NBA league, there are 30 teams,
1,230 regular games, and 81 playoff games.6 We evalu-
ate Fiedler value of pair-weight matrices defined for firstm
matches of each season; see Figure 2.

For the Barclays premier league dataset, at the end of the
season, the Fiedler value of the pair-weight matrix is of
value n/[2(n−1)] ≈ 1/2. The schedule of matches is such
that at the middle of the season, each team played against
each other team exactly once, at which point the Fiedler
value is n/[4(n − 1)] ≈ 1/4. The Fiedler value is of a
strictly positive value after the first round of matches. For
most part of the season, its value is near to 1/4 and it grows
to the highest value of approximately 1/2 in the last round
of the matches.

For the NBA league dataset, at the end of the season, the
Fiedler value of the pair-weight matrix is approximately
0.375. It grows more slowly with the number of games
played than for the Barclays premier league; this is intu-
itive as the schedule of games is more irregular, with each
team not playing against each other team the same number
of times.

Crowdsourcing contests We consider participation of
users in contests of two competition-based online labour
platforms: (i) online platform for software development
TopCoder and (ii) online platform for various kinds of
tasks Tackcn. We refer to coders in TopCoder and work-
ers in Taskcn as users. We consider contests of different
categories observed in year 2012; more information about
datasets is provided in Appendix. We present results only
for one category of tasks for each system, which are repre-

6The NBA league consists of two conferences, each with three
divisions, and the fixture of games has to obey constraints on the
number of games played between teams from different divisions.
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Figure 3. (Left) Topcoder data restricted to top-n coders and
(Right) same as left but for Taskcn, for Design and Website task
categories, respectively. The top plots show the Fiedler value and
the bottom plots show the minimum number of contests to observe
a strictly positive Fiedler value.

sentative. In both these systems, the participation in con-
tests is according to choices made by users.

For each set of tasks of given category, we conduct the fol-
lowing analysis. We consider a thinned dataset that consists
only of a set of top-n users with respect to the number of
contests they participated in given year, and of all contests
attended by at least two users from this set. We then evalu-
ate Fiedler value of the pair-weight matrix for parameter n
ranging from 2 to the smaller of 100 or the total number of
users. Our analysis reveals that the Fiedler value tends to
decrease with n. This indicates that the larger the number
of users included, the less connected the pair-weight matrix
is. See the top plots in Figure 3.

We also evaluated the smallest number of contests from
the beginning of the year that is needed for the Fiedler
value of the pair-weight matrix to assume a strictly posi-
tive value. See the bottom plots in Figure 3. We observe
that this threshold number of contests tends to increase with
the number of top users considered. There are instances for
which this threshold substantially increases for some num-
ber of the top users. This, again, indicates that the algebraic
connectivity of the pair-weight matrices tends to decrease
with the number of top users considered.

7. Conclusion
The results of this paper elucidate how the parameter esti-
mation accuracy for a generalized Thurstone choice model
depends on the given model and the structure of compari-
son sets. They show that a key factor is an eigenvalue gap
of a pair-weight matrix that reflects its algebraic connectiv-
ity, which depends in a particular way on the given model.
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It is shown that for a large class of generalized Thurstone
choice models, including all popular instances used in prac-
tice, there is a diminishing returns decrease of the estima-
tion error with the cardinality of comparison sets, which is
rather slow for comparison sets of three of more items. This
offers a guideline for the designers of schedules of com-
petitions to ensure that the schedule has a well-connected
pair-weight matrix and to expect limited gains from com-
parison sets of large sizes.
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A. Some Basic Facts
A.1. Cramér-Rao Inequality

Let cov[Y ] denote the covariance matrix of a multivariate
random variable Y , i.e., cov[Y ] = E[(Y − E[Y ])(Y −
E[Y ])>].

Proposition 7 (Cramér-Rao inequality). Suppose that
X is a multivariate random variable with distribution
p(x; θ), for parameter θ ∈ Θn, and let T(X) =
(T1(X), . . . , Tr(X))> be any unbiased estimator of
ψ(θ) = (ψ1(θ), . . . , ψr(θ))

>, i.e., ψ(θ) = E[T(X)].
Then, we have

cov[T(X)] ≥ ∂ψ(θ)

∂θ
F−1(θ)

∂ψ(θ)

∂θ

>

where ∂ψ(θ)
∂θ is the Jacobian matrix of ψ and F (θ) is the

Fisher information matrix with (i, j) element defined by

Fi,j(θ) = E

[
∂2

∂θi∂θj
(− log(p(X; θ)))

]
.

A.2. Azuma-Hoeffding’s Inequality for Vectors

The inequality is known as the Azuma-Hoeffding’s in-
equality for multivariate random Variables, which was es-
tablished in Theorem 1.8 (Hayes).

Proposition 8 (Azuma-Hoeffding’s inequality). Sup-
pose that Sm =

∑m
t=1Xt is a martingale where

X1, X2, . . . , Xm take values in Rn and are such that
E[Xt] = 0 and ‖Xt‖2 ≤ D for all t, for D > 0. Then, for
every x > 0,

P [‖Sm‖2 ≥ x] ≤ 2e2e−
x2

2mD2 .

A.3. Chernoff’s Inequality for Matrices

The inequality is known as the Chernoff’s inequalities for
random matrices; e.g. stated as Theorem 5.1.1 in (Tropp,
2015).

Proposition 9 (Matrix Chernoff’s inequality). Let
X1, X2, . . . , Xm be a finite sequence of independent,
random, Hermitian matrices with dimension d. Assume
that

0 ≤ λ1(Xi) and ‖Xi‖2 ≤ α for all i.

Let

βmin = λ1

(
m∑
i=1

E[Xi]

)

and

βmax = λd

(
m∑
i=1

E[Xi]

)
.

Then, for ε ≥ 0,

P

[
λd

(
m∑
i=1

Xi

)
≥ (1 + ε)βmax

]

≤ d
(

eε

(1 + ε)1+ε

)βmax/α

for ε ≥ 0 (14)

and, for ε ∈ [0, 1),

P

[
λ1

(
m∑
i=1

Xi

)
≤ (1− ε)βmin

]

≤ d
(

e−ε

(1− ε)1−ε

)βmin/α

for ε ∈ [0, 1). (15)

We have the following corollary:

Corollary 10. Under the assumptions of Proposition 9, for
ε ∈ [0, 1),

P

[
λ1

(
m∑
i=1

Xi

)
≤ (1− ε)βmin

]
≤ de−

ε2βmin
2α

Proof. This follows from (15) and the following fact

e−ε

(1− ε)1−ε ≤ e
− ε22 , for all ε ∈ (0, 1].

A.4. A Chernoff’s Tail Bound

The following tail bound follows from the Chernoff’s
bound and is proved in Appendix L.3.

Proposition 11. Suppose thatX is a sum ofm independent
Bernoulli random variables each with mean p, then if q ≤
p ≤ 2q,

P[X ≤ qm] ≤ exp

(
− (q − p)2

4q
m

)
(16)

and, if p ≤ q,

P[X ≥ qm] ≤ exp

(
− (q − p)2

4q
m

)
. (17)
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A.5. Properties of Laplacian Matrices

If A is a symmetric non-negative matrix and the diagonal of
A is zero, we have the following properties (Boyd, 2006):

0 = λ1(ΛA) ≤ · · · ≤ λn(ΛA)

and

λi+1(ΛA) = λi(Q
>
1 ΛAQ1) for i = 1, 2, . . . , n− 1 (18)

where Q1 ∈ Rn×n−1 denotes a matrix whose columns are
orthonormal to the all-one vector 1.

From (18), we have for all symmetric matrices A and B
with zero diagonals, it holds that

ΛA � ΛB when A � B, (19)

where A � B means that A−B is a positive semi-definite
matrix.

B. TF Log-likelihoods
Let Hi,j(θ, S) be defined for θ ∈ Θn, S ⊆ N and i ∈ S,
j ∈ S, as follows

Hi,j(θ, S) =
∑
y∈S

py,S(θ)
∂2

∂θi∂θj
(− log(py,S(θ))).

Lemma 12. For every comparison set S ⊆ N , we have

Hi,j(0, S) =

k
2(k − 1)

(
∂pk(0)
∂x1

)2

if i = j

−k2
(
∂pk(0)
∂x1

)2

if i 6= j.
(20)

Proof of the last above lemma is provided in Appendix L.1.
Lemma 13. Let S ⊆ N and y ∈ S and let k be the cardi-
nality of set S. Then, it holds

1. 1>∇2(− log(py,S(0))) = 0, and

2. 1
k

∑
y∈S ∇2(− log(py,S(0))) = ΛMS

k2
(
∂pk(0)
∂x1

)2

where MS denotes a matrix that has all (i, j) elements
such that {i, j} ⊆ S equal to 1, and all other elements
equal to 0.

Proof of the last above lemma follows easily from that of
Lemma 12.
Lemma 14. If for a comparison set S ⊆ N of cardinality
k, ∇2(− log(py,S(0))) is a positive semi-definite matrix,
then it holds that∥∥∇2(− log(py,S(0)))

∥∥
2
≤ 2

γF,k
.

Proof of the last above lemma is given in Appendix L.2.

C. Proof of Theorem 1
Let ∆ = θ̂ − θ?. By the Taylor expansion, we have

`(θ̂) ≤`(θ?) +∇`(θ?)>∆

+
1

2
max
α∈[0,1]

∆>∇2`(θ? + α∆)∆. (21)

Note that ∆ is orthogonal to the all-one vector, i.e.,∑n
i=1 ∆i = 0.

By the Cauchy-Schwartz inequality, we have

∇`(θ?)>∆ ≤ ‖∇`(θ?)‖2‖∆‖2. (22)

Since θ̂ is a maximum likelihood estimator, we have

`(θ̂)− `(θ?) ≥ 0. (23)

From (21), (22) and (23),

− max
α∈[0,1]

∆>∇2`(θ?+α∆)∆ ≤ 2‖∇`(θ?)‖2‖∆‖2. (24)

Now, note that for every θ ∈ Rn and i, j ∈ N ,

d2

dx2
log(p2(θi − θj)) =

∂2

∂θ2
i

log(p2(θi − θj))

=
∂2

∂θ2
j

log(p2(θi − θj))

= − ∂2

∂θi∂θj
log(p2(θi − θj)).

Hence, for every θ ∈ Θn and x ∈ Rn, we have

x>∇2`(θ)x

=

n∑
i=1

∑
j 6=i

wi,j(xi − xj)2 d
2

dx2
log(p2(θi − θj))

≤−
n∑
i=1

∑
j 6=i

wi,jB(xi − xj)2

=−B 4m

n
x>ΛMx

≤−B 4m

n
‖x‖22λ2(ΛM), (25)

where we deduce the last inequality from (18).

From (24) and (25), we obtain

2Bm

n
‖∆‖22λ2(ΛM) ≤ ‖∇`(θ?)‖2‖∆‖2. (26)

We bound ‖∇`(θ?)‖2 using the Azuma-Hoeffding’s in-
equality for multivariate random variables in Proposition 8.
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Note that ∇`(θ?) is a sum of m independent random vec-
tors having zero-mean, where each comparison of a pair of
items (i, j) results in a vector of value ∇ log(p2(θ?i − θ?j ))
with probability p2(θ?i − θ?j ) and of value ∇ log(p2(θ?j −
θ?i )) with probability p2(θ?j − θ?i ). Note that for every pair
of items (i, j), ‖∇ log(p2(θ?i − θ?j ))‖2 ≤ A

√
2.

By the Azuma-Hoeffding’s inequality in Proposition 8, it
follows that

P
[
‖∇`(θ?)‖2 ≥ 2A

√
m(log(n) + 2)

]
≤ 2

n
. (27)

Finally, from (26), (22) and (27), with probability 1− 2/n,
it holds

‖∆‖2 ≤
An
√

(log(n) + 2)

Bλ2(ΛM)
√
m

.

D. Proof of Theorem 2
This proof follows the main steps of the proof of Theo-
rem 1. Let ∆ = θ̂ − θ?. By the same arguments as in the
proof of Theorem 1, we have that equation (24) holds, i.e.,

− max
α∈[0,1]

∆>∇2`(θ?+α∆)∆ ≤ 2‖∇`(θ?)‖2‖∆‖2. (28)

Since ∇2(−`(θ)) is a Laplacian matrix, from assumption
A1 and (19), we have

∇2(−`(θ)) � AF,b∇2(−`(0)) for all θ ∈ [−b, b]n. (29)

From (28) and (29), we obtain

λ1

(
Q>1∇2(−`(0))Q1

)
AF,b ‖∆‖2

≤ 2‖∇`(θ?)‖2, (30)

which follows by the fact that θ̂ is orthogonal to 1.

We state two lemmas whose proofs are given at the end of
this section, in Appendix D.1 and D.2.

Lemma 15. Suppose that

m ≥ 32
σF,K

BF,bλ2(ΛMF
)
n log(n)

then, with probability at least 1− 1/n,

λ1

(
Q>1∇2(−`(0))Q1

)
≥
BF,bm

2n
λ2(ΛMF

).

and

Lemma 16. With probability at least 1− 2/n, it holds that

‖∇`(θ?)‖2 ≤ CF,b
√
σF,K

√
2m(log(n) + 2).

From (30) and the bounds in Lemma 15 and Lemma 16, it
follows that if

m ≥ 32
σF,K

BF,bλ2(ΛMF
)
n log(n),

then, with probability at least 1− 3/n,

‖∆‖2 ≤ 32

(
CF,b

AF,bBF,b

)2

σF,K
n(log(n) + 2)

λ2(ΛMF
)2

1

m
.

D.1. Proof of Lemma 15

From the definition of the log-likelihood function `(θ),
Q>1∇2(−`(0))Q1 is a sum of a sequence of random ma-
trices {Q>1∇2(− log(pyt,St(0)))Q1}1≤t≤m, i.e.,

Q>1∇2(−`(0))Q1 =

m∑
t=1

Q>1∇2(− log(pyt,St(0)))Q1.

From assumption A1 and (18), for every observation t,

λ1

(
Q>1∇2(− log(pyt,St(0)))Q1

)
≥ 0.

We can thus apply the matrix Chernoff’s inequality,
given in Proposition 9, once we find a lower bound
for λ1

(
E
[
Q>1∇2(−`(0))Q1

])
and an upper bound for∥∥Q>1 (∇2 log(pyt,St(0))

)
Q1

∥∥
2

for every observation t.

We have the following sequence of relations

Eθ?
[
∇2(− log(`(0)))

]
=

m∑
t=1

Eθ?
[
∇2(− log(pyt,St(0)))

]
=

m∑
t=1

∑
y∈St

py,St(θ
?)∇2(− log(py,St(0)))

� BF,b

m∑
t=1

∑
y∈St

1

|St|
∇2(− log(py,St(0)))

= BF,b

m∑
t=1

∑
y∈St

1

|St|
ΛMSt

|St|2
(
∂p|St|(0)

∂x1

)2

(31)

= BF,b
m

n
ΛMF

(32)

where (31) follows Lemma 13 and MS denotes a matrix
that has all (i, j) elements such that {i, j} ⊆ S equal to 1,
and all other elements equal to 0.

From (32), we have

λ1

(
E
[
Q>1∇2(−`(0))Q1

])
≥ BF,b

m

n
λ1

(
Q>1 ΛMF

Q1

)
= BF,b

m

n
λ2(ΛMF

), (33)

where the last equality holds by (18).
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From Lemma 14, for every observation t,∥∥∇2 log(pyt,St(0))
∥∥

2
≤ 2

γF,|St|
≤ 2σF,K . (34)

Using the matrix Chernoff’s inequality in Corollary 10 with
ε = 1/2, βmin ≥ BF,b

m
n λ2(ΛMF

) by (33) and α ≤ σF,K
by (34), we obtain the assertion of the lemma.

D.2. Proof of Lemma 16

For every comparison set S ⊆ N and i ∈ S, we have

∂ log pi,S(θ)

∂θi
= − 1

pi,S(θ)

∑
v∈S\{i}

∂pv,S(θ)

∂θi
(35)

and, for all j ∈ S \ {i},

∂ log pj,S(θ)

∂θi
=

1

pj,S(θ)

∂pj,S(θ)

∂θi
. (36)

From (35) and (36), we have

E [∇ log py,S(θ?)] = 0 (37)

and

‖∇ log py,S(0)‖22 = k3(k − 1)

(
∂pk(0)

∂x1

)2

=
1

γF,k
.

By assumption A3, every S ⊆ N such that |S| ∈ K,

‖∇ log py,S(θ?)‖22 ≤ C
2

F,b‖∇ log py,S(0)‖22
≤ C

2

F,bσF,K . (38)

Using (37) and (38) with the Azuma-Hoeffding inequality
for multivariate random variables in Proposition 8, we ob-
tain that with probability at least 1− 2/n,

‖∇`(θ?)‖2 ≤ CF,b
√
σF,K

√
2m(log(n) + 2).

E. Remark for Theorem 2
For the special case of noise according to the double-
exponential distribution with parameter β, we have

pk(x) =
1

1 +
∑k−1
i=1 e

−xi/β
.

For every θ ∈ θn and every S ⊆ N of cardinality k and
i, j, y ∈ S, we can easily check that

∂2

∂θi∂θj
(− log(py,S(θ))) = − 1

β2
pi,S(θ)pj,S(θ).

Furthermore, the following two relations hold

k

β(k − 1)
(1− py,S(θ))

2 ≤ ‖∇py,S(θ)‖2 ≤
2

β
(1− py,S(θ))

2
.

Since

min
y∈S,θ∈[−b,b]n

py,S(θ) =
1

1 + (k − 1)e2b/β

≥ py,S(0)e−2b/β

and

max
y∈S,θ∈[−b,b]n

py,S(θ) =
1

1 + (k − 1)e−2b/β

≤ py,S(0)e2b/β

we have that

σF,K ≤
1

β2

and

e−4b/β ≤ AF,b ≤ AF,b ≤ e4b/β , (39)

e−2b/β ≤ BF,b ≤ BF,b ≤ e2b/β , (40)

e−4b/β ≤ CF,b ≤ CF,b ≤ 4. (41)

F. Proof of Theorem 3
The proof of the theorem follows from the well-known
Cramér-Rao inequality, which is given in Proposition 7.

Since
∑n
i=1 θi = 0, we define ψi(θ) = θi − 1

n

∑n
l=1 θl.

Note that
∑n
i=1 ψi(θ) = 0. Then,

∂ψ(θ)

∂θ
= I− 1

n
11>. (42)

Let F (θ) be the Fisher information matrix of the random
vector X = (S,y) where S = (S1, S2, . . . , Sm) are the
comparison sets and y = (y1, y2, . . . , ym) are the choices
of comparisons.

Then, we have that the (i, j) element of matrix F (θ) is
given by

F (θ) =

m∑
t=1

E
[
∇2(− log(pyt,St(θ)))

]
. (43)



14

From the assumptions A1, A2, and Lemma 13, we have

E
[
∇2(− log(pyt,St(θ)))

∣∣St = S
]

=
∑
y∈S

py,S(θ)∇2(− log(py,S(θ)))

�
∑
y∈S

BF,b
|S|
∇2(− log(py,S(θ)))

�
∑
y∈S

AF,bBF,b
|S|

∇2(− log(py,S(0)))

= AF,bBF,b

(
|S|

∂p|S|(0)

∂x1

)2

ΛMS
(44)

where we use (19) for the two inequalities and MS that has
each element (i, j) such that {i, j} ⊆ S equal to 1 and all
other elements equal to 0.

From (43) and (44),

F (θ) � AF,bBF,b
m

n
ΛMF

. (45)

For a n × n matrix A = [ai,j ], let tr(A) denote its trace,
i.e. tr(A) =

∑n
i=1 ai,i. Note that

E[‖θ̂ − θ‖22] = tr(cov[T(X)])

=

n∑
i=1

λi (cov[T(X)]) .

By the Cramér-Rao bound and (45), we have

1

n
E[‖θ̂ − θ‖22] ≥ 1

n

n∑
i=1

λi

(
∂ψ(θ)

∂θ
F−1(θ)

∂ψ(θ)

∂θ

>
)

=
1

n

n−1∑
i=1

λi(Q
>
1 F
−1(0)Q1)

=
1

n

n−1∑
i=1

1

λi(Q>1 F (0)Q1)

≥ 1

AF,bBF,bm

n−1∑
i=1

1

λi(Q>1 ΛMF
Q1)

=
1

AF,bBF,bm

n∑
i=2

1

λi(ΛMF
)
,

where the last equality is obtained from (18).

G. Proof of Theorem 4
Let pe denote the probability that the point score ranking
method incorrectly classifies at least one item:

pe = P

[ ⋃
l∈N1

{l ∈ N̂1} ∪
⋃
l∈N2

{l ∈ N̂2}

]

Let Ri denote the point score of item i ∈ N . If the point
scores are such that Rl > m/n for every l ∈ N1 and
Rl < m/n for every l ∈ N2, then this implies a correct
classification. Hence, it must be that in the event of a mis-
classification of an item, Rl ≤ m/n for some l ∈ N1 or
Rl ≥ m/n for some l ∈ N2. Combining this with the
union bound, we have

pe ≤ P

[ ⋃
l∈N1

{
Rl ≤

m

n

}
∪
⋃
l∈N2

{
Rl ≥

m

n

}]
≤

∑
l∈N1

P
[
Rl ≤

m

n

]
+
∑
l∈N2

P
[
Rl ≥

m

n

]
. (46)

Let i and j be arbitrarily fixed items such that i ∈ N1 and
j ∈ N2. We will show that for every observation t,

P[yt = i] ≥ 1

n
+
bk2

4n

∂pk(0)

∂x1
(47)

and

P[yt = j] ≤ 1

n
− bk2

4n

∂pk(0)

∂x1
. (48)

From the Chernoff’s bound in Lemma 11, we have the fol-
lowing bounds.

Using (16) for the random variable Ri, we obtain

P
[
Ri ≤

m

n

]
≤ exp

(
−1

4
n

(
1

n
−E[y1 = i]

)2

m

)

≤ exp

(
−1

4

(
bk2

4n

∂pk(0)

∂x1

)2

m

)
≤ exp (− log(n/δ))

=
δ

n
.

Using (17) and using the same arguments, we obtain

P
[
Rj ≥

m

n

]
≤ δ

n
.

Combining with (46), it follows that

pe ≤ δ.

In the remainder of the proof we show that inequalities (47)
and (48) hold.

Let A be the set of all A ⊆ N such that |A| = k − 1 and
A ∩ {i, j} = ∅ and B be the set of all B ⊆ N such that
|B| = k − 2 and B ∩ {i, j} = ∅. Then, we have

P[yt = i]−P[yt = j]

=
∑
A∈A

P[St = A ∪ {i}]Di,j(A)

+
∑
B∈B

P[St = B ∪ {i, j}]Di,j(B) (49)
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where

Di,j(A) = P[yt = i|St = A ∪ {i}]
−P[yt = j|St = A ∪ {j}]

and

Di,j(B) = P[yt = i|St = B ∪ {i, j}]
−P[yt = j|St = B ∪ {i, j}].

Let b be a k−1-dimensional vector with all elements equal
to b. Then, note that

Di,j(A) = pk(b− θA)− pk(−b− θA).

By limited Taylor series development, we have

pk(x) ≥ pk(0) +∇pk(0)>x− 1

2
β‖x‖22 (50)

pk(x) ≤ pk(0) +∇pk(0)>x +
1

2
β‖x‖22 (51)

where
β = max

x∈[−2b,2b]k−1
‖∇2pk(x)‖2. (52)

Hence, it follows that for every θA ∈ {−b, b}k−1,

Di,j(A) ≥ 2(k − 1)b
∂pk(0)

∂x1
− 4(k − 1)b2β. (53)

Under the condition of the theorem, we have

β ≤ 1

4b

∂pk(0)

∂x1
.

Hence, combining with (53), for every θA ∈ {−b, b}k−1,

Di,j(A) ≥ (k − 1)b
∂pk(0)

∂x1

≥ kb

2

∂pk(0)

∂x1
. (54)

By the same arguments, we can show that

Di,j(B) = pk(b− θ(−b)
B )− pk(−b− θ(b)

B )

≥ kb

2

∂pk(0)

∂x1
(55)

where θ(b)
B ∈ {−b, b}k−1 and θ(−b)

B ∈ {−b, b}k−1 are (k−
1)-dimensional with the first elements equal to b and −b,
respectively, and other elements equal to the parameters of
items B.

Since the comparison sets are sampled uniformly at random
without replacement, note that

P[St = A ∪ {i}] =

(
n−1
k−1

)(
n
k

) , for all A ∈ A (56)

and

P[St = B ∪ {i, j}] =

(
n−2
k−2

)(
n
k

) , for all B ∈ B. (57)

From (49), (54), (55), (56) and (57), we have

P[yt = i]−P[yt = j] ≥ k2b

2n

∂pk(0)

∂x1
.

Using this inequality together with the following facts (i)
P[yt = l] = P[yt = i] for every l ∈ N1, (ii) P[yt = l] =
P[yt = j] for every l ∈ N2, (iii)

∑
l∈N P[yt = l] = 1, and

(iv) |N1| = |N2| = n/2, it can be readily shown that

P[yt = i] ≥ 1

n
+
k2b

4n

∂pk(0)

∂x1
,

which establishes (47). By the same arguments one can
establish (48).

H. Proof of Theorem 5
Suppose that n is a positive even integer and θ is the pa-
rameter vector such that θi = b for i ∈ N1 and θi = −b
for i ∈ N2, where N1 = {1, 2, . . . , n/2} and N2 =
{n/2 + 1, . . . , n}. Let θ′ be the parameter vector that is
identical to θ except for swapping the first and the last item,
i.e. θ′i = b for i ∈ N ′1 and θ′i = −b for i ∈ N ′2, where
N ′1 = {n, 2, . . . , n/2} and N ′2 = {n/2 + 1, . . . , n− 1, 1}.

We denote with Pθ[A] and Pθ′ [A] the probabilities of an
event A under hypothesis that the generalized Thurstone
model is according to parameter θ and θ′, respectively. We
denote with Eθ and Eθ′ the expectations under the two re-
spective distributions.

Given observed data (S,y) = (S1, y1), . . . , (Sm, ym), we
denote the log-likelihood ratio statistic L(S,y) as follows

L(S,y) =

m∑
t=1

log

(
pyt,St(θ

′)ρt(St)

pyt,St(θ)ρt(St)

)
, (58)

where ρt(S) is the probability that S is drawn at time t.

The proof follows the following two steps:

Step 1: We show that for given δ ∈ [0, 1], for the exis-
tence of an algorithm that correctly classifies all the items
with probability at least 1 − δ, it is necessary that the fol-
lowing condition holds

Pθ′ [L(S,y) ≥ log(n/δ)] ≥ 1

2
. (59)
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Step 2: We show that

Eθ′ [L(S,y)] ≤ 36
m

n

(
k2b

∂pk(0)

∂x1

)2

(60)

σ2
θ′ [L(S,y)] ≤ 144

m

n

(
k2b

∂pk(0)

∂x1

)2

(61)

where σ2
θ′ [L(S,y)] denotes the variance of random vari-

able L(S,y) under a generalized Thurstone model with pa-
rameter θ′.

By Chebyshev’s inequality, for every g ∈ R,

Pθ′ [|L(S,y)−Eθ′ [L(S,y)]| ≥ |g|] ≤ σ2
θ′ [L(S,y)]

g2
.

Using this for g = log(n/δ)−Eθ′ [L(S,y)], it follows that
(59) implies the following condition:

log(n/δ)−Eθ′ [L(S,y)] ≤ | log(n/δ)−Eθ′ [L(S,y)]|
≤
√

2σθ′ [L(S,y)].

Further combining with (60) and (61), we obtain

m ≥ 1

62

1

b2k4(∂pk(0)/∂x1)2
n(log(n) + log(1/δ))

which is the condition asserted in the theorem.

Proof of Step 1. Let us define the following two events

A = {|N1 \ N̂1| = 1} ∩ {|N2 \ N̂2| = 1}

and

B = {N̂1 = N ′1} ∩ {N̂2 = N ′2}.

Let Bc denote the complement of the event B.

Note that

Pθ[B] = Pθ[B|A]Pθ[A]

=

(
2

n

)2

Pθ[A]

≤ 4

n2
δ

where the second equation holds becauseB ⊆ A and every
possible partition in A has the same probability under θ.

For every g ∈ R, we have

Pθ′ [L(S,y) ≤ g] = Pθ′ [L(S,y) ≤ g,B]

+Pθ′ [L(S,y) ≤ g,Bc].

Now, note

Pθ′ [L(S,y) ≤ g,B] =Eθ′ [1(L(S,y) ≤ g,B)]

=Eθ[e
L(S,y)1(L(S,y) ≤ g,B)]

≤Eθ[eg1(L(S,y) ≤ g,B)]

=egPθ[L(S,y) ≤ g,B]

≤egPθ[B]

≤eg 4

n2
δ (62)

where in the second equation we make use of the standard
change of measure argument.

Since the algorithm correctly classifies all the items with
probability at least 1− δ, we have

Pθ′ [L(S,y) ≤ g,Bc] ≤ Pθ′ [B
c] ≤ δ. (63)

For g = log(n/δ), from (62) and (63), it follows that

Pθ′ [L(S,y) ≤ log(n/δ)] ≤ δ +
4

n
≤ 1

2

where the last inequality is by the conditions of the theo-
rem.

Proof of Step 2. If the observed comparison sets
S1, S2, . . . , Sm are such that St ∩ {1, n} = ∅, for every
observation t, then we obviously have

log

(
pyt,St(θ

′)

pyt,St(θ)

)
= 0, for all t.

We therefore consider the case when St ∩ {1, n} 6= ∅.

Using (50), (51), and (52), we have for every S and i ∈ S,

|pi,S(θ′)− pi,S(θ)|

≤2kb
∂pk(0)

∂x1
+ 4βbk

≤3kb
∂pk(0)

∂x1
, (64)

where the last inequality is obtained from the condition of
this theorem.

From (64), for every comparison set S such that S ∩
{1, n} 6= ∅, we have∑

i∈S
(pi,S(θ′)− pi,S(θ))

2

≤
∑

i∈{1,n}∩S

(pi,S(θ′)− pi,S(θ))
2

+

 ∑
i∈S\{1,n}

pi,S(θ′)− pi,S(θ)

2

≤2

(
3kb

∂pk(0)

∂x1

)2

, (65)
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which is because for every comparison set S such that 1 ∈
S,

p1,S(θ′) ≤ 1

k
≤ p1,S(θ) and

pi,S(θ′) ≥ pi,S(θ) ∀i 6= 1;

for every comparison set S such that n ∈ S,

pn,S(θ′) ≥ 1

k
≥ pn,S(θ) and

pi,S(θ′) ≤ pi,S(θ) ∀i 6= n.

From (64) and the assumption of the theorem, we have

min
S

min
i∈S

pi,S(θ) = min
S:n∈S

pn,S(θ)

≥1

k
− 3kb

∂pk(0)

∂x1

≥ 1

2k
. (66)

For simplicity of notation, let

D = 3kb
∂pk(0)

∂x1
. (67)

Then, for all S such that S ∩ {1, n} 6= ∅, we have∑
i∈S

pi,S(θ′) log

(
pi,S(θ′)

pi,S(θ)

)
≤ 2kD2 (68)

which is obtained from

(i) pi,S(θ) ≥ 1/(2k) for all i ∈ S that holds by (66),

(ii)
∑
i∈S(pi,S(θ′)− pi,S(θ))2 = 2D2 from (65),

(iii) a log a
b ≤

(a−b)2
2b + a− b.

Similarly to (68), from (i) and (ii) and a
(
log a

b

)2 ≤
(a−b)2
a∧b

(
1 + |a−b|

3(a∧b)

)
, we have

∑
i∈S

pi,S(θ′)

(
log

(
pi,S(θ′)

pi,S(θ)

))2

≤ 8kD2. (69)

Since

Pθ′ [{St ∩ {1, n} 6= ∅}] = 1−
(
n−2
k

)(
n
k

) ≤ 2
k

n

and according to the model, the input observations are in-
dependent, from (68) and (69), we have

Eθ′ [L(S,y)]

= mEθ′

[
log

(
py1,S1

(θ′)

py1,S1(θ)

)]
= m

∑
S:S∩{1,n}6=∅

Pθ′ [S1 = S]

∑
y∈S

py,S(θ′)

[
log

(
py,S(θ′)

py,S(θ)

)]
≤ 4

m

n
k2D2 (70)

and

σ2
θ′ [L(S,y)]

= mσ2
θ′

[
log

(
py1,S1

(θ′)

py1,S1
(θ)

)]
≤ mEθ′

[(
log

(
py1,S1(θ′)

py1,S1
(θ)

))2
]

= m
∑

S:S∩{1,n}6=∅

Pθ′ [S1 = S]

∑
y∈S

py,S(θ′)

[(
log

(
py,S(θ′)

py,S(θ)

))2
]

≤ 16
m

n
k2D2. (71)

I. Characterizations of ∂pk(0)/∂x1
In this section, we note several different representations of
the parameter ∂pk(0)/∂x1.

First, note that

∂pk(0)

∂x1
=

1

k − 1

∫
R

f(x)dF (x)k−1. (72)

The integral corresponds to E[f(X)] where X is a random
variable whose distribution is equal to that of a maximum
of k − 1 independent and identically distributed random
variables with cumulative distribution F .

Second, suppose that F is a cumulative distribution func-
tion with its support contained in [−a, a], and that has a
differentiable density function f . Then, we have

∂pk(0)

∂x1
= AF,k +BF,k (73)

where

AF,k =
1

k − 1
f(a)

and

BF,k =
1

k(k − 1)

∫ a

−a
(−f ′(x))dF (x)k.
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The identity (73) is shown to hold as follows. Note that

d2

dx2
F (x)k

=
d

dx
(kF (x)k−1f(x))

= k(k − 1)F (x)k−2f(x)2 + kF (x)k−1f ′(x).

By integrating over [−a, a], we obtain

d

dx
F (x)k|a−a = k(k − 1)

∫ a

−a
f(x)2F (x)k−2dx

+k

∫ a

−a
f ′(x)F (x)k−1dx.

Combining with the fact

d

dx
F (x)k|a−a = kf(x)F k−1(x)|a−a = kf(a),

we obtain (73).

Note that BF,k = E[−f ′(X)]/(k(k − 1)) where X is a
random variable with distribution that corresponds to that
of a maximum of k independent samples from the cumula-
tive distribution function F . Note also that if, in addition,
f is an even function, then (i) BF,k ≥ 0 and (ii) BF,k is
increasing in k.

Third, for any cumulative distribution function F with an
even density function f , we have F (−x) = 1 − F (x) for
all x ∈ R. In this case, we have the identity

∂pk(0)

∂x1
=

∫ ∞
0

f(x)2(F (x)k−2 + (1− F (x))k−2)dx.

(74)

J. Proof of Proposition 6
The upper bound follows by noting that that BF,k in (73) is
such that BF,k = Ω(1/k2). Hence, it follows that

γF,k = O(1).

The lower bound follows by noting that for every cumula-
tive distribution function F such that there exists a constant
C > 0 such that f(x) ≤ C for all x ∈ R,

∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx

≤ C

∫
R

f(x)F (x)k−2dx

= C
1

k − 1
.

Hence, γF,k ≥ (1/C)(k − 1)/k3 = Ω(1/k2).

K. Derivations of parameter γF,k
We derive explicit expressions for parameter γF,k for our
example generalized Thurstone choice models introduced
in Section 2

Recall from (7) that we have that

γF,k =
1

(k − 1)k3

1

(∂pk(0)/∂x1)2

where
∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx

Gaussian distribution A cumulative distribution func-
tion F is said to have a type-3 domain of maximum at-
traction if the maximum of r independent and identically
distributed random variables with cumulative distribution
function F has as a limit a double-exponential cumulative
distribution function:

e−e
− x−ar

br

where

ar = F−1

(
1− 1

r

)
and

br = F−1

(
1− 1

er

)
− F−1

(
1− 1

r

)
.

It is a well known fact that any Gaussian cumulative dis-
tribution function has a type-3 domain of maximum attrac-
tion. Let Φ denote the cumulative distribution function of
a standard normal random variable, and let φ denotes its
density.

Note that ∫
R

φ(x)dΦ(x)r

∼ 1√
2π

∫
R

e−
x2

2 d(e−e
− x−ar

br )

=
1√
2π

∫ ∞
0

e−
1
2 (ar+br log(1/z))2e−zdz

=
1√
2π
e−

1
2a

2
r

∫ ∞
0

zarbre−
1
2 b

2
r log(1/z)2e−zdz

≤ 1√
2π
e−

1
2a

2
r

∫ ∞
0

zarbre−zdz

=
1√
2π
e−

1
2a

2
rΓ(arbr + 1).

Now, note that

ar ∼
√

2 log(r) and br = Θ(1), for large r.
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It is readily checked that e−a
2
r/2 ∼ 1/r and Γ(arbr + 1) =

O(rε) for every constant ε > 0. Hence, we have that∫
R

φ(x)dΦ(x)r = O(1/r1−ε)

and thus, ∂pk(0)/∂x1 = O(1/k2−ε). Hence,

γF,k = Ω(1/k2ε).

Double-exponential distribution Note that f(x) =
1
β e
− x+βγβ F (x). Hence, we have

∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx

=
1

β2

∫
R

e−2 x+βγβ F (x)kdx

=
1

β

∫ ∞
0

ze−kzdz

=
1

βk2
.

Laplace distribution Let β = σ/
√

2. Note that

F (x) = 1− 1

2
e−x/β and f(x) =

1

2β
e−x/β , for x ∈ R+.

A =

∫ ∞
0

f(x)2F (x)k−2dx

=

∫ ∞
0

(
1

2β

)2

e−2x/β

(
1− 1

2
e−x/β

)k−2

dx

=
1

2β

∫ 1

1/2

2(1− z)zk−2dz

=
1

β

(
1

k − 1

(
1− 1

2k−1

)
− 1

k

(
1− 1

2k

))
=

1

βk(k − 1)

(
1− k

2k−1
+
k − 1

2k

)

and

B =

∫ ∞
0

f(x)2(1− F (x))k−2dx

=

∫ ∞
0

(
1

2β

)2

e−2x/β 1

2k−2
e−(k−2)x/βdx

=
1

β22k

∫ ∞
0

e−kx/βdx

=
1

βk2k
.

Combining with (74), we obtain

∂pk(0)

∂x1
= A+B =

1

βk(k − 1)

(
1− 1

2k−1

)
.

Uniform distribution Note that
∂pk(0)

∂x1
=

∫
R

f(x)2F (x)k−2dx

=
1

(2a)2

∫ a

−a

(
x+ a

2a

)k−2

dx

=
1

2a

∫ 1

0

zk−2dz

=
1

2a(k − 1)
.

L. Some Remaining Proofs
L.1. Proof of Lemma 12

Consider a set S ⊆ N such that |S| = k, for an arbitrary
integer 2 ≤ k ≤ n. Without loss of generality, consider
S = {1, 2, . . . , k}. Let xl(θ) = θi − θS\{l}, for l ∈ S. For
simplicity, with a slight abuse of notation, we write xl in
lie of xi(θ), for l ∈ S. We first consider the case i 6= j. By
straightforward derivation, we have

∂2

∂θi∂θj
(− log(pk(xl)))

= − 1

pk(xl)

∂2pk(xl)

∂θi∂θj
+

1

pk(xl)2

∂pk(xl)

∂θi

∂pk(xl)

∂θj
.

We separately consider three different cases.

Case 1: i, j, l are all distinct. Note that

∂2

∂θi∂θj
(− log(pk(xl)))|θ=0 = I1 (75)

where

I1 = −k∂
2pk(0)

∂x1∂x2
+ k2

(
∂pk(0)

∂x1

)2

.

Case 2: i 6= l and j = l. In this case, we characterize the
following quantity for θ = 0,

∂2

∂θi∂θj
(− log(pk(xj)))

= − 1

pk(xj)

∂2pk(xj)

∂θi∂θj
+

1

pk(xj)2

∂pk(xj)

∂θi

∂pk(xj)

∂θj
.(76)

For every u ∈ S, pk(xu) does not change its value by
changing the parameter θ to value θ + ∆θ, for every con-
stant ∆θ ∈ R. Hence, by the full differential, we have

∂pk(xu)

∂θj
= −

∑
v∈S\{j}

∂pk(xu)

∂θv
. (77)
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Using (77), we have

∂2pk(xj)

∂θi∂θj
= −∂

2pk(xj)

∂θ2
i

−
∑

v∈S\{i,j}

∂2pk(xj)

∂θi∂θv
. (78)

Note that

∂2pk(xj)

∂θ2
i

=

∫
R

f(z)f ′(xi + z)
∏

v∈S\{i,j}

F (xv + z)dz.

Hence, we can derive

∂2pk(xj)

∂θ2
i

|θ=0

=

∫
R

f(z)f ′(z)
∏

v∈S\{i,j}

F (z)k−2dz

= f(z)2F (z)k−1|∞−∞ −
∫
R

f(z)(f(z)F (z)k−2)′dz

= −
∫
R

f(z)f ′(z)F (z)k−1 − (k − 2)

∫
R

f(z)2F (z)k−3dz

= −∂
2pk(xj)

∂θ2
i

|θ=0 − (k − 2)
∂2pk(0)

∂x1∂x2

from which it follows that

∂2pk(xj)

∂θ2
i

|θ=0 = −k − 2

2

∂2pk(0)

∂x1∂x2
. (79)

From (78) and (79), we obtain

∂2pk(xj)

∂θi∂θj
|θ=0 = −k − 2

2

∂2pk(0)

∂x1∂x2
. (80)

Using (77), we have

∂pk(xj)

∂θj
|θ=0 = (k − 1)

∂pk(0)

∂x1
. (81)

Combining (76), (80) and (81), we have

∂2

∂θi∂θj
(− log(pk(xj)))|θ=0 = I2 (82)

where

I2 =
k(k − 2)

2

∂2pk(0)

∂x1∂x2
− k2(k − 1)

(
∂pk(0)

∂x1

)2

.

Case 3: i = l and j 6= l. By symmetry, from Case 2, we
have

∂2

∂θi∂θj
(− log(pk(xi)))|θ=0 = I2. (83)

Final step Putting the pieces together, from (75), (82),
and (83), we have for θ = 0,

Hi,j(θ, S) =
∑

l∈S\{i,j}

pk(xl)
∂2

∂θi∂θj
(− log(pk(xl)))

+pk(xi)
∂2

∂θi∂θj
(− log(pk(xi)))

+pk(xl)
∂2

∂θi∂θj
(− log(pk(xj)))

=
k − 2

k
I1 +

1

k
I2 +

1

k
I2

= −k2

(
∂pk(0)

∂x1

)2

. (84)

Now, we consider the case i = j. Using same argument as
in (77), we have

∂2(− log(pk(xl)))

∂θ2
i

= −
∑

v∈S\{i}

∂2(− log(pk(xl)))

∂θi∂θv
.

Hence,

Hi,i(θ, S) = −
∑

v∈S\{i}

∑
l∈S

pk(xl)
∂2(− log(pk(xl)))

∂θi∂θv
.

Combining with Hi,i(θ, S) = −
∑
v∈S\{i}Hi,v(θ, S) and

the result established in (84), we have for θ = 0,

Hi,i(θ, S) = k2(k − 1)

(
∂pk(0)

∂x1

)2

.

L.2. Proof of Lemma 14

Without loss of generality, let y = 1 and S = {1, . . . , k}.
Then, we have

1

k2

∂2(− log(p1,S(0)))

∂θ1∂θ2
=− (k − 1)

(
∂pk(0)

∂x1

)2

+
k − 2

2k

∂2pk(0)

∂x1∂x2
(85)

and for i 6= 1 and j 6= i,

1

k2

∂2(− log(p1,S(0)))

∂θi∂θj
= −1

k

∂2pk(0)

∂x1∂x2

+

(
∂pk(0)

∂x1

)2

. (86)

From assumption A1 and (85),

∂2pk(0)

∂x1∂x2
≤ 2k(k − 1)

k − 2

(
∂pk(0)

∂x1

)2

. (87)
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Note that it holds that

∂2pk(0)

∂x1∂x2
≥ 0. (88)

Combining (85), (86), (87), and (88), we have

∂2(− log(py,S(0)))

∂θi∂θj
≥ −k3

(
∂pk(0)

∂x1

)2

∀ i 6= j.

From the above inequality and (19),

k3

(
∂pk(0)

∂x1

)2

ΛMS
� ∇(− log(py,S(0))).

Therefore, we conclude

‖∇2(− log(py,S(0)))‖2 ≤ k4

(
∂pk(0)

∂x1

)2

,

which holds because ‖ΛMS
‖2 = k.

L.3. Proof of Proposition 11

We prove only (17) as the proof of (16) follows by similar
arguments.

By Chernoff’s bound, for every s > 0,

P[X ≥ qm] ≤ e−sqmE[esX ]

= e−sqm(1− p+ pes)m

= e−mh(s)

where
h(s) = qs− log(1− p+ pes)

Now, using the elementary fact log(1− x) ≤ −x, we have

h(s) ≥ qs+ p− pes.

Take s = s∗ := log(q/p), then,

h(s∗) ≥ q log

(
q

p

)
+ p− q.

Now, let ε = q − p, and note that

q log

(
q

p

)
+ p− q := g(ε)

where

g(ε) = q log

(
q

q − ε

)
− ε.

Since
g′(ε) =

q

q − ε
− 1 =

ε

q − ε
≥ 1

2q
ε

we have

g(ε) =

∫ ε

0

g′(x)dx ≥ 1

4q
ε2

Hence, it follows that

h(s∗) ≥ 1

4q
(p− q)2

and, thus,

P[X ≥ qm] ≤ exp

(
− 1

4q
(p− q)2

)
.

M. Experimental Results

Table 2. Summary statistics for TopCoder and Taskcn datasets.
The rightmost two columns contain, repectively, mean and me-
dian values of comparison sets’ cardinalities.

Category # contests # workers mean median
TopCoder

Design 209 62 1.99 2
Development 198 171 3.07 2
Specification 75 39 2.39 2
Architecture 238 55 1.75 2

Taskcn
Website 131 636 9.87 6
Design 1,967 6,891 27.3 18
Coding 31 284 27.1 18
Writing 420 15,575 46.11 19
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Figure 4. Same as in Figure 4 but for different categories (Devel-
opment and Writing).


