Fast curve fitting using neural networks
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Neural networks provide a new tool for the fast solution of repetitive nonlinear curve fitting
problems. In this article we introduce the concept of a neural network, and we show how such
" networks can be used for fitting functional forms to experimental data. The neural network
algorithm is typically much faster than conventional iterative approaches. In addition, further
substantial improvements in speed can be obtained by using special purpose hardware
implementations of the network, thus making the technique suitable for use in fast real-time
applications. The basic concepts are illustrated using a simple example from fusion research,
involving the determination of spectral line parameters from measurements of B IV impurity

radiation in the COMPASS-C tokamak.

I. INTRODUCTION

The fitting of parametrized functional forms through
sets of experimental data (curve fitting) is a widespread
problem in data analysis. The optimal values for the pa-
rameters are conventionally found by minimizing an error
measure, often taken to be the sum of the squares of the
errors between the observed data values and those pre-
dicted by the function. If the functional form is linearly
dependent on the parameters (e.g., a polynomial), then the
minimization problem is linear and is easily solved. In
many cases, however, it is necessary to consider functional
forms which depend nonlinearly on the unknown parame-
ters. The minimization procedure in such cases generally
involves an iterative algorithm starting from some initial
guess. Such iterative methods are computationally inten-
sive, and hence slow, and for complex problems the need
for a suitable initial guess can require human intervention
to ensure convergence to the correct solution. For applica-
tions involving high volumes of data, or for real-time ap-
plications, there is considerable interest in techniques
which can automate the curve fitting process and which
can operate at high speed.

In this article we use neural networks to provide a
novel technique for determining the optimal parameter val-
ues of the function directly from the raw data. This ap-
proach is much faster than iterative methods and does not
require an initial guess for the solution. Furthermore, for
real-time applications, it is possible to implement the net-
work in special purpose hardware, thereby exploiting the
intrinsically parallel nature of neural networks and hence
giving very high processing speeds.

In Sec. II we give a brief overview of neural networks,
and we then describe in more detail a particular class of
network known as the multilayer perceptron. The neural
network approach to curve fitting, based on the multilayer
perceptron, is illustrated in Sec. III using a simple example
from nuclear fusion research involving measurements of
the B 1v impurity radiation spectrum at the COMPASS-C

tokamak. The problem in this case is to determine the
width and location of a single spectral line from measure-
ments made at a number of wavelengths. We show how the
network is able to predict the width and location directly
from the spectral data in a single step process. This exam-
ple is chosen both for its simplicity, and because it illus-
trates the major points which must be addressed in apply-
ing the technique to more sophisticated problems.!?
Section IV contains a brief summary and a discussion of
the advantages and disadvantages of the neural network
approach.

Il. THE MULTILAYER PERCEPTRON

The study of neural networks has undergone a revival
in recent years, in part due to the development of powerful
new algorithms. Neural networks are analog computa-
tional systems whose structure is inspired by studies of the
brain. Many different architectures of neural network have
been developed to tackle a variety of problems, and re-
search in this area continues at a rapid pace. For an intro-
ductory review of neural networks, see Ref. 3. In this sec-
tion we give a brief overview of a relatively simple but very
widely used network type known as the multilayer percep-
tron (MLP). This class of network will form the basis of
our approach to curve fitting described in Sec. III.

. An MLP consists of a network of units (also known as
processing elements, neurons, or nodes) as illustrated in
Fig. 1. Each unit is shown as a circle in the diagram, and
the lines connecting them are known as weights or links.
The network can be thought of as describing an analytic
mapping between a set of real-valued input variables x,,
(m=1,..,M) and a set of real-valued output variables y,
(n=1,...,N). The input variables are applied to the M in-
put units at the left of the diagram (M =4 and N=2 in the
case of Fig. 1). These variables are multiplied by a matrix
of parameters wy, (/=1,..,L; m=1,...,M) corresponding
to the first layer of links. Here L is the number of units in
the middle, or hidden, layer (L=3 in the example shown
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FIG. 1. A MLP with 1 hidden layer.

" in Fig. 1). This results in a vector of inputs to the units in

the middle layer. Each component of this vector is then
transformed by a nonlinear function f(-) so that the out-
puts of the middle layer units can be written

M
Z]Zf( 2 wlrrrxm+01) (l=13--'9L)9 (1)

m=1
where 6, is an offset (or threshold). The function f(-) is
generally chosen to be the sigmoid defined by

1 1
fxX)=rrms—5. (2)

1+e > 2
The 6utputs from the hidden layer uniti are now mul-
tiplied by a second matrix of parameters w,, (n=1,...,N;
1=1,..,L), and offsets 0, are added to the components of

the resulting vector to generate the network outputs:

L
Vo= 2 Wuz+6, (n=1,.,N). 3)
. I=1

- Combining Egs. (1) and (3) we see that the entire -

network corresponds to a mapping from inputs x,;, to out-
puts y, which is.specified by the analytic function

L M
PaXeeip) = 2 ﬁnlf( 2 wzmxm+01)+9n', 4

I=1 m=1

. where () is defined by Eq. (2). Tl/n\is mapping is param-

etrized by the quantities wy,, 6, w,, and 6,, and.can

readily be extended to include more than one hidden layer.
The functional form in Eq. (4) appears somewhat ar-

bitrary. Its importance, however, stems from two crucial
properties: ‘

(1) For suitable choices of the parameters w,,, 6, u/3,,1, and
6,, the MLP mapping with a single hidden layer can
approximate, with arbitrary accuracy, any given non-
linear multivariate mapping (subject to some mild re-
strictions) provided the number L of middle layer
units is sufficiently large. A formal discussion of this
property can be found in Ref. 4.

(2) Given a set of P exemplar vector pairs {x£ %} p
=1,...,P characterizing a particular mapping, there ex-
ist procedures, based on the technique known as error
backpropagation, for determining appropriate values
for the parameters wy,, 6,, W,;, and 0, so that the
network function in Eq. (4) approximates the re-
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quired mapping. (In the neural network terminology
these are referred to as training or learning algo-
rithms).

The training of an MLP involves choosing a set of
weights to optimize the accuracy of the mapping and is a
computationally intensive process. A large database of ex-
amples (independently determined) is used to teach the
neural network to perform the mapping. Training algo-
rithms generally aim to minimize an error function E,
defined to be the sum of squares of the errors between the
output vector y(x”) of the network (for given input vector
x”) and the corresponding target vector y”, summed over
all exemplars p:

P N

Eo= Z z [yn(xP) —yf,]z (5)

p=1 n=1

Thus E,, is a function of the w’s and @’s. (Note that other
definitions of the error measure can also be used). There
exists an efficient technique for evaluating the derivatives
of E,; with respect to these parameters. Knowledge of the
derivatives allows E,,, to be minimized using a number of
standard optimization procedures. Gradient descent is the
simplest method, and when combined with the derivative
algorithm the resulting training procedure is known as
backpropagation. A detailed account of the backpropaga-
tion procedure can be found in Ref. 5. More powerful op-
timization algorithms exist, and in this article we adopt a
limited-memory quasi-Newton method, which is consider-
ably faster than gradient descent.

. If the network is to generalize to new data, it is impor-
tant that the training data spans the input space where the
mapping is to be applied. Neural networks are good at
interpolating between training examples, but poor at ex-
trapolating beyond the training experience.

The number L of hidden units is a parameter of the
neural network model. The optimum number of hidden
units depends both on the specific problem being solved
and on the size of the available data set. There exist a
variety of procedures for chosing L, of which the simplest
is a cross validation technique using independent training
and test sets. Networks having various numbers of hidden
units are trained using the training set and their perfor-
mances are measured by calculating the mean square error
with respect to the test set. The network having the small-
est test error is then chosen.

lil. AN EXAMPLE: FITTING A SPECTRAL LINE

Curve fitting involves optimizing a parametrized func-
tional form to fit a set of data points. The parametrized
function may depend on an arbitrary number of variables,
but in this article we consider only functions of one vari-
able A. It would be straightforward to extend the methods
discussed to deal with higher dimensional problems. The
basic problem in curve fitting is to find the N parameter
values aj,...,ay, associated with the functional form
F(A;ay,...,ay), which best represent the underlying trends
in a set of M data points (4,,%),...,(4,5,%,). For the re-
petitive curve fitting problems which are addressed here,
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the values of 4,,, corresponding to the data values x,,, are
considered to be fixed.

When the functional form F(4;ay,...,ay) is nonlinearly
dependent on the parameters, the conventional approaches
to finding the optimal parameter values are iterative. Least-
squares fitting is one such technique, and this involves min-
imizing with respect to a,...,ay an error measure E,
where

M
E,= E [X—F (Apsyyesay) 12

m=1

(6)

E;; measures the discrepancy between the functional form
and the experimental data. The conventional method for
finding the minimum error is to adjust the parameters us-
ing an iterative algorithm such as steepest descent or con-
Jjugate gradients. While in many cases such an approach is
satisfactory, there are two potential drawbacks: iterative
algorithms are usually computationally intensive, and an
appropriate initial guess is required.

The neural network approach to curve fitting described
here involves the use of a multilayer perceptron to form a
direct mapping between the measured data x,,...,x,;, and
the optimal parameter values aj,....ay. A set of examples
of the mapping must be generated independently in order
to train the network, and a typical procedure for achieving
this is illustrated below. The N target outputs of the net-
work for the p™ example ), are set equal to the best fit
parameters a’ as determined by a method like least
squares. Meanwhile the M corresponding network inputs
for the pth pattern are set to the measurement values x%,.
The training of the network is itself a slow iterative process
involving the minimization of the error measure E,,, ob-
tained from Eq. (5)-

P N

E = Z z [yn(xp) _aﬁ]Z.

p=1 n=1

E, .. (which is different from the least-squares error mea-
sure E) is minimized with respect to the weights in the
network. Once trained the network can very rapidly per-
form the curve fitting operation on new data. As was
shown in Sec. II, the network mapping involves the simple
operations of a matrix multiplication, a nonlinear transfor-
mation and a second matrix multiplication, and these can
typically be performed much more rapidly than the corre-
sponding iterative algorithm.

Optimization problems are slow, and the presence of
local minima leads to the need for human intervention.
Algorithms such as simulated annealing can circumvent
this problem, but such techniques consume even more
computer resources than the itérative method. Conven-
tional curve fitting approaches require an optimization for
every set of data points to be fitted. This contrasts with the
neural network approach where only one optimization has
to be performed in order to solve a whole class of fitting
problems. The class of problems soluble using a single neu-
ral network is limited to those where the same type of data
is to be fitted with a particular functional form. Neural
networks provide a very attractive approach for repetitive
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FIG. 2. Instrument response functions for the B, G, and R probes as
functions of wavelength (A). The appropriate range of wavelengths is
known, but we adopt the pixel number scale shown in the figure.

curve fitting problems, which are particularly prevalent in
the analysis of experimental data.

In the application of the neural network as described
above, we have assumed that the A, are fixed. While this is
true for the COMPASS spectroscopy example we are about
to describe, in some problems the A,, may vary. The re-
striction to fixed 4,, can be circumvented by adding the A
values as additional inputs to the neural network, but there
has been no need to pursue this method here.

The simple example described in this section illustrates
the principles of using neural networks for curve fitting.
The functional form is a simple Gaussian which depends
on three parameters corresponding to width, height, and
location. Extensions to more complex problems are
straightforward as can be seen in Ref. 1 where an appliéa-
tion to the analysis of charge exchange recombination spec-
tra on the JET tokamak, involving up to 11 overlapping
spectral lines, is outlined.

A. COMPASS spectroscopy data

The tokamak concept is currently the favored mag-
netic confinement system for research into producing con-
trolled nuclear fusion.® Inside the tokamak heavy isotopes
of hydrogen are ionized to form a plasma; and if the ions
are heated to a sufficient temperature fusion reactions will
ensue. COMPASS is a tokamak experiment at Culham
Laboratory and in this article we are concerned with the
reconstruction of some COMPASS plasma parameters
from ultraviolet (UV) spectroscopy measurements. The
COMPASS spectrometer is sensitive to a very clean part of
the UV wavelength region which contains one spectral line
coming from B IV impurity ions. The spectrometer is used
principally for plasma rotation measurements and has been
described in more detail in Ref. 7. Essentially the spec-
trometer has three probes which measure light intensity
over three different wavelength regions. The instrument
response functions [b(A), g(1), and r(A)] are plotted in
Fig. 2.

The measurements from each probe, called B, G, and
R for “blue,” “green,” and “red,” respectively, are given in
terms of the actual spectrum from the plasma F(A) by

Neural networks 4452




B= f‘” F(A)b(A)dA,
0

6= f ® F()g(A)da, (8)
0

R= fm F(A)r(A)dA.
0

Given F(A), the forward problem of computing B, G, and
R is straightforward, but the task on hand is the more
difficult inverse problem of computing a representation for
F(A) from the measurements.

The spectrum is supposedly a single Gaussian line
from B 1v, and this hypothesis has been checked using a
multichannel spectrometer. Thus three measurements suf-
fice to fix the amplitude 4, position P, and width W of the
Gaussian. The analytic form of the spectrum is defined:

F(A)=de~ A=W, (9)

Any noise in the measurements causes errors in the recon-
structed parameters, and it is clear that having more mea-
surements would reduce this problem. As it is straightfor-
ward to compute B, G, and R given F(A), an iterative
least-squares technique can be applied. In this approach
the Gaussian parameters are first guessed, and then ad-
justed iteratively so as to minimize the sum of the squares
of the differences between the B, G, and R measurements
and the corresponding values computed from the current
estimates of the Gaussian parameters. This method is slow,
and so the technique currently used in COMPASS involves
calculating B, G, and R for various positions, widths, and
amplitudes of a Gaussian representation of F(4) and in-
terpolating between grid points. While this interpolation
method is fast and can achieve high accuracy, it would be
an awkward method to implement were extra probes to be
added. Hence the interest in trying an intrinsically more
adaptable method.

B. Neural network approach

For the problem on hand, a mapping is required to
transform the B, G, and R measurements to estimates of 4,
P, and W, the amplitude, position, and width of the B Iv
line. It is clear that if P and W are fixed then the measure-
ments are linearly proportional to 4. Given the linear in-
variance of the problem with respect to 4, there is no merit
in calculating 4 using a neural network. The normalization
of the three measurements is redundant information as far
as extracting P and W is concerned. Thus, normalizing the
measurements, we are left with two independent quantities
which we choose to call B and R (blueness and redness)

given by
B=B/(R+G+B),

R=R/(R+G+B). (10)

A 2—L—2 MLP can then be trained to map ﬁ,ﬁ —-P,W.
The number L of hidden units is a free parameter and has
been optimized using the cross validation procedure de-
scribed above.
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In the present application there are three independent
measurements available from the spectrometer, and we
have chosen to fit these with a Gaussian functional form
which has three degrees of freedom (corresponding to the
parameters A, P, and W). Independent data from a 20
channel interferometer have been used to confirm that the
spectrum is indeed approximately Gaussian. For most
curve fitting applications, however, it is usual to choose the
number of degrees of freedom in the functional form to be
smaller than the number of independent measurements.
This results in an overdetermined problem which is less
sensitive to noise on the data.

For simplicity we have chosen to train the network
using synthetic data obtained by generating a set of Gaus-
sians with known values of 4, P, and W and then evaluat-
ing the corresponding values of R, G, and B using (8). An
alternative approach is to use real data for which the values
of R, G, and B are known and then to use a standard least
squares procedure to obtain corresponding values for 4, P,
and W. For more complex problems than the one consid-
ered here it is preferable to use real data for network train-
ing since it is difficult to model the detailed features and
statistical properties of real data sufficiently accurately.

The training data set has been chosen to fill uniformly
the cuboid region of output space:

0.03 <4 <0.15,
130.0 < P < 300.0,

10.0 < W < 100.0,

with rejection of the subregion of this space where P
>230.0+ 1.5 X W. Elimination of this subspace was neces-
sary to prevent problems arising from two different points
in the output space corresponding to the same point in the
input space. The reason for this uniqueness problem is
linked with the bump in the high wavelength tails of the
blue and green instrument response functions (see Fig. 2).
The ambiguous regions were identified by first training a
network over the cuboid subregion of the output space
defined above. The quality of the neural network fits was
found to be very poor in two regions of the P, W plane,
because of the ambiguity phenomenon. Elimination of one
of these two regions cured the problem, and it was decided
to reject the region corresponding to the larger values of P
since this was less likely to be encountered in the experi-
ment. This procedure requires human intervention, but
only once prior to the training of the neural network.

It is a simple matter then randomly to pick Gaussian
parameter values in the space defined, and to use Egs. (8)
and (10) and the measured instrument functions to com-
pute the B and R values. 1000 artificial examples of the
mapping were generated and 900 of those were randomly
selected as a training set, leaving 100 as test examples with
which to measure the generalization accuracy of the neural
network mapping.

The quality of the neural network results can be quan-
tified both using simulated data by assessing how well it fits
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TABLE I. Results from MLPs with different numbers of hidden units.
E..i» and E, are the averages of the fractional rms training and test
errors in P and W relative to the spreads of the parameters. AP and AW
are the rms test errors in position and width, respectively. These results
were mostly obtained after 6000 iterations of the quasi-Newton optimi-
zation algorithm. 10 000 iterations were used in the training of the net-
works with 50 and 60 hidden units.

No. Hidden Units 10 20 30 40 50 60

Epin 0.148 0094 0.064 0061 0039 0.046
E.y 0.177 0.109 0.083 0.082 0.045 0.067
AP 694 411 325 284 198 - 2.96
AW 504 317 239 247 120 178

a random set of test examples (independent of the training
set), and using real data by comparing with the least-
squares technique.

C. Performance on simulated data

A number of training runs have been performed using
different numbers of hidden units, and the results are given
in Table I. In the runs the network with 50 hidden units
has achieved the best performance, and so we present the
corresponding test data results in more detail. Figure ‘3
shows the error distributions from the neural network,
with the sample containing all 1000 simulated patterns
(i.e., the training set is included here). The plots are quite
encouraging, in that there are no very badly reconstructed
patterns, and the error distribution is reasonably uniform
throughout the space. There is some evidence of a slight
systematic misfitting of wide spectra. Figure 4 shows three
example test spectra (solid curves) with the neural net-
work fits superimposed (dashed curves).
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FIG. 3. Error distributions in the position and width. The scatter plots
show how the errors vary with postion and width.
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FIG. 4. Three example test spectra (solid) with the neural network fits
superimposed (dashed).

D. Performance on experimental data

The network with 50 hidden units, as trained above,
has also been tested using real data from the COMPASS-C
experiment. Figure 5 shows the experimental measure-
ments B and R as functions of time, and Fig. 6 shows the
least squares and neural network fits to P and W for shot
number 6142. The data are noisy, and while this affects the
physics results extracted from the data, it has no bearing
on our assessment of the network performance. The sud-
den jump in P in the figure is associated with a change in
the plasma rotation due to a process known as mode lock-
ing.® The spectrometer diagnostic was built primarily to
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FIG. 5. ﬁ and ﬁ as functions of time (¢).
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FIG. 6. Least-squares (LS) and neural network (NN) fits to Pand W as
functions of time.

study this process. In fact B, G, and R measurements are
made every 40 us but the data in the figure have been
averaged over 400 us. The neural network results are just
perceptibly different from the least-squares fits, and this is
interpreted as being due to errors in the neural network fit.
Given the level of precision in the data this is not a signif-
icant problem. The rms discrepancies between the neural
network and the least squares fit results for P and W, as
measured on this real data set, are 2.6 and 1.8 pixels, re-
spectively, slightly higher than the test errors measured
using simulated data. This increase is probably due to the
distribution of the real data being significantly different
from the distribution of the simulated data.

It is important in running a neural network with real
data that there should be some means of flagging examples
where the neural network fit is poor. In this particular
problem it would be straightforward to implement such a
scheme. Given the neural network fit for P and W it is

straightforward (and fast) to compute Band R using Egs.
(8) and (10) with theé best fit form for F(A1), and then to

compare these calculated values with those values com-

puted directly from the actual measurements. If there are
large discrepancies then the pattern could be flagged as

A BAD, and the data could then be analyzed using another

method. One reason for a poor network fit would be that
no similar patterns were included in the training set, and so
this situation could be remedied by retraining the network
every so often, adding the BAD patterns to the training set.

IV. DISCUSSION

The problem of optimizing the parameters of a given
functional form to fit experimental data points is frequently
encountered in data analysis. In many cases there is con-
siderable interest in nonlinear curve fitting methods which
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are fast and automatic. In this article we have shown that
multilayer perceptron neural networks can provide a direct
mapping from the measured data onto the parameter val-
ues associated with the best fit function. While the training
of such networks is computationally intensive, the trained
networks can process new data very rapidly. In particular
they are typically very much faster than the more conven-
tional iterative techniques. :

For real-time applications, further substantial im-
provements in processing speed can be achieved by imple-
menting the network in special purpose hardware. At the
simplest level this could consist of a pipelined digital pro-
cessor, such as the Intel i860, which can implement the
basic vector-matrix multiplications of the neural network
in a very efficient form. Genuine hardware implementa-
tions, however, take full advantage of the highly parallel
nature of neural network processing, and use individual
hardware elements for each processing unit in the network.
An example of a hybrid digital-analog network implemen-
tation for the processing of tokamak data in real-time is
described in Ref. 9.

The accuracy expected of a neural network solution is
typically somewhat less than that obtained from a least-
squares iterative approach. In many cases this reduction in
accuracy is of little consequence, but even when the highest
accuracy is desired, the neural network solution can be
used as an initial guess for the standard iterative approach.
This use of an educated initial guess allows the iterative
method to converge in fewer iterations. Such a combined
neural-iterative system can also resolve another difficulty
of the purely iterative method which is the problem of
“convergence” to the wrong solution if the initial guess is
not sufficiently accurate. The network initial guess should
be accurate enough to allow the use of the iterative method
without human supervision.

A second potential difficulty with the neural network
approach is the requirement that the data presented to the
trained network should be statistically similar to that
which formed the training set. In this sense the network
generalizes by “interpolating” within the range of the input
data, while the network is not expected to give reliable
results if substantially novel input data are used. Again, in
many applications a suitable training set will be available
and this is unlikely to represent a problem. In situations
where novel data may be expected to occur it may be pos-
sible to provide a cross check on the quality of the network
output. This was possible in the example given in Sec. III
by using the network output to recompute the expected
values of the observed data (values of R and B for the
example in Sec. III). If these are in good agreement with
the experimental values then the network outputs can be
regarded as reliable. Note that since the evaluation of the
expected values of the data variables is often a fast process,
the additional computational overhead in doing this cross
check is usually small.

It should also be noted that for any given input vector,
the network will produce a unique output vector, so that
the network can represent one-to-one and many-to-one
mappings, but it cannot represent multivalued mappings.
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It is therefore important that the training data represents a
functional mapping, and in the example in Sec. III this
issue had to be addressed, and was solved by excluding a
region of the output data space.

The effect of errors Ax, in the data points x; is one

important topic which has not so far been raised in this
article. These errors lead to uncertainties Ay; in the fit
parameters y;:

Apy= 2 == Axg. (11)

Squaring and averaging this equation over a number of
measurements of the same quantities gives a relationship
between the error matrix of the outputs (AyAy;) and the
error matrix associated with the measurements (Ax;Ax;):

M M

dy; dy;
<Ayiij> = Z =

) — Ax Ax)). 12
P axkax,< KAx;) (12)

The partial derivatives of y; with respect to x; are easily
obtained for the neural network mapping using the same
error backpropagation procedure which is used in the net-
work training.’ The mapping is nonlinear, and so these
partial derivatives must be recomputed whenever new data
are presented to the network. Thus, given the measure-
ments’ error matrix, it is straightforward to calculate the
error matrix for the parameters. It should be added that
the neural network mapping itself contributes an addi-
tional error (hopefully small) which should be added in
quadrature to the errors obtained from Eq. (12).
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Finally, it should be emphasized that the techniques
described in this article can be applied to a wide range of
curve fitting problems, including much more complex sit-
uations than the single Gaussian example described in this
article. Further applications of neural networks in the field
of tokamak data processing are described in Refs. 1, 2, 9,
and 10.
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