REVIEW ARTICLE

Neural networks and their applications

Chris M. Bishop

Neural Computing Research Group, Department of Computer Science and Applied Mathematics,

Aston University, Birmingham, B4 7ET, United Kingdom

(Received 16 August 1993; accepted for publication 1 March 1994)

Neural networks provide a range of powerful new techniques for solving problems in pattern
recognition, data analysis, and control. They have several notable features including high processing
speeds and the ability to learn the solution to a problem from a set of examples. The majority of
practical applications of neural networks currently make use of two basic network models. We
describe these models in detail and explain the various techniques used to train them. Next we
discuss a number of key issues which must be addressed when applying neural networks to practical
problems, and highlight several potential pitfalls. Finally, we survey the various classes of problem
which may be addressed using neural networks, and we illustrate them with a variety of successful
applications drawn from a range of fields. It is intended that this review should be accessible to
readers with no previous knowledge of neural networks, and yet also provide new insights for those

already making practical use of these techniques.

TABLE OF CONTENTS

I INTRODUCTION. ... 1803
A. Overview of Neural Networks. 1804
B. Biological Neural Networks. P 1804
C. Artifical Neural Networks. 1805
D. A Brief History of Neural Computing......... 1806

II. MULTIVARIATE NON-LINEAR MAPPINGS.... 1806
A. Analogy with Polynomial Curve Fitting. 1807
B. Error Functions and Network Training. 1807
C. Interpolation and Classification.............. 1808

III. THE MULTILAYER PERCEPTRON........... 1808
A. Architecture of the Multilayer Perceptron...... 1808
B. Network Training......................... 1811
C. Gradient Descent. 1813
D. Alternative Training Algorithms. 1814

IV. RADIAL BASIS FUNCTION NETWORKS..... 1815
A. Structure of the Radial Basis Function

Network.o, 1815

B. Choosing the Basis Function Parameters. 1816
C. Choosing the Second-layer Weights. 1817

V. LEARNING AND GENERALIZATION. 1817

1. INTRODUCTION

Since the late 1980’s there has been a dramatic growth in
the level of research activity in neural networks, accompa-
nied by extensive coverage in the popular press. While much
of the research effort has been concerned with developing
fundamental principles and new algorithms, there has also
been an increasing drive towards real-world applications. In-
deed, the last few years have seen the subject mature to the
point where numerous practical applications are in routine
use across -a range of fields. It is now clear that neural net-

Rev. Sci. Instrum. 65 (6), June 1994

0034-6748/94/65(6)/1803/30/$6.00

A. Interpretation of Network Outputs............ 1818

B. Generalization. 1819

C. Determination of Network Topology.......... 1820

VI. DATA PREPROCESSING. ...c............... 1821

A. The Curse of Dimensionality................ 1821

B. Linear Rescaling. 1822

C. Feature Extraction. 1822

D. Prior Knowledge. 1823
VII. IMPLEMENTATION OF NEURAL ;

NETWORKS. 1823

A. Software Implementation. 1823

B. Hardware Implementation. 1823

VII. EXAMPLE APPLICATIONS. 1824

A. Interpolation. 1824

B. Classification. 1826

C. Inverse Problems. 1827

D. Control Applications. 1829

IX. DISCUSSION.................. e ~.. 1830

A. Other Network Models. 1830

B. Future Developments. 1830

APPENDIX: A GUIDE TO THE NEURAL »
COMPUTING LITERATURE 1830

works offer a powerful set of tools for solving problems in
pattern recognition, data processing, and non-linear control,
which can be regarded as complementary to those of more
conventional approaches. Scientific instrumentation in par-
ticular is one area where there is an increasing need for fast
non-linear methods for data processing, and where neural
network techniques have much to offer.

Of the many neural network models which have been
developed, we shall focus primarily on two, known respec-
tively as the multilayer perceptron and the radial basis func-
tion network. These networks presently form the basis for the

© 1994 American Institute of Physics 1803

i

majority of practical applications, and therefore represent the
models which are likely to be of most direct interest to the
present audience. They form part of a general class of net-
work models known as feedforward networks, which have
been the subject of considerable research in recent years. A
guide to the neural computing literature, given at the end of
this review, should provide the reader with some suggested
starting points for learning about other models.

Much of the research on neural network applications re-
ported in the literature appeals to ad-hoc ideas, or loose
analogies to biological systems. Here we shall take a ““prin-
cipled” view of neural networks, based on well established
theoretical and statistical foundations. Such an approach fre-
quently leads to considerably improved performance from
neural network systems, as well as providing greater insight.
A more extensive treatment of neural networks, from this
principled perspective, can be found in the book ‘““Neural
Networks for Statistical Pattern Recognition.”’

A. Overview of neural networks

The conventional approach to computing is based on an
explicit set of programmed instructions, and dates from the
work of Babbage, Turing, and von Neumann. Neural net-
works represent an alternative computational paradigm in
which the solution to a problem is learned from a set of
examples. The inspiration for neural networks comes origi-
nally from studies of the mechanisms for information pro-
cessing in biological nervous systems, particularly the hu-
man brain. Indeed, much of the current research into neural
network algorithms is focused on gaining a deeper under-
standing of information processing in biological systems.
However, the basic concepts can also be understood from a
purely abstract approach to information processing.’* For
completeness we give a brief overview of biological neural
networks later in this section. However, our focus in this
review will be primarily on artificial networks for practical
applications.

A feedforward neural network can be regarded as a non-
linear mathematical function which transforms a set of input
variables into a set of output variables. The precise form of
the transformation is governed by a set of parameters called
weights whose values can be determined on the basis of a set
of examples of the required mapping. The process of deter-
mining these parameters values is often called learning or
training, and may be a computationally intensive undertak-
ing. Once the weights have been fixed, however, new data
can be processed by the network very rapidly. We shall find
it convenient at several points in this review to draw an anal-
ogy between artificial neural networks and the standard tech-
nique of curve fitting using polynomial functions. A polyno-
mial can be regarded as a mapping from a single input
variable to.a single output variable. The coefficients in the
polynomial are analogous to the weights in a neural network,
and the determination of these coefficients (by minimizing a
sum-of-squares error) corresponds to the process of network
training.)

As well as offering high processing speed, neural net-
works have the important capability of learning a general
solution to a problem from a set of specific examples. For

1804 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

cell ‘body
dendrites

synapse

—
10um

FIG. 1. Schematic illustration of two biological neurons. The dendrites act
as inputs, and when a neuron fires an action potential propagates along its
axon in the direction shown by the arrow. Interaction between neurons takes
place at junctions called synapses.

many applications this circumvents the need to develop a
first-principles model of the underlying physical processes,
which can often prove difficult or impossible to find.

The principal disadvantages of neural networks stem
from the need to provide a suitable set of example data for
network training, and the potential problems which can arise
if a network is required to extrapolate to new regions of the
input space which are significantly different from those cor-
responding to the training data. In many practical applica-
tions these problems will not be relevant, while in other
cases various techniques can be used to mitigate their worst
effects.’ ;

The advantages and limitations of neural networks are
often complementary to those of conventional data process-
ing techniques. Broadly speaking, neural networks should be
considered as possible candidates to solve those problems
which have some, or all, of the following characteristics: (i)
there is ample data for network training; (ii) it is difficult to
provide a simple first-principles or model-based solution
which is adequate; (iii) new data must be processed at high
speed, either because a large volume of data must be ana-
lyzed, or because of some real-time constraint; (iv) the data
processing method needs to be robust to modest levels of
noise on the input data.

B. Biological neural networks

The human brain is the most complex structure known,
and understanding its operation represents one of the most
difficult and exciting challenges faced by science. Biological
neural networks provide a driving force behind a great deal
of research into artificial network models, which is comple-
mentary to the desire to build better pattern recognition and
information processing systems. For completeness we give
here a simplified outline of biological neural networks.

The human brain contains around 10'! electrically ac-
tive cells called neurons. These exist in a large variety of
different forms, although most have the common features
indicated in Fig. 1. The branching tree of dendrites provides
a set of inputs to the neuron, while the axon acts as an out-
put. Communication between neurons takes place at junc-
tions called synapses. Each neuron typically makes connec-

Neural networks

1

|
|
s

inputs

FIG. 2. The McCulloch-Pitts model of a single neuron forms a weighted
sum of the inputs xq,...,x; given by a=2X,w;x; and then transforms this
sum using a non-linear activation function g() to give a final output

z=g(a).

tions to many thousands of other neurons, so that the total
number of synapses in the brain exceeds 10'%. Although
each neuron is a relatively slow information processing sys-
tem (operating on an effective time scale of around 1 ms) the
massive parallelism of information processing at many syn-
apses simultaneously leads to an effective processing power
which greatly exceeds that of present day supercomputers. It
also leads to a high degree of fault tolerance, with many
neurons dying each day with little adverse effect on perfor-
mance.

Many neurons act in an all-or-nothing manner, and when
they ““fire” they send an electrical impulse (called an action
potential) which propagates from the cell body along the
axon. When this signal reaches a synapse it triggers the re-
lease of chemical neuro-transmitters which cross the synaptic
junction to the next neuron. Depending on the type of syn-
apse, this can either increase (excitatory synapse) or decrease
(inhibitory synapse) the probability of the subsequent neuron
firing. Each synapse has an associated strength (or weight)
which determines the magnitude of the effect of an impulse
on the post-synaptic neuron. Each neuron thereby computes
a weighted sum of the inputs from other neurons, and, if this
total stimulation exceeds some threshold, the neuron fires. As
we shall see later, networks of such neurons have very gen-
eral information processing capabilities.

A key property of both real and artificial neural systems
is their ability to modify their responses as a result of expo-
sure to external signals. This is generally referred to as learn-
ing, and occurs primarily through changes in the strengths of
the synapses.

The above, grossly simplified, picture of biological neu-
ral systems provides a convenient starting point for a discus-
sion of artificial network models. Unfortunately, lack of
space prevents a more comprehensive overview, and the in-
terested reader is referred to Refs. 4—6 for more information.

C. Artificial neural networks

A simple mathematical model of a single neuron was
introduced in a seminal paper by McCulloch and Pitts in
1943,7 and takes the form indicated in Fig. 2. It can be re-
garded as a non-linear function which transforms a set of
input variables x;, (i=1,...,d) into an output variable z.
Note that from now on we shall refer to an artificial model of

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

a:] a>
(a) (b)
gl gt
a a

(© (d)

FIG. 3. A selection of typical activation functions: (a) linear, (b) threshold,
(c) threshold linear, (d) sigmoidal. The multilayer perceptron network makes
use of sigmoidal units to give network mapping functions which are both
non-linear and differentiable.

a neuron as a processing unit, or simply unit, to distinguish it
from its biological counterpart.

In the McCulloch-Pitts model, the signal x; at input i is
first multiplied by a parameter w; known as a weight (which
is analogous to the Synaptic strength in a biological network)
and is then added to all the other weighted input signals to
give a total input to the unit of the form ‘

d

a=z wix;+wg , (1)

i=1

where the offset parameter wy is called a bias (and corre-
sponds to the firing threshold in a biological neuron). For-
mally, the bias can be regarded as a special case of a weight
from an extra input whose value x, is permanently set to
+1. Thus we can write Eq. (1) in the form

d
a=2 wx;, @)
i=0

where xo=1. Note that the weights (and the bias) can be of
either sign, corresponding to excitatory or inhibitory syn-
apses. The output z of the unit (which may loosely be re-
garded as analogous to the average firing rate of a neuron) is
then given by operating on @ with a non-linear activation
function g() so that

z=g(a). 3)

Some possible forms for the function g() are shown in Fig.
3. The original McCulloch-Pitts model used the threshold
function shown in Fig. 3(b). Most networks of practical in-
terest make use of sigmoidal (meaning S-shaped) activation
functions of the kind shown in Fig. 3(d).

Neural networks 1805

B

T

|
|
|
|
|
|
S

As we shall see, this simple model of the neuron forms
the basic mathematical element in many artificial neural net-
work models. By linking together many such simple process-
ing elements it is possible to construct a very general class of
non-linear mappings, which can be applied to a wide range
of practical problems. Adaptation of the weight values, ac-
cording to an appropriate training algorithm, can allow net-
works to learn in response to external data.

Although we have introduced this mathematical model
of the neuron as a representation of the behavior of biologi-
cal neurons, precisely the same ideas also arise when we
consider optimal approaches to the solution of problems in
statistical pattern recognition. In this context, expressions
such as Egs. (2) and (3) are known as linear discriminants.

D. A brief history of neural computing

The origins of neural networks, or neural computing
(sometimes also called neurocomputing or connectionism),
lie in the 1940’s with the paper of McCulloch and Pitts’
discussed above. They showed that networks of model neu-
rons are capable of universal computation, in other words
they can in principle emulate any general-purpose computing
machine. :

The next major step was the publication in 1949 of the
book The Organization of Behaviour by Hebb,? in which he
proposed a specific mechanism for learning in biological
neural networks. He suggested that learning occurs through
modifications to the strengths of the synaptic interconnec-
tions between neurons, such that if two neurons tend to fire
together then the synapse between them should be strength-
ened. This learning rule can be made quantitative, and forms
the basis for learning in some simple neural network models
(which will not be considered in this review).

During the late 1950’s the first hardware neural network
system was developed by Rosenblatt.® Known as the per-
ceptron, this was based on McCulloch-Pitts neuron models
of the form given in Egs. (2) and (3). It had an array of
photoreceptors which acted as external inputs, and used
banks of motor-driven potentiometers to provide adaptive
synaptic connections which could retain a learned setting.
Adjustments to the potentiometers were made using the per-
ceptron learning algorithm.'® In many circumstances the per-
ceptron could learn to distinguish between characters or
shapes presented to the inputs as pixellated images. Rosen-
blatt also demonstrated theoretically the remarkable result
that, if a given problem was soluble in principle by a percep-
tron, then the perceptron learning algorithm was guaranteed
to find the solution in a finite number of steps. Similar net-
works were also studied by Widrow, who developed the
ADALINE (ADAptive LINear Element) network'! and a
corresponding training procedure called the Widrow-Hoff
learning rule.'” These network models are reviewed in Ref.
13. The underlying algorithm is still in routine use for echo
cancellation on long distance telephone cables.

The 1960’s saw a great deal of research activity in neural
networks, much of it characterized by a lack of rigor, some-
times bordering on alchemy, as well as excessive claims for
the capability and near-term potential of the technology. De-
spite initial successes, however, momentum in the field be-

1806 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

-

gan to diminish towards the end of the 1960’s as a number of
difficult problems emerged which could not be solved by the
algorithms then available. In addition, neural computing suf-
fered fierce criticism from proponents of the field of Artifi-
cial Intelligence (which tries to formulate solutions to pattern
recognition and similar problems in terms of explicit sets of
rules), centering around the book Perceptrons’* by Minsky
and Papert. Their criticism focused on a class of problems
called linearly non-separable which could not be solved by

networks such as the perceptron and ADALINE. The field of -

neural computing fell into disfavor during the 1970’s, with
only a handful of researchers remaining active.

A dramatic resurgence of interest in neural networks be-
gan in the early 1980’s and was driven in large part by the
work of the physicist Hopfield,'>'® who demonstrated a close
link between a class of neural network models and certain
physical systems known as spin glasses. A second major de-
velopment was the discovery of learning algorithms, based
on error backpropagation'’ (to be discussed at length in Sec.
III), which overcame the principal limitations of earlier neu-
ral networks such as the simple perceptron. During this pe-
riod, many researchers developed an interest in neural com-
puting through the books Parallel Distributed Processing by
Rumelhart et al.*'®!° An additional important factor was the
widespread availability by the 1980°s of cheap powerful
computers which had not been available 20 years earlier. The
combination of these factors, coupled with the failure of Ar-
tificial Intelligence to live up to many of its expectations, led
to an explosion of interest in neural computing. The early
1990’s has been characterized by a consolidation of the theo-
retical foundations of the subject, as well as the emergence
of widespread successful applications. Neural networks can
even be found now in consumer electronics and domestic
appliances, for applications varying from sophisticated au-
toexposure on video cameras to “intelligent” washing ma-
chines. N
Many of the historically important papers from the field
of neural networks have been collected together and re-
printed in two volumes in Refs. 20 and 21.

Il. MULTIVARIATE NON-LINEAR MAPPINGS

In this review we shall restrict our attention primarily to
feedforward networks, which can be regarded as general pur-
pose non-linear functions for performing mappings between
two sets of variables. As we indicated earlier, such networks
form the basis for most present day applications. In addition,
a sound understanding of such networks provides a good
basis for the study of more complex network architectures.
Figure 4 shows a schematic illustration of a non-linear func-
tion which takes d independent variables x,...,x; and maps
them onto ¢ dependent variables y;,...,y.. In the terminol-
ogy of neural computing, the x’s are called input variables
and the y’s are called output variables. As we shall see, a
wide range of practical applications can be cast in this frame-
work. ’

As a specific example, consider the problem of analyz-
ing a Doppler-broadened spectral line. The x’s might repre-
sent the observed amplitudes of the spectrum at various
wavelengths, and the y’s might represent the amplitude,

Neural networks

[

|

Non-linear
mapping

_byc

FIG. 4. Schematic illustration of a general non-linear functional mapping

from a set of input variables x;,...,x; to a set of output variables
Yi,---Y.. EBach of the y, can be an arbitrary non-linear function of the
inputs.

width, and central wavelength of the spectral line. A suitably
trained neural network can then provide a direct mapping
from the observed data onto the required spectral line param-
eters. Practical applications of neural networks to spectral
analysis problems of this kind can be found in Refs. 22 and
23, and will be discussed further in Sec. VIIL

It is sometimes convenient to gather the input and output
variables together to form input and output vectors which we
shall denote by x=(x,,...,x;) and y=(¥{,...,y.). The pre-
cise form of the function which maps x to y is determined
both by the internal structure (i.e., the topology and choice of
activation functions) of the neural network, and by the values
of a set of weight parameters wy,...w ;-. Again, the weights
(and biases) can conveniently be grouped together to form a
weight vector w=(w,...w_;). We can then write the net-
work mapping in the form y=y(x;w), which denotes that
y is a function of x which is parameterized by w.

In this review we shall consider two of the principal
neural network architectures. The first is called the
multilayer perceptron (MLP) and is currently the most
widely used neural network model for practical applications.
The second model is known as the radial basis function
(RBF) network, which has also been used successfully in a
variety of applications, and which has a number of advan-
tages, as well as limitations, compared with the MLP. Al-
though this by no means exhausts the range of possible mod-
els (which now number many hundreds) these two models
together provide the most useful tools for many applications.
In Sec. IX we shall give an overview of some of the other
major models which have been developed and indicate their
potential uses. Some of these models do more than provide
static non-linear mappings, as the networks themselves have
dynamical properties.

A. Analogy with polynomial curve fitting

We shall find it convenient at several points in this re-
view to draw an analogy between the training of neural net-
works and the problem of curve fitting using simple polyno-
mials. Consider for instance the mth order polynomial given

by

m

y=w AWt we= D wx. 4)
j=0

This can be regarded as a non-linear mapping which takes x
as an input variable and produces y as an output variable.

The precise form of the function y(x) is determined by the

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

values of the parameters wy,...w,,, which are analogousto
the weights in a neural network [strictly, w is analogous to
a bias parameter, as in Eq. (1)]. Note that the polynomial can
be written as a functional mapping in the form y =y (x;w) as
was done for more general non-linear mappings above.

There are two important ways in which neural networks
differ from such simple polynomials. First, a neural network
can have many input variables x; and many output variables
Y&, as compared with the one input variable and one output
variable of the polynomial. Second, a neural network can
approximate a very large class of functions very efficiently.
In fact, a sufficiently large network can approximate any
continuous function, for a finite range of values of the inputs,
to arbitrary accuracy.”*?° Thus, neural networks provide a
general purpose set of mathematical functions for represent-
ing non-linear transformations between sets of variables.
Note that, although in principle multi-variate polynomials_
would satisfy the same property, they would require’ ex-
tremely (exponentially) large numbers of -adjustable coeffi-
cients. In practice, neural networks can achieve similar’re-
sults using far fewer parameters, and so offer a practical
approach to the representation of general non-linear map-
pings in many variables.

B. Error functions and network training

The problem of determining the values for the weights in
a neural network is called training and is most easily intro-
duced using our analogy of fitting a polynomial curve
through a set of »n data points. We shall label a particular data
point with the index g=1,...,n. Each data point consists of
a value of x, denoted by x7, and a corresponding desired
value for the output y, which we shall denote by 9. These
desired output values are called target values in the neural i
network context. (Note that data points are sometimes also

- referred to as patterns.) In order to find suitable values for

the coefficients in the polynomial, it is convenient to con- -
sider the error between the desired output value ¢, for a
particular input x, and the corresponding value predicted by
the polynomial function given by y(x?;w). Standard curve
fitting procedures involve minimizing the square of this er-
ror, summed over all data points, given by

E=% 2 (% wy—)2, 5
g=1

We can regard F as being a function of w, and so the curve
can be fitted to the data by choosing a value for w which
minimizes E. Note that the polynomial (4) is a linear func-
tion of the parameters w and so Eq. (5) is a quadratic func-
tion of w. This means that the minimum of E can be found in
terms of the solution of a set of linear algebraic equations.

It should be noted that the standard sum-of-squares error,
introduced here from a heuristic viewpoint, can be derived
from the principle of maximum likelihood on the assumption
that the noise on the target data has a Gaussian
distribution."” Even when this assumption is not satisfied,
however, the sum-of-squares error function remains of great
practical importance. We shall discuss some of its properties
in later sections.

Neural networks 1807

FIG. 5. An example of curve fitting using a polynomial function. Here 11
data points have been generated by sampling the function sin(27x) at equal
intervals of x and then adding zero mean Gaussian noise with variance of
0.05. The solid curve shows a cubic polynomial fitted by minimizing a
sum-of-squares error. (From Ref. 1.)

Figure 5 shows an example of a set of data points to-
gether with a cubic polynomial [Eq. (4) with m=3] which
has been fitted to the data by minimizing the sum-of-squares
error. We see that the minimum-error curve successfully cap-
tures the underlying trend in the data.

The training of a neural network proceeds in an analo-
gous manner. A suitable error function is defined with respect
to a set of data points, and the parameters (weights) are cho-
sen to minimize the error. We shall see later that neural net-
work functions depend non-linearly on their weights and so
the minimization of the corresponding error function is sub-
stantially more difficult than in the case of polynomials, and
generally requires the use of iterative non-linear optimization
algorithms.

In the .case of a neural network, each input vector
x?=(x9,...,x]) from the data set has a corresponding target
vector t?. The error for output k£ when the network is pre-
sented with pattern g is given by y(x?;w)—t7. The total
error for the whole pattern set can then be defined as the
squares of the individual errors summed over all output units
and over all patterns. This gives an error function, for use in

~neural network training, of the form

1
E:‘iz
q

> u(x?; w)—t)2. (6)
1 k=1

While the sum-of-squares error is the most commonly used
form of error function, it should be noted that there exist
other error measures which may be more appropriate in par-
ticular circumstances. (A lengthy discussion of error func-
tions and their properties can be found in Ref. 1.)

C. Interpolation and classification

In pol)}'nomial curve fitting the goal is generally to find a
smooth representation of the underlying trends in a set of
data. We shall refer to this process as interpolation. Typically
the data will be noisy and so we are looking for a function
which passes close to the data but which does not necessarily
pass exactly through each data point. Note that this differs
from the problem of strict interpolation in which the aim is to

1808 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

outputs

FIG. 6. A single-layer network having d inputs x,,...,x;, and m outputs
Z1,...Zy - Each line in the diagram corresponds to one of the weight pa-
rameters in the network function. The biases are shown as weights from an
extra input unit (denoted by the solid black circle) whose activation is per-
manently set to x,=1. (From Ref. 1.)

find a function which fits the data exactly. Neural networks
can similarly be applied to interpolation problems in which
there may be several input and several output variables. The
spectral line analysis application mentioned earlier is an ex-
ample of an interpolation problem, and we shall consider
other examples of this type in Sec. VIIL

A second major class of applications for which neural
networks may be used are classification problems in which
the goal is to assign input vectors correctly to one of a num-
ber of possible classes or categories. One example of a clas-
sification problem, which will be discussed in more detail in
Sec. VIII, concerns the monitoring of oil flow along a pipe
containing a mixture of oil, water, and gas. The inputs to the
network consist of measurements from a number of gamma-
ray based diagnostics, and the outputs indicate which of a
number of possible geometrical flow configurations (strati-
fied, annular, homogeneous, etc.) is present in the pipe.

lil. THE MULTILAYER PERCEPTRON

So far we have described feedforward neural networks in
terms of non-linear mappings between multi-dimensional
spaces. We now introduce one explicit form for the mapping
known. as the multilayer perceptron network. This class of
networks has been used as the basis for the majority of prac-
tical applications of neural networks to date.

A. Architecture of the multilayer perceptron

In Sec. I we introduced the concept of a single process-
ing unit described by Egs. (2) and (3). If we consider a set of
m such units, all with common inputs, then we arrive at a
neural network having a single layer of adaptive parameters
(weights) as illustrated in Fig. 6. The output variables are
denoted by z; and are given by

d
Z]:g 2 Wjixi N (7)
i=0

where w;; is the weight from input i to unit j, and g() isan
activation function as discussed previously. Again we have
included bias parameters as special cases of weights from an
extra input x,=1.

Neural networks

[

[

outputs

hidden
units

FIG. 7. A multilayer perceptron neural network having two layers of
weights. Such networks are capable of approximating any continuous non-
linear function to arbitrary accuracy provided the number m of hidden units
is sufficiently large. (From Ref: 1.)

Note that Fig. 6 can be regarded as a diagramatic short-
hand for function (7), with each element of the diagram cor-
responding to one of the components of the function. Each
circle at the bottom of Fig. 6 represents one of the inputs
x;, each circle at the top represents one of the outputs z;,
and the lines connecting the circles represent the correspond-
ing weights w; . The extra input xo=1 is shown by the solid
black circle, and the lines connecting this unit to the output
represent the bias parameters wj,. Single-layer networks
such as these were studied extensively in the 1960’s. They
generally used activation functions g() given by the step
function in Fig. 3(b) and were known as perceptrons, and
were trained using the perceptron learning algorithm dis-
cussed earlier. Such networks have very limited computa-
tional capabilities. In fact, if the linear activation function of
Fig. 3(a) is chosen, then the network reduces to simple ma-
trix multiplication. While single-layer networks do have
some practical significance, a much more powerful class of
networks is obtained if we consider networks having several
successive layers of processing units. Such networks were
not considered extensively in the 1960’s due to the difficulty
of finding a suitable training algorithm (the perceptron algo-
rithm only works for single-layer networks). The solution to
the problem of training networks having several layers is to
replace the step activation functions of Fig. 3(b) with differ-
entiable sigmoidal activation functions of the form shown in
Fig. 3(d). This allows techniques of differential calculus to
be applied in order to find a suitable training algorithm. Such
networks are known as multilayer perceptrons.

Figure 7 shows a network with two successive layers of
units, and thus two layers of weights. Units in the middle
layer are known as hidden units since their activation values
are not directly accessible from outside the network. The
activation of these units is again given by Eq. (7) as in the
case of the single-layer network. The outputs of the network
are obtained by acting on the z’s with a second transforma-
tion, corresponding to a second layer of units, to give

m
V=g 2 "I)kaj , 8
j=0

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

where wy; denotes a weight in the second layer connecting
hidden unit j to output unit k. Note that we have introduced
an extra hidden unit with activation zo=1 to provide a bias
for the output units. The bias terms (for both the hidden and
output units) play an important role in ensuring that the net-
work can represent general non-linear mappings. We can
combine Egs. (7) and (8) to give the complete expression for
the transformation represented by the network in the form

d

‘m
=g > Wiig > WiXi| |- ©)
j=0 i=0

Again, each of the components of Eq. (9) corresponds to an
element of the diagram in Fig. 7. Note that the activation
function g applied to the output units need not be the same as
the activation function g used for the hidden units.

It should be noted that there are two distinct Waysg’of ’

counting the number of layers in a network, both of which
are in common use in the neural computing literature. In one
convention, a network of the form shown in Fig. 7 would be
called a 2-layer network, in which the layers refer to the
hidden and output units, or equivalently to the layers of
weights. Alternatively, the same network might also be called
a 3-layer network in which the layers refer to units and the
inputs are counted as one of the layers. We prefer to call this
a 2-layer network, since it is the number of layers of weights
which primarily determines the capabilities of the network.
If the activation functions g() and g() for the network
structure shown in Fig. 7 are taken to be linear, the network
transformation reduces to the product of two matrices, which
is itself just a matrix. However, if the activation function

g() for the hidden units is taken to be non-linear then the

network acquires some powerful general-purpose representa-
tional capabilities. As we shall see later, in order to train the
network we shall need to ensure that its mapping function
y() is differentiable. For these reasons, a sigmoidal (S-
shaped) activation function g(a) of the form shown in Fig.
3(d) is often used. In practice, a convenient choice is the
“tanh” function given by
e’—e "

re 10

g(a)=tanh a=

This has the property, which will prove useful when we. dis-
cuss network training, that its derivative can easily be ex-
pressed in terms of the function itself

g'(a)=1+g(a)*. (11)

Another common choice of activation function is the logistic
sigmoid given by

. |
8(a) =177 (12)

which also has a simple expression for its derivative

g'(a)=g(a){1—g(a)}. ' (13)

Neural networks 1809

T

i

-

22

SSE
Q.Q..

FIG. 8. Plot of the response z(x;,x;) of a unit with a sigmoidal activation
function, as a function of its two input variables x; and x,.

The response of a single unit with a logistic sigmoidal acti-
vation function, as a function of the input variables for the
case of 2 dimensions, is plotted in Fig. 8.

With sigmoidal hidden units, the universal approxima-
tion properties of the network hold even if the output units
have linear activation functions [so that g(a)=a and in ef-
fect no activation function is applied]. For interpolation
problems, in which we wish to generate mappings whose
outputs represent smoothly varying quantities, it is conve-
nient and sufficient to choose the output unit activation func-
tions to be linear. For classification problems, however, it is

1.0 :
y |
05 : |
0.0 1 —: 1

1.0 -0.5 0.0 05 10
(a)

15 —L ,
1.0 0.5 0.0 05 1.0

(b) *

23p

often convenient to apply a logistic sigmoidal activation
function of the form (12) to the output units, as this ensures
that the network outputs will lie in the range (0,1) which
assists in the interpretation of network outputs as probabili-
ties. (Note that in most applications we should also arrange
for the outputs to sum to unity, and this can be achieved by
using other forms of activation function.!) The use of sig-
moidal activation functions on the network outputs would be
inappropriate for many interpolation problems since we do
not in general want to restrict the range of possible network
outputs.

Unlike the single-layer network in Eq. (7), a 2-layer net-
work of the form (9) has very general capabilities for func-
tion approximation. It has been shown that, provided the
number m of hidden units is sufficiently large, such a net-
work can represent any continuous mapping, defined over a

finite range of the input variables, to arbitrary accuracy.?*~*

As a simple illustration of this “universal” capability, con-
sider a mapping from a single input variable x to a single
output variable y. In Fig. 9 we see four examples of function
approximation using a network having 5 hidden units. The
circles show data obtained by sampling various functions at
equally spaced values of x, and the curves show the network
functions obtained by training the network using techniques
to be described later. We see that the same network function,
with the weights suitably chosen, can indeed represent a
wide range of functional forms.

The multilayer perceptron structure which we have con-
sidered has a particularly simple topology consisting of two

1.0

y

0.0 . L

(©)
1.5

5= -

0.0 fr---mmm b —

1.5 .
1.0 05 0.0 0.5 1.0

(d) *

FIG. 9. Four examples of functions learned by a multilayer perceptron with one input unit, 5 hidden units with “tanh” activation functions, and 1 linear output
unit. In each case the network function. (after training using 1000 cycles of the BFGS quasi-Newton algorithm) is shown by the solid curve. The circles show
the data points used for training, which were obtained by sampling the following functions: (a) x2, (b) sin(27x), (c) |x|, and (d) the Heaviside step function
H(x). We see that the same network can be used to approximate a wide range of different functions, simply by choosing different values for the weight and

bias parameters. (From Ref. 1.)

1810 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

Neural networks

|

I

FIG. 10. Schematic illustration of the error function E(w) seen as a surface
over weight space (the space spanned by the values of the weight and bias
parameters w={w/ ,...,w , }). The weight vector w* corresponds to the glo-
bal minimum of the error function, while the weight vector w? corresponds
to a local minimum. Network training by the gradient descent algorithm
begins with a random choice of weight vector and then proceeds by making
small changes to the weight vector so as to move it in the direction of the
negative of the error function gradient VE, until the weight vector reaches a
local or global minimum. (From Ref. 1.)

layers of weights, with full connectivity between inputs and
hidden units and between hidden units and output units. In
principle, there is no need to consider other architectures,
since the 2-layer network already has universal approxima-
tion capabilities. In practice, however, it is often useful to
consider more general topologies of neural network. One im-
portant motivation for this is to allow additional information
(called prior knowledge) to be built into the form of the
mapping. This will be discussed further in Sec. VI, and a
simple example will be given in Sec. VIII. An example of a
more complex network structure (having 4 layers of weights)
used for fast recognition of postal codes, can be found in
Ref. 30. In each case there is a direct correspondence be-
tween the network diagram and the corresponding non-linear
mapping function.

B. Network training

As we have already discussed, the fitting of a network
function to a set of data (network training) is performed by
seeking a set of values for the weights which minimizes
some error function, often chosen to be the sum-of-squares
error given by Eq. (6). The error function can be regarded
geometrically as an error surface sitting over weight space,
as indicated schematically in Fig. 10. The problem of net-
work training corresponds to the search for the minimum of
the error surface. An absolute minimum of the error function,
indicated by the weight vector w* in Fig. 11, is called a
global minimum. There may, however, also exist other higher
minima, such as the one corresponding to the weight vector
w? in Fig. 10, which are referred to as local minima.

For single-layer networks with linear activation func-
tions, the sum-of-squares error function is a generalized qua-
dratic, as was the case for polynomial curve fitting. It has no
local minima, and its global minimum is easily found by
solution of a set of linear equations. For multilayer networks,
however, the error function is a highly non-linear function of
the weights,?! and the search for the minimum generally pro-
ceeds in an iterative fashion, starting from some randomly
chosen point in weight space. Some algorithms will find the

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

FIG. 11. An illustration of how backpropagation of error signals is used to
evaluate derivatives of the error function with respect to the weight (and
bias) parameters in the first layer of a 2-layer network. The error signal &; at
hidden unit j is obtained by summing error signals &; from the output units

k=1,...,c after first multiplying them by the corresponding weights Wy -

The derivative of the error function with respect to a weight w;; is then
given by the product of the error signal &; at hidden unit j with the activa-
tion z; of input unit i. (From Ref. 1.)

nearest local minimum, while others are able to escape local
minima and offer the possibility of finding a global mini-
mum. In general, the error surface will be extremely complex
and for many practical applications a good local minimum
may be sufficient to achieve satisfactory results.

Many of the algorithms for performing the error function
minimization make use of the derivatives of the error func-
tion with respect to the weights in the network. These deriva-
tives form the components of the gradient vector VE(w) of
the error function, which, at any given point in weight space,
gives the gradient of the error surface, as indicated in Fig. 10.

Since there is considerable benefit to the training procedure .

from making use of this gradient information, we begin with
a discussion of techniques for evaluating the derivatives of
E.

One of the important features of the class of non-linear
mapping functions given by the multilayer perceptron is that
there exists a computationally efficient procedure for evalu-
ating the derivatives of the error function, based on the tech-
nique of error backpropagation.'” Here we consider the
problem of finding the error derivatives for a network having
a single hidden layer, as given by the expression in Eq. (9),
for the case of a sum-of-squares error function given by Eq.
(6). In principle this is very straightforward since, by substi-
tuting Eq. (9) into Eq. (6) we obtain the error as an explicit
function of the weights, which can then be differentiated
using the usual rules of differential calculus. However, if
some care is taken over how this calculation is set out, it
leads to a procedure which is both computationally efficient
and which is readily extended to feedforward networks of
arbitrary topology. This same technique is easily generalized
to other error functions which can be expressed explicitly as
functions of the network outputs. It can be also used to
evaluate the elements of the Jacobian matrix (the matrix of
derivatives of output values with respect to input values)
which can be used to study the effects on the outputs of small
changes in the input values.! Similarly, it can be extended to
the evaluation of the second derivatives of the error with

Neural networks 1811

respect to the weights (the elements of the Hessian matrix)
which play an important role in a number of advanced net-
work algorithms.>

First note that the total sum-of-squares error function (6)
can be written as a sum over all patterns of an error function
for each pattern separately

n 1 [
E=2 E, £] 2 w19
q=1 k=1

where y,(x;w) is given by the network mapping Eq. (9). We
can therefore consider derivatives for each pattern separately,
and then obtain the required derivative by summing over all
of the patterns in the data set. For simplicity of notation we
shall omit the explicit pattern index g from the various net-
work variables during our discussion of the evaluation of
derivatives. It should be borne in mind, however, that all of
the input and intermediate variables in the network are evalu-
ated for a given input pattern.

Consider first the derivatives with respect to a weight in
the second layer (the layer of weights from hidden to output
units). It is convenient to use the notation introduced in Sec.
I, and write the network output variables in the form

yk:é(dk)7

m
j=0

The derivatives with respect to the final-layer weights can
then be written in the form

OEY JET da,
— = = . (16)
3ij &ak 19Wk] .
We now introduce the definition
8,= okl (17)
LY

Then, by making use of Eq. (15), we can write the derivative
in the form

J0E1

Er

=&z; . (18)

We can find an expression for 5, by using Egs. (14), (15),
and (17) to give

&=8"(alye—ti}- (19)

Because &, is proportional to the difference between the net-
work output and the desired value, it is sometimes referred to
as an error. Note that, for the sigmoidal activation functions
discussed earlier, the derivative g’ (a) is easily re-expressed
in terms of g(a), as in Egs. (11) and (13). This provides a
small computational saving in a numerical implementation of
the algorithm. Note also that the expression for the derivative
with respect to a particular weight, given by Eq. (18), takes
the simple form of the product of the error at the output end

1812 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

of the weight times the activation of the hidden unit at the
other end of the weight. The derivative of the error with
respect to any weight in a multilayer pérceptron network (of
arbitrary topology) can always be written in a form analo-
gous to Eq. (18).

In order to find a corresponding expression for the de-
rivatives with respect to weights in the first layer, we start by
writing the activations of the hidden units in the form

d
z;=g(a;), 01:2 WX . (20)
i=0

We can then write the required derivative as

GEY JE? da;
ow _0a1 0"W}, '

21

Ji

From Eq. (20) we note that da i/ow;i=x;. If we then define

. JE9
i=a; (22)
we can then write the derivative in the form
JE1

Note that this has the same form as the derivative for a
second-layer weight given by Eq. (18), so that the derivative
for a given weight connecting an input to a hidden unit is
given by the product of the & for the hidden unit and the
value of the input variable.

Finally, we need to find an expression for the &’s. This is
easily obtained by using the chain rule for partial derivatives

OB 2‘: E? day
" da; < day da; @4)
By making use of Egs. (15), (17), and (20) we obtain
c
85=8"(a)) 2 Wiy - (25)

k=1

The expression in Eq. (25) can be interpreted in terms of the
network dlagram as a propagation of error signals, given by
8, backwards through the network along the second- -layer
weights. This is illustrated in Fig. 11, and is the origin of the
term error backpropagation.

It is worth summarizing the various steps involved in
evaluation of the derivatives for a multilayer perceptron net-
work

(1) For each pattern in the data set in turn, evaluate the
activations of the hidden units using Eq. (20) and of the
output units using Eq. (15). This corresponds to the for-
ward propagation of signals through the network.

(2) Evaluate the individual errors for the output units using
Eq. (19).

Neural networks

1

|

(3) Evaluate the errors for the hidden units using Eq (25).
This is the error backpropagation step.

(4) Evaluate the derivatives of the error function for this
particular pattern using Egs. (18) and (23).

(5) Repeat steps 1 to 4 for each pattern in the data set and
then sum the derivatives to obtain the derivative of the
complete error function.

An important feature of this approach to the calculation
of derivatives is its computational efficiency. Since the num-
ber of weights is generally much larger than the number of
units, the dominant contribution to the cost of a forward or a
backward propagation comes from the evaluation of the
weighted sums (with the evaluation of the activation func-
tions being negligible by comparison). Suppose the network
has a total of ./ weights, and we wish to know how the cost
of evaluating the derivatives scales with .#". Since the error
function E9(w) for pattern g is a function of all of the
weights, a single evaluation of E? will take @(./) steps
(i.e., the number of numerical steps needed to evaluate E will
grow like .#). Similarly, the direct evaluation of any one of
the derivatives of E9 with respect to a weight would also
take @(.#") steps. Since there are .4 such derivatives we
might expect that a total of 9(.#?) steps would be needed to
evaluate all of the derivatives. However, the technique of
backpropagation allows all of the derivatives to be evaluated
using a single forward propagation, followed by a single
backward propagation, followed by the use of the formulas
(18) and (23). Each of these requires ?(.#") operations and
so all of the derivatives can be evaluated in 9(3.4") steps.
For a data set of n patterns. the derivatives of the complete
error function E=3X_EY can therefore be found in
A@(3n.¥) steps, as compared with the @(n.#?) steps that
would be needed by a direct evaluation of the separate de-
rivatives. In a typical application .4 may range from a few
hundred to many thousands, and the saving of computational
effort is therefore significant. Since, even with the use of
backpropagation to evaluate error derivatives, the training of
a multilayer perceptron is computationally demanding, the
importance of this result is clear. In this respect, error back-
propagation is analogous to the fast Fourier transform (FFT)
technique which allows the evaluation of Fourier transforms
to be reduced from \.#?) to (.HIn. /), where ./ is the
number of Fourier components.

C. Gradient descent

The simplest scheme for using the gradient vector to
minimize the error function is to take a fixed step in the
direction of greatest rate of decrease of the error, i.e., in the
direction of the negative of the gradient VE(w). This gives
rise to the technique of gradient descent. The minimization
proceeds in a series of steps, with the weight values being
updated at each step, and the derivatives being re-evaluated
for each new set of weight values. Each weight (for both first
and second layers) is updated using the expression

(r—1)_ _ JE

It Wi |0

=)
Aw}})=w§-;’ w

; (26)

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

i — >

FIG. 12. Schematic illustration of the contours of a quadratic error surface
in a 2-dimensional weight space in the neighborhood of a minimum, for
which the curvature along the e; direction is much less than the curvature
along the e, direction. Simple gradient descent, which takes successive steps
in the direction of the negative of the error surface gradient,
Aw=—7VE, suffers from oscillations across the direction of the valley if
the value of the learning rate parameter 7 is too large.

where 7 denotes the step number in the iteration, and the
parameter 7 is called the learning rate and in the simplest-
scheme is set to a fixed value chosen by guesswork.

Provided the value of 7 is sufficiently small then Eq.
(26) will lead to a decrease in the value of E (assuming the
gradient is not already zero by virtue of the weight,vector
being at a minimum of E). Increasing the value of 7 can lead
to a more substantial reduction of E at each step and thus can
speed up the training process. However, too great a value for
77 can lead to instability. A further problem with this simple
approach is that the optimum value for # will typically
change with each step.

One of the main problems with simple gradient descent,
however, arises when the error surface has a curvature along

‘one direction e; in weight space which is substantially

smaller than the curvature along a second direction e,, as
illustrated schematically in Fig. 12. The learning rate param-
eter then has to be very small in order to prevent divergent :
oscillations along the e, direction, and this leads to very slow
progress along the e; direction for which the gradient is
small. Ideally, the learning rate should be larger for compo-
nents of the weight change vector along directions of low
curvature than for directions of high curvature. One simple
way to try to achieve this involves the introduction of a
momentum term'® into the learning equations. The weight
update formula is modified to give

Aw'D=_— 7 jﬂ
I’ Wji |0

+u AW 27)

where u is a constant parameter in the range O0su<1
whose value is again set by hand. To see the effect of the
momentum term consider a set of successive steps for which
the gradient terms happen to be the same. We can then sum
the resulting arithmetic series to give a combined step of the
form

n JE
Awsi=— T 2
TR 28)
which corresponds to gradient descent with a much larger
effective learning rate. In directions for which the curvature
is low, the successive gradients will be similar and the effec-
tive learning rate will be increased. However, in directions of

Neural networks 1813

i
1
.
v

|
|
[
|

FIG. 13. As in Fig. 12, but showing the effect of introducing a momentum
term, so that the weight updates are given by Aw("=— 9VE+Aw("™ D),
where 7 denotes the iteration step number. This leads to an increase in the
effective value of 7 in the direction of low curvatuve e, .

high curvature in which successive gradients have opposite
signs (due to oscillations across the valley floor as indicated
in Fig. 12) the successive contributions from the momentum
term tend to cancel and so there is little change to the effec-
tive learning rate. The overall result is improved progress
along the direction of the valley, as indicated in Fig. 13.

So far we have based our learning procedures on the
total error function E. We can, however, also make use of the
fact that £ is a sum of terms, one for each pattern in the
training set. Instead of accumulating the derivatives of EY
across all patterns and then changing the weights, we can
make changes to the weights after presentation of each pat-
tern separately to give

A (7) 1
wil=—np—
Y Wi | (n

+u AwTD (29)
Note that the patterns are generally presented in a random
order from the training set. This pattern-based or sequential
version of gradient descent offers potential advantages when
there is a degree of redundancy of the patterns in the training
set. To see this, consider an extreme example in which each
distinct pattern is replicated 10 times in the data set. The
evaluation of the total error function or its gradient, as used
by batch algorithms, will take 10 times as long. By contrast,
pattern-based gradient descent updates the weight vector af-
ter presentation of each pattern and so will not be particu-
larly affected by such redundancy. An additional advantage
of the pattern-based approach is that the effective random-
ness introduced into the learning prescription can help in
preventing the algorithm from becoming stuck in local
minima. Note that the gradient descent procedure can be
seen as a particular case of the technique of stochastic
approximation,®>>*

The term “backpropagation” is sometimes used to de-
scribe the particular training algorithm based on gradient de-
scent (in which the derivatives are calculated as described

earlier). In this review we have used the term to describe the -

evaluation of the derivatives of the error function, since it is
here that errors are propagated backwards through the net-
work. These derivatives can be used in a variety of training
algorithms, of which gradient descent is only one. Similarly,
backpropagation of “errors” can also be used to evaluate
other derivatives such as the elements of the Hessian® and
Jacobian! matrices. '

Since the error functions for neural network training are
highly non-linear, there is no simple prescription for deciding

1814 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

L.

FIG. 14. As in Fig. 12, but showing the effect of using a conjugate gradients
or a quasi-Newton algorithm, which can find the minimum of a quadratic
error function exactly in a fixed number of steps, even though the curvatures
of the error surface may be very different along different directions.

when to halt the training process. In practice, various stop-
ping criteria are used, such as training for a fixed number of
iterations, training for a given period of CPU time, training
until the reduction in error over a given number of iterations
falls below some threshold, and so on.

In many practical applications of neural networks, the
network training process can be computationally intensive,
requiring many hours of CPU time on fast workstations. Nu-
merous modifications of the basic gradient descent algorithm
have therefore been proposed with a view to improving its
speed. Many of these are ad-hoc and do not always give
consistent results across a range of applications. Rather than
discuss such methods in detail, we turn instead to some more
theoretically motivated approaches to network training.

D. Alternative training algorithms

As we have seen, the problem of training a neural net-
work amounts to the determination of suitable values for a
set of parameters w such as to minimize an error function
E(w), where the derivatives of E can readily be evaluated.
This is a standard problem in non-linear optimization theory
and a range of sophisticated techniques for solving it have
been developed over many years-.35’36 Two of the most popu-
lar classes of technique are known respectively as conjugate
gradients and quasi-Newton methods. Both of these ap-
proaches make use of line searches, that is constrained mini-
mizations of the function along specific search directions.

The conjugate gradients algorithm chooses successive
search directions so that minimization along the new direc-
tion does not .“spoil” the minimization along previous
directions.**” For the particular case of an error function
which is a general quadratic function of the weights (as
would be the case for a linear network and a sum-of-squares
error function) the procedure becomes exact, and the algo-
rithm is guaranteed to find the minimum in ./ steps, where
/"is the number of weights. This is illustrated schematically
for an error surface in two dimensions in Fig. 14.

By contrast, quasi-Newton methods use successive steps
to build up an approximation to the inverse of the Hessian
matrix.’>*® The Hessian is the matrix of second derivatives
of the error function,®* and the minimum of the error func-
tion can be expressed (to lowest order in a Taylor expansion

Neural networks

in the neighborhood of the minimum) in terms of its inverse.
For ./ weights, this requires (/') storage, which is gen-
erally not a problem except for very large networks having
thousands of weights. Again, the algorithm will find the
minimum of a quadratic error function exactly in a fixed
number of steps, as in Fig. 14. One advantage of such algo-
rithms is that the line searches do not need to be done as
precisely as with conjugate gradients. The results plotted in
Fig. 9 were obtained using the BFGS (Broyden-Fletcher-
Goldfarb-Shanno) quasi-Newton method.*® Algorithms have
also been developed which try to combine the best features
of conjugate gradient and quasi-Newton algorithms. One
such algorithm is the limited memory BFGS method.3®°
Although the error surface may be far from quadratic,
these methods are generally very robust, and typically give at
least an order of magnitude improvement in convergence
speed compared with simple gradient descent with momen-
tum. A disadvantage is that they are somewhat more complex
to implement in software than gradient descent, and also they
have no built-in mechanism to escape from local minima.
Also they are intrinsically batch (rather than sequential)
methods, and so cannot deal effectively with redundancy in
the training set, as discussed earlier. They can, however,

prove particularly useful for problems where high precision

is required as is the case in many instrumentation applica-
tions.

IV. RADIAL BASIS FUNCTION NETWORKS

One of the limitations of the multilayer perceptron is that
the training process can be computationally very intensive.
Since in practice, as we shall discuss later, it is necessary to
repeat the training process many times in order to optimize
the network architecture, this can become a significant prob-
lem. A further difficulty is that the internal representations
formed by a trained multilayer perceptron can be hard to
interpret. For any given input vector, the output is obtained
by non-linear combinations of inputs involving all of the
hidden units in a way which is generally very difficult to
unravel. For most applications this is of little consequence,
but occasionally it is useful to be able to interpret the acti-
vations of the hidden units. In this section we discuss an
alternative architecture of neural network which, to some
extent, overcomes these difficulties.

A. Structure of the radial basis function network

The radial basis function (RBF) network*®*! is based on
the simple intuitive idea that an arbitrary function y(x) can
be approximated as the linear superposition of a set of local-
ized basis functions ¢;(x). This is indicated schematically in
Fig. 15, and leads to a network structure which is, in many
respects, similar to the multilayer perceptron.

The RBF network has its origins in techniques used for
exact interpolation between data points in high dimensional
spaces.*>*3 This is achieved by representing the outputs of
the network as a linear superposition of basis functions, one
for each data point in the training set, in the form

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

y(x)

2eaN

X

FIG. 15. Intuitively we expect that an arbitrary continuous function y(x)
can be approximated by a linear combination of localized bump-like func-
tions ¢;(x). This concept leads to the radial basis function neural network
model. :

n

Ye= 2 Wigdy(x),

q=1

- (30).

where ¢,(x) is a radially symmetric function centered on the
qth data point. There are many possible forms for the basis
functions, of which a common choice is the Gaussian, given
by
|x—x7|?
}) (D)

Bq(x)= eXPl Y=

where the parameter o controls the width of the Gaussian.
Exact interpolation requires that the values of y, reproduce
the target values exactly, so that the parameters Wy, are given
by solution of the linear equations

yex)=1, k=1,..n. (32)

These represent 7 equations in n unknowns, and they gener-
ally have a unique solution provided the data points are not
coincident. The resulting function, given by Eq. (30), then
represents an interpolating function which is defined for all
values of the input vector x and which passes exactl
through each of the training points. '
In applications of neural networks, however, we are not
interested in exact interpolation but rather in finding a
smooth representation of the underlying trends in the data.
Indeed, an exact fit to the data, when the data are noisy as is
the case in the majority of applications, can lead to particu-
larly poor results when the trained network is presented with
new data. This important phenomenon will be discussed at
greater length in Sec. V. A smooth interpolation can be
achieved by minimizing a sum-of-squares. error function as
before, using fewer basis functions than data points, so that
the evaluation of the parameters w becomes an overdeter-
mined problem. This leads to the radial basis function neural
network, which corresponds to a set of functions given by

YH(X) =2 Wy h(x), (33)
j=0 '

where m<n is the number of basis functions. Here di(x)
represents the activation of hidden unit j when the network is

Neural networks 1815

[

I]

—

FIG. 16. Plot of the activation z(x; ,x,) of a Gaussian hidden unit as used in
a radial basis function network, as a function of two input variables x; and
x,. This plot should be compared with the sigmoid shown in Fig. 8.

presented with input vector x. Again, a bias for the output
units has been included, and this has been represented as an
extra ‘“basis function” ¢, whose activation is fixed to be
¢o=1. For most applications the basis functions are chosen
to be Gaussian, so that we have

—]2
¢,-(x>=exp[—'x #] (34)

2
20']‘

where u; is a vector representing the center of the jth basis
function. Note that each basis function is given its own width
parameter o;. A plot of the response of a Gaussian unit as a
function of 2 input variables is shown in Fig. 16. Note that
this is localized in the input space, unlike the ridge-like re-
sponse of a sigmoidal unit shown in Fig. 8.

The RBF network can be represented by a network dia-
gram as shown in Fig. 17. Each of the hidden units corre-
sponds to one of the basis functions, and the lines connecting
the inputs to hidden unit j represent the elements of the
vector u; . Instead of a bias parameter, each unit now has a
parameter o; which describes the width of the Gaussian ba-

outputs
yl yc
. basis
bias functions
0, 0,

FIG. 17. Architecture of a radial basis function neural network having d
inputs x1,...,x, and ¢ outputs y;,...,y. . Each of the m basis functions ¢;
computes a localized (often Gaussian) function of the input vector. The lines
connecting the inputs to the basis function ¢; represent the elements of the
vector p; which describes the location of the center (in input space) of that
basis function. The second layer of the network, connecting the basis func-
tions with the output units, is identical to that of the multilayer perceptron
shown in Fig. 7. (From Ref. 1.)

1816 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

sis function. The second layer of the network is identical to
that of a multilayer perceptron in which the output units have
linear activation functions. \

Again, it can be shown formally that such a structure is
capable of approximating essentially arbitrary continuous
functions to arbitrary accuracy provided a sufficiently large
number of hidden units (basis functions) is used and pro-
vided the network parameters (centers M, widths o, and
second-layer weights wy;) are suitably chosen. *443

As with the multilayer perceptron, we seek a least-
squares solution for the network parameters, obtained by
minimizing a sum-of-squares error of the form given in Eq.
(6). Since the network mapping is an analytic function of the
network parameters, this could be done by simply optimizing
all of the weights in the network together using one of the
standard algorithms discussed earlier. Such an approach
would, however, offer little advantage over the MLP net-
work. ‘

A much faster approach to training is based on the fact
that the hidden units have a localized response, that is, each
unit only produces an output which is significantly different
from zero over a limited region of input space. This leads to
a two-stage training procedure in which the basis function
parameters (g; and o;) are optimized first, and then, subse-
quently, the final-layer weights {ij} are determined.

B. Choosing the basis function parameters

In the use of radial basis functions for exact interpola-
tion, a basis function was placed over every data point. In the
case of an RBF neural network we can adopt a similar strat-
egy of placing basis functions in the regions of input space
where the training data are located. Various heuristic proce-
dures exist for achieving this, and we shall limit our discus-
sion to two of the simplest. We shall also discuss a more
systematic approach based on maximum likelihood.

The fastest and most straightforward approach to choos-
ing the centers u; of the basis functions is to set them equal
to some subset (usually chosen randomly) of the input vec-
tors from the training set. This only sets the basis function
centers, and the width parameters o; must be set using some
other heuristic. For instance, we can choose all the o to be
equal and to be given by the average distance between the
basis function centers. This ensures that the basis functions
overlap to some degree and hence give a relatively smooth
representation of the distribution of training data. Such an
approach to the choice of u; and o; is very fast, and allows
an RBF network to be set up very quickly. The subset of
input vectors to be used as basis function centers can instead
be chosen from a more principled approach based on or-
thogonal least squares,*S which also determines the second-
layer weights at the same time. In this case, the width pa-
rameters o; are fixed and are chosen at the outset.

A slightly more elaborate approach is based on the
K-means algorithm.*” The goal of this technique is to asso-
ciate each basis function with a group of input pattern vec-
tors, such that the center of the basis function is given by the
mean of the vectors in the group, and such that the basis
function center in each group is closer to each pattern in the
group than is any other basis function center. In this way, the

Neural networks

111

data points are grouped into ““clusters” with one basis func-
tion center acting as the representative vector for each clus-
ter. This is achieved by an iterative procedure as follows.
First, the basis function centers are initialized (for instance
by setting them to a subset of the pattern vectors). Then each
pattern vector is assigned to the basis function with the near-
est center u;, and the centers are recomputed as the means
of the vectors in each group. This process is then repeated,
and generally converges in a few iterations. Again, it only
sets the centers, and the width parameters must be set using
a technique of the kind described above.

A more principled approach to setting the basis function
parameters is based on the ‘technique of maximum likeli-
hood. Let us define p(x) to be the (unknown) probability
density function for the input data, so that the probability of
a new input vector falling within a small volume Ax of input
space is given by p(x)Ax, and [p(x) dx=1. The idea is to
use the basis functions to form a representation for p(x), and
to determine the parameters of the basis functions by using
the input vectors from the training set. The probability den-
sity is expressed as a linear combination of the basis func-
tions in the form of a Gaussian mixture model*®

m

1 1
P(X)—— 2 W—d oi(x), (35

where the prefactor in front of ¢;(xX) is chosen to ensure that
the probability density function integrates to unity:
Sp(x) dx=1. If the input vectors from the training set are
drawn independently from this distribution function, then the
likelihood of this data set is given by the product

Z=11I p(x). | (36)

q=1

The basis function parameters can then be set by maximizing
this likelihood. Since the likelihood is an analytic non-linear
function of the parameters {u;,0;}, this maximization can
be achieved by standard optimization methods (such as the
conjugate gradients and quasi-Newton methods described
earlier). It can also be done using re-substitution methods
based on the EM-algorithm.*® Such methods are relatively
fast and allow values for the parameters {u;,0;} to be ob-
tained reasonably quickly. In contrast to the MLP, the hidden
units in this case have a particularly simple interpretation as
the components in a mixture model for the distribution of
input data. The sum of their activations (suitably normalized)
then provides a quantitative measure of p(x), which can play
an important role in validating the outputs of the network.’

C. Choosing the second-layer weights

We shall suppose that the basis function parameters
(centers and widths) have been chosen and. fixed. As usual,
the sum-of-squares error can be written as

1 n c .
=52 2 - -6

g=1 k=1

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

We note that, since y, is a linear function of the final layer
weights, E is a quadratic function of these weights. Substi-
tuting Eq. (33) into Eq. (37), we can minimize E with respect
to these weights explicitly by differentiation, to give

m

> Wbl -t (38)

i'=1

0=2 ¢f
g=1

where ¢f=¢;(x?). It is convenient to write this in matrix
notation in the form

0= {dW' T}, ' (39)

where the matrices have the following elements: ®=(),
W=(wy;), and T=(¢{). The notation M7 denotes the trans-
pose of a matrix M. This equation has a formal solution for

the weights given by P
Wi=@'T, (40)
where ®' is the pseudo-inverse™ of the matrix ® and is
given by
O'=(d'P) @7 (41)

(Note that this formula for the pseudo-inverse assumes that
the relevant inverse matrix exists. If it does not, then the
pseudo-inverse can still be uniquely defined by an appropri-
ate limiting process.”®) In a practical implementation, the
weights are found by solving the linear equations (39) using
singular value decomposition® to allow for possible numeri-
cal ill-conditioning. Thus the final layer weights can be
found explicitly in closed form. Note, however, that the op-

timum value for these weights, given by Eq. (40), depends

on the values of the basis function parameters {;,07;}, via
the quantities ¢7. Once these parameters have been deter-
mined, the second-layer weights can then be set to their op-
timal values.

Note that the matrix @ has dimensions n X m where n is
the number of patterns, and m is the number of hidden units.
If there is one hidden unit per pattern, so that m=r, then the
matrix ® becomes square and the pseudo-inverse reduces to
the usual matrix inverse. In this case the network outputs
equal the target values exactly for each pattern, and the error
function is reduced to zero. This corresponds precisely to the
exact interpolation method discussed above. As we shall see
later, this is generally not a desirable situation, as it leads to
the network having poor performance on unseen data, and in
practice m is typically much less than n. The crucial issue of
how to optimize m will be discussed at greater length in the
next section.

V. LEARNING AND GENERALIZATION

So far we have discussed the representational capabili-
ties of two important classes of neural network model, and
we have shown how network parameters can be determined
on the basis of a set of training data. As a consequence of the
great flexibility of neural network mappings, it is often easy
to arrange for the network to represent the training data set

Neural networks 1817

[l

with reasonable accuracy, particularly if the size of the data
set is relatively small. A much more important issue, how-
ever, is how well does the network perform when presented
with new data which did not form part of the training set.
This is called generalization and is often much more difficult
to achieve than simple memorization of the training data.

A. Interpretation of network outputs

We begin our discussion of generalization in neural net-
works by considering an ideal limit in which an infinite
amount of training data is available. This allows us to replace
the finite sum in the sum-of-squares error function by an
integral over the (smooth) probability density function of the
data. The sum-of-squares error (6) can then be written as

1 c
E=5 3 [-6l plad %) pix) diydx, 42
k=1

where p(#;|x) denotes the conditional probability density of
the target data for output unit £, given a value x for the input
vector, and p(x) denotes the probability density of input data
as before. The process of network training corresponds to an
attempt to adjust the network function y(x) so as to mini-
mize E. If we assume that the network has unlimited flex-
ibility to generate different functions, then we can formally
minimize E in Eq. (42) by functional differentiation

OF

Wzozsz {ye(x) =t} 8(x—x")

X 5kk;p(tklx)p(x)dtkdx. (43)

This is easily solved [using [p(t;|x) dt,=1] to give the
minimizing network function in the form

Yk(x):<tklx>5f tp(t|x)dey (44)

where (#;|x) denotes the conditional average of the target
data for a specified value of the input vector x, and is known
as the regression. This result was derived without reference
to neural networks, and applies in principle to any class of
models which can represent general functions y(x). The im-
portance of neural networks is that they represent a very
flexible class of functions and so in principle can provide a
good approximation to the optimal function (¢|x).

To illustrate the meaning of this important result, con-
sider a network having one input x and one output y. Figure
18 shows a schematic illustration of the way in which the
network function y(x) is determined, at each value of x, by
averaging over the distribution of the target data. Suppose
that the target data are generated from some smooth deter-
ministic function z(x) to which is added zero mean noise

t=h(x)+e. _ (45)

A network trained on such data will generate an output
which, from Eq. (44), will be given by

1818 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

X, x

FIG. 18. Schematic illustration of some noisy data points (the black dots)
cach of which consists of a value of the input variable x together with a
corresponding target value ¢. The curve shows the optimal network function
y(x) obtained by minimizing a sum-of-squares error function. For any given
value x, of the input, the function y(x,) is given by the mean of ¢ with
respect to the conditional probability distribution p(|x,). This central re-
sult, which is easily extended to the case of several input and several output
variables, has a number of important consequences, as discussed in the text.
(From Ref. 1.)

y(x)=(t]x)=h(x) (46)

since (€)=0. The network therefore averages over the noise
on the target data and learns the underlying deterministic
function. In this sense, the network mapping can be regarded
as optimal. ,

The result (44) has several other important implications,
one of which concerns the application of neural networks to
classification problems. It is convenient for such applications
to make use of a “1-of-N"” coding scheme for the target data
as follows. Suppose there are c¢ possible classes
&% (k=1,...,c) to which an input vector could be assigned.
In a medical screening application, for example, we may
wish to assign an x-ray image (described by a vector of pixel
intensities x) to one of the two classes %1="“normal,” and
&= ""tumor.” We construct a network having ¢ output units,
and we choose target values for the outputs such that, for an
input vector belonging to class /, all outputs have a target of
0, except for output / which has a target of 1. If the data has
a probability P(%}|x) of belonging to class &, when the
input vector is x then the probability density of the target
data (which now consists of 0’s and 1’s) becomes

p(td X=2 8(t,— 6y)P(F|x). %)
=1

Substituting Eq. (47) into Eq. (44) we obtain the network
outputs in the form

yi(X)=P(&}|x). (48)

This says that the network outputs will represent the Baye-

sian a-posteriori probabilities of class membership.>'*? The
fact that the network outputs can be given a precise proba-
bilistic interpretation has several important practical conse-
quences. For instance, it tells us that when we present a new
input vector to the network it should be assigned to the class
having the largest output activation,. as this minimizes the
probability of misclassification.’® In addition it allows

Neural networks

I |

T

other quantities (called loss criteria) other than misclassifica-
tion rate to be minimized. This is important if different mis-
classifications have different consequences and should there-
fore carry different penalties.’’ It also provides a principled
way to combine the outputs of different networks to build a
modular solution to a complex problem. These topics are
discussed further in Refs. 1 and 51.

B. Generalization

The above analysis made two central assumptions: (i)
there is an infinite supply of training data, (ii) the network
has unlimited flexibility to represent arbitrary functional
forms. In practice we must inevitably deal with finite data
sets and, as we shall see, this forces us to restrict the flex-
ibility of the network in order to achieve good performance.
By using a very large network, and a small data set, it is
generally easy to arrange for the network to learn the training
data reasonably accurately. It must be emphasized, however,
that the goal of network training is to produce a mapping
which captures the underlying trends in the training data in
such a way as to produce reliable outputs when the network
is presented with data which do not form part of the training
set. If there is noise on the data, as will be the case for most
practical applications, then a network which achieves too
good a fit to the training data will have learned the details of
the noise on that particular data set. Such a network will
perform poorly when presented with new data which do not
form part of the training set. Good performance on new data,
however, requires a network with the appropriate degree of
flexibility to learn the trends in the data, yet without fitting to
the noise.

These central issues in network generalization are most
easily understood by returning to our earlier analogy with
polynomial curve fitting. In particular, consider the problem
of fitting a curve through a set of noise-corrupted data points,
as shown earlier for the case of a cubic polynomial in Fig. 5.
The results of fitting polynomials of various orders are
shown in Fig. 19. If the order m. of the polynomial is too low,
as indicated for m=1 in Fig. 19(a), then the resulting curve
gives only a poor representation of the trends in the data.
When the value of y is predicted using new values of x the
results will be poor. If the order of the polynomial is in-
creased, as shown for m =3 in Fig. 19(b), then a much closer
representation of the data trend is obtained. However, if the
order of the polynomial is increased too far, as shown in Fig.
19(c), the phenomenon of overfitting occurs which gives a
very small (in this case zero) error with respect to the train-
ing data, but which again gives a poor representation of the
underlying trend in the data and which therefore gives poor
predictions for new data. Figure 20 shows a plot of the sum-
of-squares error versus the order of the polynomial for two
data sets. The first of these is the training data set which is
used to determine the coefficients of the polynomial, and the
second is an independent test set which is generated in the
same way as the training set, except for the noise contribu-
tion which is independent of that on the training data. The
test set therefore simulates the effects of applying new data
to the “trained” polynomial. The order of the polynomial
controls the number of degrees of freedom in the function,

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

1.0

®) 0.0 0.5 . 1.0
1.0
y
05 |
0.0 -
0.0 0.5 1.0
() x

FIG. 19. Examples of curve fitting using polynomials of successively higher
order, using the same data as was used to plot Fig. 5. (a) was obtained using
a first order (linear) polynomial, and is seen to give a rather poor represen-
tation of the data. By using a cubic polynomial, as shown in (b), a much
better representation of the data is obtained. (This figure is identical to Fig.
6, and is reproduced here for ease of comparison.) If a 10th order polyno-
mial is used, as shown in (c), a perfect fit to the data is obtained (since there
are 11 data points and a 10th order polynomial has 11 degrees of freedom).
In this case, however, the large oscillations which are needed to fit the data
mean that the polynomial gives a poor representation of the underlying
generator of the data, and so will make poor predictions of y for new values
of x. (From Ref. 1.)

and we see that there is an optimum number of degrees of
freedom (for a particular data set) in order to obtain the best
performance with new data.

A similar situation occurs with neural network map-
pings. Here the weights in the network are analogous to the
coefficients in a polynomial, and the number of degrees of
freedom in the network is controlled by the number of
weights, which in turn is determined by the number of hid-
den units. (Note that the effective number of degrees of free-
dom in a neural network is generally less than the number of
weights and biases. For a discussion see Ref. 58.) Again we
can consider two independent data sets which we call train-
ing and test sets. We can then use the training data to train

Neural networks 1819

1]

I

T

0.3
\\\ ---- test
T T -
. training
£
w
0
> N
r | \-mm-eo---
00 1 1 L 1 L ! 1 1 1
0 2 4 6 8 10
Order of Polynomial

FIG. 20. A plot of the residual value of the root-mean-square error for
polynomial curve fitting versus the order of the polynomial. Here the train-
ing data are the same as used to plot Fig. 19, and are the data used to
determine the coefficients of the polynomial by minimizing the sum-of-
squares error. The residual rms error for the training data is seen to decrease
monotonically as the order of the polynomial is increased, eventually falling
to zero for the 10th order polynomial which fits the training data exactly, as
shown in Fig. 19(c). The test data set is generated in the same way as the
training data, and also consists of 11 points with the same x values, but with
different values for the random additive noise. It is seen that the error on the
test data (which measures the ability of the polynomial to “generalize”) is
smallest for a cubic polynomial. For polynomials with more degrees of
freedom than a cubic, the error for the test data is actually larger, even
though the training data error is smaller. (From Ref. 1.)

several networks, differing in the number m of hidden units,
and plot a graph of the residual value of the error E after
training as a function of m. This would be expected to yield
a monotonic decreasing function, as indicated schematically
in Fig. 21, since the addition of extra degrees of freedom
should not result in any increase in error, and will generally
allow the error to be smaller. We can also present the test set
data to the trained networks, and evaluate the corresponding
values of E. These would be expected to show a decrease
with m at first as the network acquires greater flexibility, but
then start to increase as the problem of overfitting sets in. A
common beginners mistake in applying neural networks is to
use too large a network and thereby obtain apparently very
good results (small training error at large values of m in Fig.
21). We see, however, that this typically leads to very poor

test

training

Y

FIG. 21. A schematic plot of the residual error with respect to the training
set, and the error with respect to a separate test set, as a function of the
number m of hidden units in a neural network. As with polynomial curve
fitting, there is an optimum number of hidden units (shown here by m=rm)
which gives the smallest test set error, and hence the best generalization
performance.

1820 Rev. Sci. instrum., Vol. 65, No. 6, June 1994

performance on new data, corresponding to large values of
the test set error in Fig. 21. .

A network function which has too little flexibility is said
to have a large bias, while one which fits the noise on the
data is said to have a large variance. One of the main goals
in applying a neural network is to achieve a good tradeoff
between bias and variance.” Instead of restricting the num-
ber of weights in the network, an alternative approach to
controlling bias and variance is to add penalty terms to the
error function to encourage the network mapping to have
appropriate smoothness properties. This is called regulariza-
tion, and a detailed discussion lies beyond the scope of this
review.%-%

C. Determination of network topology

In almost all applications, the goal of network training is
to find a network mapping function which makes the best
possible predictions for new data. This corresponds to the
network having the minimum test error, given by m=s in
Fig. 21. It is this requirement which drives the selection of
the network topology, in other words the number of hidden
units for the networks considered in this review.

In a practical application, the simplest approach to opti-
mizing the number of hidden units is to partition the avail-
able data at random into a training and a test set and then to
plot a graph of the form shown in Fig. 21. The best network
of those trained is then determined by the minimum in the
test set error. In a practical application the curves which are
obtained from such an exercise do not always exhibit pre-
cisely this behavior. This is a consequence of the fact that
network training corresponds to a non-linear optimization
problem which can suffer from local minima, as already de-
scribed in Sec. III. In addition, the effects of using a finite
size test set also lead to departures from the smooth behavior
depicted in Fig. 21. Thus, the training error curve might not
decrease monotonically, or the test error curve might have
several minima. An example of the curves obtained with real
data is shown in Fig. 22. Since the test set has itself been
used as part of the network optimization process, the final
performance of the network should, strictly speaking, be
checked against a third independent set of data.

A more sophisticated approach, and one which is par-
ticularly useful when the quantity of available data is limited,
is that of cross-validation.®® Here the data set is partitioned
randomly into S equal sized sections. Each network is
trained on § — 1 of the sections and its performance tested on
the remaining section, which acts like a test set. This is re-
peated for the S possible choices for the section omitted from
training, and the results are then averaged. This is repeated
for all of the networks under consideration. The network
having the smallest error on data not used for training is then
selected. In effect, all of the data is used for both training and
testing. The disadvantage of this, approach is its greater com-
putational demands. Again, a third independent data set
should be used to confirm the final performance of the se-
lected network. In practice, a value of S=10 is a typical
choice, although if data are in very limited supply, a value of
$=1 can be used, giving rise to the procedure known as
leave one out.

Neural networks

0.03

0.02 -

001 L) training 1

RMS error

0.00 1 1 I
0 5 10 15 20

number of hidden units

FIG. 22. An example of the optimization of the topology of a network taken
from a real application (the determination of oil fraction in multi-phase
flows using gamma densitometry, discussed in Sec. VIII). Here the root-
mean-square error is plotted as a function of the number of hidden units for
a training set consisting of 1000 examples and a test set also of 1000 ex-
amples. These networks had 12 inputs and 2 linear outputs and were trained
for 300 cycles of the limited memory BFGS algorithm. Since the error
function for the neural network is a complicated non-linear function of the
network parameters, the global minimum of the error is not generally ob-
tained, and the training set error does not decrease in a strictly monotonic
fashion. Similarly, the test set error is seen to be a rather “noisy” function of
the number of hidden units. The arrow shows the minimum point of the test
error curve, corresponding to the network with 8 hidden units. (From Ref.
67.)

Since the process of training a neural network can be
somewhat involved we now summarize the various stages in
the process. To be specific we shall consider a multilayer
perceptron network. ’

(1) Select a value for the number of hidden units in the
network, and initialize the network weights using ran-
dom numbers.

(2) Minimize the error defined with respect to the training
set data using one of the standard optimization algo-
rithms such as conjugate gradients. The derivatives of
the error function are obtained using the backpropaga-
tion algorithm as described in Sec. III.

(3) Repeat the training process a number of times using dif-
ferent random initializations for the network weights.
This represents an attempt to find .good minima in the
error function. The network having the smallest value of
residual error is selected.

(4) Test the trained network by evaluating the error function
using the test set data.

(5) Repeat the training and testing procedure for networks
having different numbers of hidden units and select the
network having smallest test error.

For radial basis function networks, only the training pro-
cedure is different. The problem of optimizing the number of
hidden units (basis functions) is similar and can be tackled
using the same techniques.

V1. DATA PREPROCESSING

So far we have discussed network mappings from input
to output variables, without specifying explicitly how these
variables are related to the training data. In principle the
input and target data for training could consist of raw data
taken directly from the application. However, such a simple
approach will, in many cases, lead to poor performance, and

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

output
data

post -
processing

neural
network

pre -
processing

input
data

FIG. 23. Raw data are generally preprocessed before being presented to a
neural network. Similarly, the output variables from a network are often
post-processed in order to obtain physically meaningful quantities. To train
the network, the input patterns from the training data must be transformed
using the preprocessing stage in order to obtain appropriate values for the
inputs to the network. Similarly, the target data from the training set must be
transformed using the inverse of the post-processing stage in order to obtain
the correct targets for the network outputs.

’

one of the most important factors in achieving a successful
application of neural networks is the use of appropriate data
preprocessing and representation.

Preprocessing generally takes the form of transforma-
tions applied to the input data before they are presented to
the network. Similarly, the outputs of the network may be
post-processed to convert them to physically meaningful
quantities. This is illustrated in Fig. 23. In order to train such
a network, the input data from the training set must first be
preprocessed. Similarly, the inverse of the post-processing
transformation must be applied to the target data in order to
map it to the correct form for training. When new data are
presented to the trained network, the preprocessing transfor-
mation must be applied to the input data, and the post-
processing transformation must be applied to the network
outputs.

Since a neural network can approximate arbitrary func-
tional transformations, it is not immediately obvious why
preprocessing should improve network performance. The
pre- and post-processing functions indicated in Fig. 23, to-
gether with the intermediate network, could in principle be

~ represented by a single neural network mapping. We there-

fore need to examine why, in practice, preprocessing can be
so crucial to success.

A. The curse of dimensionality

It is clear that any form of processing applied to the
input vectors of a data set cannot increase the amount of
useful information present from which to predict the correct
values for the outputs. (An exception to this is when prepro-
cessing is used to incorporate additional knowledge about
the general form of the desired solution, as will be discussed
later.) However, in the early days of pattern recognition it
was discovered that, for example, simply discarding some of
the input variables could actually lead to improved generali-
zation ability. This paradoxical result can be understood in
terms of the scaling properties of a pattern recognition prob-

Neural networks 1821

I

—

lem with the dimensionality of the space of input variables.

Consider a d-dimensional input space, and suppose that
the region of interest corresponds to the unit hypercube
xe[0,1]% We can specify the value of any one of the input
variables x; by dividing the corresponding axis into N seg-
ments and stating in which segment the value of the variable
lies. As N increases, so we can specify the variable with
increasing precision. With each variable specified in this
way, the unit hypercube has been subdivided into N small
hypercubes. In general, to specify a mapping from the input
space to a single output variable, we must provide N¢ items
of information, representing the value of the output for the
corresponding input hypercube. Thus, the size of the training
set required to specify a mapping would in general grow
exponentially with the dimensionality of the input space.
This phenomenon is known as the curse of dimensionality.®®

In practice, there are two reasons why the amount of
data needed may be much less than this argument would
suggest. First, correlations between the input variables mean
that the data are effectively confined to a sub-space of the
input space which might have much lower effective dimen-
sionality. Adding extra input variables which are strongly
correlated with the existing inputs would not lead to a sig-
nificant increase in the effective dimensionality of the space
occupied by the data. Second, there is generally significant
structure in the data so that, for instance, the output variable
may vary smoothly with the input variables. Thus, knowl-
edge of the outputs for several input vectors allows the out-
puts for new inputs to be predicted by an interpolation pro-
cess. It is this second property of data sets which makes
generalization possible.

Notwithstanding these two mitigating effects, the quan-
tity of data needed to specify a mapping can still grow rap-
idly with dimensionality. As a result, when tackling a prac-
tical problem involving a finite size data set, the performance
of a neural network system can actually improve when the
input dimensionality is reduced by preprocessing even
though information may be lost in the dimensionality reduc-
tion process. The fixed quantity of data is better able to
specify the mapping in the lower dimensional space, and this
can more than compensate for the loss of information.

Dimensionality reduction plays a particularly important
role in problems for which the input dimensionality is large.
In applications such as the interpretation of images, for in-
stance, the number of pixels may be many thousands. Direct
presentation of the data to a network having large numbers of
input units (one per pixel) and consequently large numbers
of degrees of freedom will typically give very poor results.

Note that there is an additional benefit from dimension-
ality reduction in the form of reduced training times, arising
from the fact that there are now fewer adjustable parameters
in the network (since the number of input units has been
reduced;- and so there are fewer weights in the first layer).

B. Linear rescaling

In addition to reducing dimensionality, there are other
motivations for preprocessing the data. One of the most com-
mon forms of preprocessing involves a simple linear rescal-
ing of the input variables, and possibly also of the output

1822 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

variables. In a typical application the different input vari-
ables may represent very different physical quantities. For
instance, one input might represent a magnetic field value,
and be (1), while another might represent a frequency, and
be (10'2?). This would typically cause difficulties in net-
work training, since the optimal values for the weights would
need to span a range of (10'2), and it would prove diffi-
cult to discover such a solution using standard training algo-
rithms. The problem can be resolved by performing a linear
rescaling of the data to ensure that each input variable has
zero mean and unit standard deviation over the training set.
Thus the inputs to the network x; are obtained from the raw
input data x; by the following transformation:

_ {xi—x;

x,.=—’—’}. (49)
S; :

If we set
1 1 <)
B 2 ki, si=—r 2 x5} (50)
n—1

q=1 q=1 .

then the rescaled inputs will all have zero mean and unit
variance with respect to the training data set. Once the net-
work is trained, the same rescaling (49), using the same val-
ues for the coefficients, must be applied to all future data
presented to the network. A similar rescaling is often applied
also tothe target data for interpolation problems, and this
rescaling must be inverted to post-process data obtained
from the trained network. The rescaling in Eq. (49) treats the
input variables as independent. A more sophisticated linear
rescaling, known as whitening,>* takes account also of corre-
lations between the input variables.

C. Feature extraction

The simple rescaling of input variables described above
represents an invertable transformation in which no informa-
tion is lost. As we have already indicated, however, in many
applications involving large numbers of input variables it can
be very advantageous to reduce the dimensionality of the
input vector, even though this represents a non-invertable
process in which the amount of available information is po-
tentially diminished.

One of the simplest approaches to dimensionality reduc-
tion is to discard a subset of the input variables. Techniques
for doing this generally involve finding some ranking of the
relative importance of different inputs and then omitting the
least significant. In principle, the relative importance of the
input variables depends on what kind of mapping function
will be employed, and so strictly a neural network should be
trained for each possible subset of the input variables. Since
in practice this is likely to be computationally prohibitive, a
simpler system which can be trained very quickly (such as a
linear model) is often used to order the inputs. An appropri-
ate subset is then used for training the more flexible non-
linear network.

Other forms of dimensionality reduction make no use of
the target data but simply look at the statistical properties of

Neural networks

the input data alone. The most common such technique is
principal components analysis® in which a linear dimen-
sionality reducing transformation is sought which maximizes
the variance of the transformed data. While easy to apply,
such techniques run the risk of being significantly sub-
optimal since they take no account of the target data.

More generally, the goal of preprocessing is to find a
number of (usually non-linear) combinations of the input
variables, known as features, which are designed to make the
task of the neural network as easy as possible. By selecting
fewer features than input variables, a dimensionality reduc-
tion is achieved. The optimum choice of features is very
problem dependent, and yet can have a strong influence on
the final performance of the network system. It is here that
the skill and experience of the developer count a great deal.

D. Prior knowledge

One of the most important, and most powerful, ways in
which the performance of neural network systems can be
improved is through the incorporation of additional informa-
tion, known as prior knowledge, into the network develop-
ment and training procedure, in addition to using the infor-
mation provided by the training data set. Prior knowledge
can take many forms, such as invariances which the network
transformation must respect, or expected frequency of occur-
rences of different classes in a classification problem.

One way of exploiting prior knowledge is to build it into
the data preprocessing stage. If the desired outputs from the
network are known to be invariant under some set of trans-
formations, then features can be extracted which exhibit this
property, thereby ensuring that the network outputs will au-
tomatically show the same behavior. The technique of regu-
larization, discussed in Sec. V, also implicitly involves incor-
porating prior knowledge into the network training process.
For example, a regularization term which penalizes high cur-
vature in the network mapping function reflects prior knowl-
edge that the function should be smooth.% Prior knowledge
can also be used to configure the topology of the network
itself. For instance, the postal code recognition system de-
scribed in Ref. 30 uses a system of local “receptive fields”
with “shared weights” to achieve approximate invariance to
translations of the characters within the input image.

The inclusion of explicit invariance to some set of trans-
formations is an important use of preprocessing. It leads to 3
significant advantages compared with having the network
learn the invariance property by example: (i) the invariance
property is satisfied exactly, whereas it would only be
learned approximately from examples; (ii) a smaller training
set can be used since any set of patterns which differ only by
the transformation can be represented by a single pattern in
the training set; (iii) the network is able to extrapolate to new
input vectors provided these differ from the training data
primarily by virtue of the invariant transformation.

We shall describe some further examples of the use of
prior knowledge when we review a number of case studies in
Sec. VIIL

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

Vil. IMPLEMENTATION OF NEURAL NETWORKS

So far we have discussed neural networks as abstract
mathematical functions. In a practical application, it is nec-
essary to provide an implementation of the neural network.
At present, the great majority of research projects in neural
networks, as well as most practical applications, makes use
of simulations of the networks written in conventional soft-
ware and running on standard computer platforms. While
this is adequate for many applications, it is also possible to
implement networks in various forms of special-purpose
hardware. This takes advantage of the intrinsic parallelism of
neural network models and can lead to very high processing
speeds. We begin, however, with a discussion of software
implementation.

A. Software implementation

Most applications of neural networks use software
implementations written in high level languages such as'C,
PASCAL, and FORTRAN. The neural network algorithms
themselves are generally relatively straightforward to impie-
ment, and much of the effort is often devoted to application-
specific tasks such as data preprocessing and user interface.
Neural networks are well suited to implementation in object
oriented languages such as C+ +, which allow a network to
be treated as an object, with methods to implement ‘the basic
operations of forward propagation, saving and retrieving
weight vectors, etc.

There are now numerous neural network software pack-
ages available, ranging from simple demonstration software
provided on disk with introductory books, through to large
commercial packages supporting a range of network archi-
tectures and training algorithms and having sophisticated
graphical interfaces. The latter kind of software can be very
useful for quick prototyping, and provides an easy way to
gain hands-on experience with neural networks without re-
quiring a heavy investment in software development. It is
important to emphasize, however, that such software cannot
be treated as a black box solution to problems since, as we
have seen, there are numerous subtle issues which must be
addressed if satisfactory performance is to be obtained. Some

_ of these, such as the incorporation of prior knowledge, can

sometimes be highly problem-specific, and do not readily
lend themselves to inclusion in commercial software. Also,
the fact that such software does not usually provide direct
access to source code can significantly limit its applicability
to complex real-world problems.

B. Hardware implementation

One of the potential advantages of neural network tech-
niques compared with many conventional alternatives is that
of speed. There are in fact two quite distinct reasons why
neural networks can prove to be significantly faster than con-
ventional methods. The first applies to software simulations
as well as hardware implementations and stems from the fact
that, once trained, a neural network operating in feedforward
mode can perform a multivariate non-linear transformation
in a fixed (and generally very small) number of operations.
This contrasts with many conventional techniques which

Neural networks 1823

']

achieve high speed at the expense of restriction to linear
transformations, or which solve non-linear problems by
means of iterative, and hence computationally intensive, ap-
proaches. Of course, it should be remembered that the pro-
cess of training a neural network can be computationally
intensive and slow, although for many applications training
is performed only during the development phase, with the
network being used as a feedforward system when process-
ing new data.

The second reason why neural networks can give very
high processing speeds is that they are intrinsically highly
parallel systems and so can be implemented in special-
purpose parallel hardware. This gives an additional increase
in speed in addition to that resulting from the feedforward
nature of the network mapping.

Even with serial processor hardware, it is possible to
exploit the structure of the neural network mapping to im-
prove processing speed. For instance, many DSP (digital sig-
nal processing) and workstation processors can perform
vector-matrix operations very efficiently. Since the number
of weights in a typical network is generally much larger than
the number of nodes, the dominant contribution to the com-
putation comes from the product-and-sum stages rather than
from the evaluation of activation functions, and this is essen-
tially a vector-matrix operation. The resulting improvements
in processing speed apply to the training phase of the net-
work as well as to its subsequent use in feedforward mode.

It is also relatively straightforward to implement neural
networks on arrays of processors such as transputers, or even
a network of workstations. During training, the network can
be replicated on all of the processors which then each deal
with a subset of the patterns. Alternatively, different parts of
the network (for instance successive layers) can be assigned
to different processors, which then operate in a pipeline fash-
ion. This relative ease of parallel implementation should be
contrasted with the often severe problems of making efficient
use of multiple processors with many conventional methods.
If a conventional algorithm relies at some point on a single
serial calculation before the rest of the algorithm can pro-
ceed, then only one processor can perform this step while the
other processors remain idle.

For very high processing speeds a network can be imple-
mented in special-purpose hardware in which the various
components of the network (weights and nodes) are mapped
directly into elements of the hardware system. A flexible
modular implementation of the multilayer perceptron, built
-from conventional surface mount technology in a VME rack
system,”® was recently used successfully for real-time feed-
back control of a tokamak plasma.”! This system used mul-
tiplying DAC’s (digital to analogue converters) acting -as
digitally-set resistors to provide the weights and biases, and
temperature-compensated transistor circuits to implement the
non-linear sigmoids. This gives a system which has analogue
signal paths but in which the synaptic weights can be set
digitally, allowing the weights to be specified to reasonably
high precision.

Much of the research on hardware implementations of
neural networks focuses on VLSI (Very Large Scale Integra-
tion) techniques, and these can be broadly divided into digi-

1824 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

tal and analogue approaches. Digital systems make use of
highly developed silicon fabrication technology, are robust to
small variations in the fabrication process, and offer the flex-
ibility to be reconfigured in software to give a wide variety
of architectures. They also support network training algo-
rithms and therefore speed up this computationally intensive
process.

By contrast, analogue systems suffer from low precision
weights, and are sensitive to process variations. Also, they do
not at present support learning, which must be done sepa-
rately in software on a conventional computer. They do,
however, offer a very high density of processing elements.
The Intel ETANN (Electrically Trainable Analogue Neural
Network) chip, currently the only analogue neural network
chip available commercially, contains over 10,000 weights,
giving an effective processing capability of 4GFlops
(4x10° floating point operations per second) per chip,
which is comparable with a large supercomputer. The chips
can easily be cascaded to build larger networks with corre-
spondingly higher equivalent processing capacity.

Research is also underway into wafer-scale integration
of neural networks, and also into optical and optoelectronic
implementations. These latter two make use of modulated
laser beams to perform the basic vector-matrix operation,
with sigmoidal non-linearities implemented either in non-
linear optics or in conventional electronics. Holographic sys-
tems are often used to implement the weights.

Viil. EXAMPLE APPLICATIONS

In this section we shall review a number of applications
of neural networks in the area of scientific instrumentation.
This is in no way intended to be a comprehensive survey of
applications, which would be well beyond the scope of this
review, but rather a selection of examples to illustrate ideas
developed in earlier sections. Information on where to find
other applications can be found in the review of neural net-
work literature in the Appendix.

A. Interpolation

One of the simplest ways to use a neural network is as a
form of multivariate non-linear regression to find a smooth
interpolating function from a set of data points. As an ex-
ample we consider the problem of predicting a quantity
known as the (dimensionless) energy confinement time 75 of
a tokamak piasma from a knowledge of four dimensionless
variables constructed from experimentally measured quanti-
ties. The dimensionless variables are denoted ¢ (safety fac-
tor), v« (ratio of effective electron collisionality to trapped
electron bounce frequency), 8, (poloidal beta), and p, (nor-
malized electron Larmor radius). The precise definitions of
these quantities is not important here; more detailed informa-
tion on this application can be found in Ref. 72. The goal is
to predict 7z from knowledge of these dimensionless vari-
ables, and so we are secking a functional relationship of the
form

Te=F(q, v+ ,ByPe)- (51)

Neural networks

FIG. 24. Network structure used for predicting the normalized energy con-
finement time 75 of a tokamak plasma in terms of a set of dimensionless
experimentally measured quantities g, v,, 8,, and p. - Note how the basic
input and output quantities have been processed by taking logarithms in
order to compress their dynamic range. The bias units-have been omitted for
clarity. (From Ref. 72.)

In principle, this function could be predicted from plasma
physics considerations, but in practice the physical processes
are much too complex, and so empirical methods are used.

The conventional approach to this problem is to make
the arbitrary assumption that the function F() in Eq. (51)
takes the form of a product of powers of the independent
variables, so that

e 52)

where the parameters C and a;-- a4 are to be determined
empirically from an experimental database. By taking loga-
rithms of Eq. (53) we obtain an expression which is linear in
the unknown parameters

In7;=C+a;Ing+a, In vita;ln By+a,Inp,
. (53)

and so the parameters can be determined from a data set of
values of (q,v+,B,,p.), together with the corresponding
values of 7z, by the usual techniques of linear regression
(involving the minimization of a sum-of-squares error func-
tion).

The limitation of the conventional approach is that it
makes the arbitrary assumption of a power law expression
(52). This was chosen purely for computational simplicity
(because the logarithmic expression is linear in the param-
eters) and has no physical justification (with one exception to
be discussed shortly). We can overcome this limitation by
using a neural network to model the function F() in Eq.
(51). The network structure is shown in Fig. 24. Note that
logarithms are used both as a form of preprocessing of the
input variables and also to preprocess the target data (which
is taken to be In 75). This is done to compress the dynamic
range of the variables and thereby ensure that the relative
accuracy is maintained even when some of the quantities
have small values. It also has the effect that, if the network
mapping is linear, the standard linear regression expression is
recovered. Thus the neural network explicitly contains the
linear regression approach as a special case.

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

0.08

0.06 4

0.04 | \

0.00 ; s ; -
-1 0 1 2. Y 3

FIG. 25. The solid curve shows the behavior of the energy confinement time
7 versus the input variables for the energy confinement time problem cor-
responding to the network shown in Fig. 24. Since there are four input
variables, the horizontal axis has been taken along the direction of the first
principal component of the test data set, and the parameter y measures
distance along this direction. The dashed curve shows the corresponding
results obtained using the linear regression. Note that the linear regression
function necessarily produces a power law behavior, while the neural net-
work function is able to represent a more general class of functions and
hence can capture more of the structure in the data. (From Ref. 72.)

Since a neural network can potentially contain many
more parameters than the five which are found in the linear
regression formula (53), it is likely that the network can
achieve better fits to the data, even if such an improvement is
not statistically significant. This is analogous to the overfit-
ting problem discussed in Sec. V. Such difficulties are
avoided by optimizing the network structure using cross-
validation, and by comparing the final network with linear
regression using a separate test data set. The training data set
consisted of 574 data points, with a further 573 in the test
set, and the networks were trained using 500 complete ep-
ochs of the limited memory BFGS algorithm (discussed in
Sec. III).

A reduction in rms error of about 25% is found with the
neural network approach, as compared with linear regres-
sion. The resulting behavior for the function F() obtained
from the neural network is compared with the corresponding
result from the linear regression approach in Fig. 25.

This application. also provides an illustration of how

k prior knowledge can be built into a neural network structure.

Various theories of energy confinement in tokamaks predict
that the dependence of the confinement time on the quantity
pe should in fact exhibit a power law behavior. This fact can
be built into the network structure, while leaving the depen-
dence on the remaining quantities arbitrary. Thus we seek a
representation of the form

a\-E:(ﬁe)a(;(Q’V* 5Bp)- (54)

If the data are again processed using logarithms, then the

functional form in Eq. (54) can be represented by the net-

work structure shown in Fig. 26. Since there is a direct con-

Neural networks 1825

I

FIG. 26. A modified version of the network shown in Fig. 24 in which 7 is
constrained to be a power law function of the input variable p,. This is
achieved by permitting only a single connection from the p, input to the
output (and using a linear output unit) to ensure that In7 is a linear function
of Inp, . This provides an example of how prior knowledge can be built into
the structure of a network. (From Ref. 72.)

nection from the In p, input to the output, and since the out-
put unit has a linear activation function, this achieves the
required effect. The single weight from the In p, input to the
output represents the parameter « in Eq. (54).

Another important feature of neural networks when used
to perform non-linear interpolation is their ability to learn
how to combine data from several sensors to produce mean-
ingful outputs without the need to develop a detailed physi-
cal model to describe the required data transformations. This
is called sensor fusion or data fusion, and plays a role in
many neural network applications. An example of the fusion
of magnetic field data with line-of-sight optical data to gen-

erate spatial profiles of electron density in a plasma can be

found in Ref. 73.

B. Classification

We next discuss an application of neural networks in-
volving classification. The problem concerns the monitoring
of oil flow along pipelines which carry a mixture of oil,
water, and gas, and the aim is to provide a non-invasive
technique for measurement of oil flow rates, a problem of
considerable importance to the oil industry. The approach
described in Ref. 67 is based on the technique of dual-energy
gamma densitometry. This involves measurement of the at-
tenuation of a collimated beam of mono-energetic gammas
passing through the pipe as indicated in Fig. 27. For a
gamma beam passing through a single homogeneous sub-
stance the fraction of the beam intensity I attenuated per unit
length is constant, and so the intensity would decay exponen-
tially with distance according to

I=Ige #* ‘ : (55)

where I is the beam intensity in the absence of matter, x is
the path length within the material, p is the mass density of
the material, and u is the mass absorption coefficient for the
particular material at a particular gamma energy. For a
gamma beam passing through a combination of oil, water,
and gas, the intensity of the beam decays like

1826 Rev. Sci. instrum., Vol. 65, No. 6, June 1994

£ | N gas
X, /
\ 4

X X, oil

X,
,,W,,\ water

FIG. 27. Schematic cross-section of an oil pipeline containing a mixture of
oil, water, and gas in a stratified configuration. Also shown is the path of a
gamma beam whose attenuation provides information on the quantities of
the three substances present in the pipe (gamma densitometry). The quanti-
ties x,, x,, , and x, represent the path lengths in the oil, water, and gas
phases respectively. If attentuation measurements are made at two different
wavelengths, and use is made of the constraint Xotxy+x,=X (where X is
the total path length within the pipe) then the values of the three path lengths
can be determined. By making such measurements along several chords
through the pipe, sufficient information can be obtained to allow the volume
fractions of the phases to be determined (with the aid of a neural network
mapping) even though the 3 phases may exhibit a variety of different geo-
metrical configurations. (From Ref. 67.) ’

I:IOe'/"opoxoe—#wpwxwe_#gpgxg , . (56)

where x,, x,,, and x, represent the path lengths through each
of the three phases, as indicated in Fig. 27. The measurement
from a single beam line does not provide sufficient informa-
tion to determine all 3 path lengths, and so a second gamma
beam of a different energy is passed along the same path as
the first beam. Since the absorption coefficients are different
at the two energies, the measured attenuation of the beam
provides a second independent piece of information. Finally,
the three path lengths are constrained to add up to the total
path length through the pipe

Xotxytx,=X , (57

as shown in Fig. 27. We therefore have enough information |

to extract the individual path lengths, which can be ex-
pressed analytically in terms of the measured attenuations.®’

Measurements from a single dual-energy beamline are
insufficient to' determine the volume fractions of the three
phases within the pipe, since the phases can occur in a vari-
ety of geometrical configurations, as illustrated in Fig. 28.
This shows 4 model configurations of 3-phase flows used to
generate synthetic data for the neural network study. How-
ever, by making measurements along several beamlines, in-
formation on the configuration of the phases can be obtained.
The system considered in Ref. 67 consists of 3 vertical and 3
horizontal beams arranged asymmetrically.

Multi-phase flows are notoriously difficult to model nu-
merically and so it is not possible to use a first-principles
approach to the interpretation of the data from the densitom-
eter. It is, however, possible to collect large amounts.of train-

Neural networks

101

|
\
1
|
|

stratified annular
‘
\
n
‘E@’ mi |
!]
7y
\
inverse homogeneous
annular

gas . oil E water

FIG. 28. Four model configurations of 3-phase flow, used to generate train-
ing and test data for a neural network which is trained to predict the frac-
tional volumes of oil, water, and gas in the pipe. Inputs to the network are
taken from 6 dual-energy gamma densitometers of the kind illustrated in
Fig. 27. (From Ref. 67.)

ing data by attaching the densitometer system to a standard
multi-phase test rig. This problem is therefore well suited to
analysis by neural network techniques.

From the system of 6 dual-energy densitometers we can
extract the corresponding 6 values of path length in oil and 6
values of path length in water [the remaining 6 path lengths
in gas represent redundant information by virtue of Eq. (57)].
This gives 12 measurements from which we can attempt to
determine the geometrical phase configuration. Synthetic
data were generated from the 4 model phase configurations
shown in Fig. 28. To generate each data point in the training
set, one of the configurations was selected at random with

equal probability. Then the fractions of oil, water, and gas for
this configuration were selected randomly with uniform
probability distribution, subject to the constraint that they
must add to unity. The 12 independent path lengths are then
calculated geometrically, and these form the inputs to a neu-
ral network. The dominant source of noise in this application
arises from photon statistics, and these are included in the
data using the correct Poisson distribution.

In order to predict the phase configuration, the network
is given 4 outputs, one for each of the configurations shown
in Fig. 28, and a 1-of-N coding is used as described in Sec.
V. Networks were trained using a data set of 1,000 examples,
and then tested using a further 1,000 independent examples.
The network structure consisted of a multilayer perceptron
with a single hidden layer of logistic sigmoidal units .and an
output layer also of logistic sigmoidal units. In order to com-
pare the network against a more conventional approach, the
same data were used to train a single-layer network having
sigmoidal output units, which corresponds to a form of linear
discriminant function.'”® The number of hidden units in the
network was selected by training several networks and se-
lecting the one with the best performance on the test set, as
described in Sec. V, which gave a network having 5 hidden
units. Results from the classification problem are summa-
rized in Table L

More detail on the performance of the network in deter-
mining the phase configuration can be obtained from “con-
fusion matrices” which show, for each actual configuration,
how the examples were distributed according to the pre-
dicted configurations. For perfect classification all entries
would be zero except on the leading diagonal. Here the con-
figurations have been ordered as (homogeneous, stratified,
annular, inverse annular). The confusion matrices, for both
training and test sets, generated by the trained network hav-
ing 5 hidden units are shown below.

Predicted Predicted
259 0 0 0 255 0 0 0
239 0 247 0 1
Actual 0 242 o0 Actual) 0 241 0
0 0 0 255 3 0 0 250
Training Test

In this particular application, the real interest is in being
able to determine the volume fractions of the three phases,
and in particular of the oil. Once the phase configuration is
known, these volume fractions can be calculated geometri-
cally from the path length information. However, a more
direct approach is to train a network to map the path length
information from the densitometers directly onto the volume
fractions. This leads to a network with 12 inputs, and 2 out-
puts corresponding to the volume fractions of oil and water

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

(the volume fraction of gas being redundant information).
This is the application which generated the plot of training
and test errors versus the number of hidden units shown in
Fig. 22.

C. Inverse problems

A large proportion of the data processing tasks encoun-
tered in instrumentation applications can be classified as in-
verse problems. The meaning of this term is best illustrated

Neural networks 1827

v

TABLE 1. Results for neural network prediction of phase configurations.
Values of zero indicate errors of less that 1.0X1072,

E™s E™ % correct- % correct-
Nyidden (train) X102 (test) X107 train test
1 26.9 27.0 98.4 98.2
2 3.86 9.51 99.7 98.1
3 3.16 5.47 99.6 99.2
4 0.0 7.98 100 99.0
5 0.0 6.16 100 99.3
6 0.0 6.33 100 99.2
1-layer 133 14.8 98.9 98.6

with a particular example. Consider the general tomography
problem illustrated in Fig. 29. The goal is to determine the
local spatial distribution of a quantity Q(r) from a number of
line-integral measurements

= 58
N, fFiQ(r) dr | (58)

made along various lines of sight I'; through a given region
of space. Here, the quantity Q(r) might for instance be the
soft x-ray emissivity from a tokamak plasma. Other ex-
amples include x-ray absorbtion tomography in medical ap-
plications, and ultrasonic tomography for non-destructive
testing.

The tomography problem is characterized by the exist-
ence of a well-defined forward problem in which we suppose
that the spatial distribution Q(r) is known and we wish to
predict the values of the line integrals A;. This problem is
well defined and has a unique solution obtained simply from

FIG. 29. The tomography problem involves determining the local spatial
distribution of a quantity Q(r) from line integral measurements
N;=Jr.Q(r) dr made along a number of lines of sight I'; . If the function
Q(x) v;fere known, then the evaluation of the various line integrals (this is
called the forward problem) would be straightforward and would give
unique results. In practice, we must solve the inverse problen of finding
Q(r) from the finite set of measured values given by the \;, which is
-ill-posed since there are infinitely many solutions. Neural networks are well-
suited to the solution of many inverse problems.

1828 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

FIG. 30. Schematic example of an inverse problem for which a direct ap-
plication of neural networks would give incorrect results. The mapping from
u to v, shown by the solid curve, is multivalued for values of u in the range
u; to uy. A network trained by minimizing a sum-of-squares error based on
training data generated from the solid curve would give a result of the form
indicated by the dashed curve (this result follows from the fact that the
function represented by the trained network is given by the conditional
average of the target data, as illustrated in Fig. 18). In the region where v(u)
is multi-valued, the network outputs can be substantially different from the
desired values.

the evaluation of the integrals in Eq. (58). However, in prac-
tice we are required to solve the inverse problem of deter-
mining the function Q(r) from a finite number of measure-
ments \;. This inverse problem is ill-posed®™ because
there are infinitely many functions Q(r) which give rise ex-
actly to the same given set of line integral measurements. In
addition, the measurements may be corrupted by noise, and
so we do not necessarily seek a solution which fits the data
exactly.

Many of the problems which arise in data analysis to
which neural networks may be applied are inverse problems.
(Note that curve fitting, and network training, are themselves
inverse problems). Examples include the reconstruction of
electron density profiles in tokamaks from line integral
measurements,”* and the simultaneous fitting of several over-
lapping Gaussians to complex spectra.” There is generally a
well-defined forward problem which may have a fast solu-
tion, but the inverse problem is often ill-posed, and with
conventional approaches may require computationally inten-
sive iterative techniques to find a solution. The neural net-
work approach offers the advantages of very high speed and
can avoid the need for a good initial guess which is often a
source of difficulty with conventional iterative methods. In
some instances the forward problem can be used to generate
synthetic data which can be used to train the network.

There is, however, a potential difficulty in applying neu-
ral networks to inverse problems which can lead to very poor
results unless appropriate care is taken. Consider the simple
example of training a network on the inverse problem shown
in Fig. 30. The mapping from the variable v to the variable
u, shown by the solid curve, is single-valued (in other words
it is a function). If, however, we consider the inverse map-
ping from u to v, then we see that this is not single-valued
for a range of u values between u; and u,. As discussed in
Sec. V the output of a trained network approximates the con-
ditional average of the target data given by Eq. (44). If data

Neural networks

1

Neural magnetic
Network signals m

\ 4

plasma position
and shape y,

Y
error Control
signals Amplifiers

FIG. 31. Neural networks have recently been used for real-time feedback
control of the position and shape of the plasma in the COMPASS tokamak
experiment, using the control system shown here. Inputs to the network
consist of a set of signals m from magnetic pick-up coils which surround the
tokamak vacuum vessel. These are mapped by the network onto the values
of a set of variables y, which describe the position and shape of the plasma
boundary. Comparison of these variables with their desired values y§ (which
are preprogrammed to have specific time variations) gives error signals
which are sent, via control amplifiers, to sets of feedback control coils which
can modify the position and shape of the plasma boundary. Due to the very
high speed (~10 us) at which the feedback loop must operate, a fully
parallel hardware implementation of the neural network was used. (From
Ref. 71.)

desired position
and shape y;

Y

from the solid curve in Fig. 30 are used to train a network the
resulting network mapping will have the form shown by the
dashed curve. In the range where the data is multivalued the
output of the network can be completely spurious, since the
average of several values of v may itself not be a valid value
for that variable for the given value of u. This problem is not
resolved by increasing the quantity of data or by improve-
ments in the training procedure.

When applying neural networks to inverse problems it is
therefore essential to anticipate the possibility that the data
may be multivalued. One approach to resolving this problem
is to exclude all but one of the branches of the inverse map-
ping (or by training separate networks for each of the
branches if all possible solutions are needed). For a detailed
example of how this technique is applied in practice, in this
case to the determination of the coefficients in a Gaussian
function fitted to a spectral line, see Ref. 22.

D. Control applications

In this review we have concentrated almost entirely on
neural networks for data analysis, and indeed this represents
the area where these techniques are currently having the
greatest practical impact. However, neural networks also of-
fer considerable promise for the solution of many complex
problems in non-linear control.

Feedforward networks, of the kind considered in this
review, can be used to perform a non-linear mapping within
the context of a conventional linear feedback control loop.
This technique has been exploited successfully for the feed-
back control of tokamak plasmas’” as illustrated in Fig. 31.
Here the inputs to the fetwork consist of a number of mag-
netic signals (typically between 10 and 100) obtained from
pick-up coils located around the tokamak vacuum vessel.

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

These are mapped by the neural network onto a set of geo-
metrical parameters which describe the position and shape of
the boundary of the plasma. The values for these parameters
as predicted by the neural network are compared with de-
sired values which have been preprogrammed as functions of
time prior to the plasma pulse. The resulting error signals are
then sent to standard PID (proportional-integral-differential)
linear control amplifiers which adjust the position and shape
of the plasma by changing the currents in a number of con-
trol coils.

The network is trained off-line in software from a large
data set of example plasma configurations obtained by nu-
merical solution of the plasma equilibrium equations. In or-
der to achieve real-time operation, the network was imple-
mented in special purpose hybrid digital-analogue
hardware” described in Sec. VII. Values for the network
weights, obtained from the software simulation, are loaded
into the network prior to the plasma pulse. This system Te-
cently achieved the first real-time control of a tokamak
plasma by a neural network.”!

This application provides another example of the use of
prior knowledge in neural networks. It is a consequence of
the linearity of Maxwell’s equations that, if all of the currents
in the tokamak system are scaled by a constant factor, the
magnetic field values will be scaled by the same constant
factor and the plasma position and shape will be unchanged.
This implies that the mapping from measured signals to the
position and shape parameters, represented by the network;
should have the property that, if all the inputs are scaled by
the same factor, the outputs should remain unchanged. Since
the order of magnitude of the inputs can vary by a factor of
up to 100 during a plasma pulse, there is considerable benefit
in building in this prior knowledge explicitly. This is
achieved by dividing all inputs by the value of the total
plasma current. A hardware implementation of this normal-
ization process was developed for real-time operation. If this
prior knowledge were not included in the network structure,
the network would have to learn the invariance property
purely from the examples in the data set.

Another recent real-time application for neural networks
was for the control of 6 mirror segments in an astronomical
optical telescope in order to perform real-time cancellation of
distortions due to atmospheric turbu‘lence.76 This technique,
called adaptive optics, involves changing the effective mirror
shape every 10 ms. Conventional approaches involve itera-
tive algorithms to calculate the required deformations of the
mirror, and are computationally prohibitive. The neural net-
work provides a fast alternative, which achieves high accu-
racy. When the control loop is closed the image quality
shows a strong improvement, with a resolution close to that
of the Hubble space telescope. In this case the network was
implemented on an array of transputers.

Neural networks can also be used as non-linear adaptive
components within a control loop. In this case the network
continues to learn while acting as a controller, and in prin-
ciple can learn to control complex non-linear systems by trial
and error. This raises a number of interesting issues con-
nected with the fact that the training data which the network
sees is itself dependent on the control actions of the network.

Neural networks 1829

1

Such issues take us well beyond the scope of this review,
however, and so we must refer the interested reader to the
literature for further details.”’"

IX. DISCUSSION

In this review we have focused our attention on feedfor-
ward neural networks viewed as general parameterized non-
linear mappings between multi-dimensional spaces. Such
networks provide a powerful set of new data analysis and
data processing tools with numerous instrumentation appli-
cations. While feedforward networks currently account for
the majority of applications there are many other network
models, performing a variety of different functions, which
we do not have space to discuss in detail here. Instead we
give a brief overview of some of the topics which have been
omitted, along with pointers to the literature. We then con-
clude with a few remarks on the future of neural computing.

A. Other network models

Most of the network models described so far are trained
by a supervised learning process in which the network is
supplied with input vectors together with the corresponding
target vectors. There are other network models which are
trained by unsupervised learning in which only the input
vectors x7 are supplied to the network. The goal in this case
is to model structure within the data rather than learn a func-
tional mapping. ,

One example of unsupervised training is called density
estimation in which the network forms a model of the prob-
ability distribution p(x) of the data as a function of x.>*>! We
have already encountered one example of this in Sec. IV,
using the Gaussian mixture model in Eq. (35). Another ex-
ample is clustering in which the goal is to discover any
clumping of the data which may indicate structure having
some particular significance.”" Yet another application of
unsupervised methods is data visualization in which the data
is projected onto a 2-dimensional surface embedded in the
original d-dimensional space, allowing the data to be visual-
ized on a computer screen.®” In this case the training process
corresponds to an iterative optimization of the location of the
surface in order to capture as much of the structure in the
data as possible. Unsupervised networks are also used for
dimensionality reduction of the data prior to treatment with
supervised learning techniques in order to mitigate the ef-
fects of the curse of dimensionality. _

One of the restrictions placed on the networks discussed
in this review is that they should have a feedforward struc-
ture so that the output values become explicit functions of
the inputs. If we consider network diagrams with connec-
tions which form loops then the network acquires a dynami-
cal behavior in which the activations of the units must be
calculated by evolving differential equations through time. A
class of such networks having some historical significance is
that developed by Hopfield'>'® who showed that, if the con-
nection from unit a to unit b has the same strength as the
connection from unit b back to unit a, then the evolution of
the network corresponds to a relaxation described by an en-
ergy function, thereby ensuring that the network evolves to a
stationary state. Such networks can act as associative memo-

1830 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

ries which reconstruct a complete pattern from a partial cue,
or from a corrupted version of that pattern. They have also
been used to solve combinatorial optimization problems,
such as placing of components in an integrated circuit or the
scheduling of steps in a manufacturing process.

Another aspect of the techniques considered in this re-
view is that all of the input data have been treated as static
vectors. There is also considerable interest in being able to
deal effectively with time varying signals. The simplest, and
most common approach, is to sample the time series at regu-
lar intervals and then treat a succession of observed values as
a static vector which can then be used as the input vector of
a standard feedforward network. This approach has been
used with considerable success both for classification of time
series in problems such as speech recognition® and for pre-
diction of future values of the time series® in applications
such as financial forecasting or the prediction of sunspot ac-
tivity. A more comprehensive approach would, however,
make use of dynamical networks of the kind discussed
above.

It should be emphasized that most of these neural net-
work techniques have their counterparts in conventional
methods. In many cases the neural network provides a non-
linear extension of some well known linear technique. Any-
one wishing to make serious use of neural networks is there-
fore recommended to become familiar with these
conventional approaches.>>~>°

Throughout this review we have discussed learning in
neural networks in terms of the minimization of an error
function. However, learning and generalization in neural net-
works can also be formulated in terms of a Bayesian infer-
ence framework," 386 and this is currently an active area of
research.

B. Future developments

Feedforward neural networks are now becoming well es-
tablished as methods for data processing and interpretation,
and as such will find an ever greater range of practical ap-
plications both in scientific instrumentation and many other
fields. However, it is clear too that the connectionist para-
digm for information processing is a very rich one which, 50
years after the pioneering work of McCulloch and Pitts, we
are only just beginning to explore. It is likely to be a very
long time before artificial neural networks approach the com-
plexity or performance of their biological counterparts. Nev-
ertheless, the fact that biological systems achieve such im-
pressive feats of information processing using this basic
connectionist approach will remain as a constant source of
inspiration. While it would be unwise to speculate on future
technical developments in this field, there can be little doubt
that the future will be an exciting one.

APPENDIX: GUIDE TO THE NEURAL COMPUTING
LITERATURE

The last few years have witnessed a dramatic growth of
activity in neural computing accompanied by a huge range of
books, journals, and conference proceedings. Here we aim to

Neural networks

1l

provide an overview of the principal sources of information
on neural networks, although we cannot hope to be exhaus-
tive.

The following journals specialize in neural networks. It
should be emphasized, however, that the subject spans many
disciplines and that important contributions also appear in a
range of journals specializing in other subjects.

Neural Networks is published bimonthly by Pergamon
Press and first appeared in 1988. It covers biological, math-
ematical, and technological aspects of neural networks, and a
subscription is included with membership of the Interna-
tional Neural Network Society. :

Neural Computation is a high quality multidisciplinary
letters journal published quarterly by MIT Press.

Network is another cross-disciplinary journal and is pub-
lished quarterly by the Institute of Physics in the U.K.

International Journal of Neural Systems is published
quarterly by World Scientific also covers a broad range of
topics.

IEEE Transactions on Neural Networks is a Journal with
a strong emphasis on artificial networks and technology and
appears bimonthly.

Neural Computing and Applications is a new journal
concerned primarily with applications and is published quar-
terly by Springer-Verlag.

Neurocomputing is published bimonthly by Elsevier.

There are currently well over 100 books available on
neural networks and it is impossible .to survey them all.
Many of the introductory texts give a rather superficial treat-
ment, generally with little insight into the key issues which
often make the difference between successful applications
and failures. Some of the better books are those given in
Refs. 87 and 88. A more comprehensive account of the ma-
terial covered in this review can be found in Ref. 1.

One of the largest conferences on neural networks is the
International Joint Conference on Neural Networks (IJCNN)
held in the USA (and also in the Far East) with the proceed-
ings published by IEEE. A scan through the substantial vol-
umes of the proceedings gives a good indication of the tre-
mendous range of applications now being found for neural
network techniques. A similar annual conference is the World
Congress on Neural Networks. A comparable, though some-
what smaller, conference is held each year in Europe as the
International Conference on Artificial Neural Networks
(ICANN). An excellent meeting is the annual Neural Infor-
mation Processing Systems conference (NIPS) whose pro-
ceedings are published under the title Advances in Neural
Information Processing Systems by Morgan Kaufman. These
proceedings provide a snapshot of the latest research activity
across almost all aspects of neural networks, and are highly
recommended. Details of future conferences can generally be
found in the various neural network journals.

1C: M. Bishop, Neural Networks for Statistical Pattern Recognition (Ox-
ford University Press, Oxford, 1994).

2H. White, Neural Comput. 1, 425 (1989).

3C. M. Bishop, Proc. IEE, Proceedings: Vision, Image and Speech; Special
Issue on Neural Networks (1994).

“E. R. Kandel and J. H. Schwartz, Principles of Neuroscience, 2nd ed.
(Elsevier, New York, 1985).

Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

3Scientific American, special issue on Mind and Brain, September (1992).
5D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition (MIT Press,
Cambridge, 1986), Vol. 2.

"W. S. McCulloch and W. Pitts, Bull. Math. Biophys. 5, 115 (1943).

8D. 0. Hebb, The Organization of Behaviour (Wiley, New York, 1949).

°F. Rosenblatt, Psychol. Rev. 65, 386 (1958).

!9F, Rosenblatt, Principles of Neurodynamics (Spartan Books, ‘Washington,
DC, 1962).

B, Widrow, Self-Organizing Systems, edlted by G. T. Yovitts (Spartan
Books, Washington, DC, 1962).

12B. Widrow and M. E. Hoff, Adaptive Switching Ciruits (IRE WESCON
Convention Record, New York, 1960), p. 96.

13B. Widrow and M. Lehr, Proc. IEEE 78, 1415 (1990).

M. Minsky and S. Papert, Perceptrons (MIT Press, Cambridge, 1959),
also available in an expanded edition (1990).

133. J. Hopfield, Proc. Natl. Acad. Sci. 79, 2554 (1982).

16]. J. Hopfield, Proc. Natl. Acad. Sci. 81, 3088 (1984).

7D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323, 533
(1986).

3D, E. Rumelhart, G. E. Hmton and R. J. Wllhams Parallel Distributed

Processing: Explorations in the Microstructure of Cognition (MIT Press,)

Cambridge, 1986), Vol. 1.

9D, E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Dzstrtbuted
Processing: Explorations in the Microstructure of Cognition (MIT Press,
Cambridge, 1986), Vol. 3.

2 Neurocomputing: Foundations of Research, edited by J. A Anderon and
E. Rosenfeld (MIT Press, Cambridge, 1988).

2 Neurocomputing, edited by J. A. Anderson and E. Rosenfeld (MIT Press,
Cambridge, 1990), Vol. 2.

22C. M. Bishop and C. M. Roach, Rev. Sci. Instrum 63, 4450 (1992).

BC. M. Bishop, C. M. Roach, and M. G. von Hellerman, Plasma Phys.
Control. Fusion 35, 765 (1993).

24K. Funahashi, Neural Networks 2, 183 (1989).

2 G. Cyhenko, Math. Control, Signals Syst. 2; 304 (1989).

%K. Hornick, M. Stinchcombe, and H. White, Neural Networks 2, 359
(1989). .

K. Hornick, Neural Networks 4, 251 (1991).

8y, Y. Kreinovich, Neural Networks 4, 381 (1991).

A, R. Gallant and H. White, Neural Networks 5,129 (1992).

®1e Cun Y et al., Neural Computation 1, 541 (1989).

313, F. Kolen and J. B. Pollack, in Advances in Neural Information Process-
ing Systems (Morgan Kaufmann, San Mateo, CA, 1991), Vol. 3, p. 860.

32C. M. Bishop, Neural Computation 4, 494 (1992).

33H. Robbins and S. Monro, Annu. Math. Stat. 22, 400 (1951).

]. Kiefer and J. Wolfowitz, Annu. Math. Stat. 23, 462 (1952).

35W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cam-
bridge University Press, Cambridge, 1992). .

%J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstramed
Optimisation and Non-linear Equations (Prentice—Hall, Englewood Cliffs,
NIJ, 1983).

*"E. M. Johansson, F. U. Dowla, and D. M. Goodman, Int. J. Neural Syst. 2,
291 (1992).

3D, F. Shanno, Math. Operations Res. 3, 244 (1978).

3R. Battiti, Complex Syst. 3, 331 (1989).

“'D. S. Broomhead and D. Lowe, Complex Syst. 2, 321 (1988).

3. Moody and C. L. Darken, Neural Comput. 1, 281 (1989).

“2M. J. D. Powell, in Algorithms for Approximations, edited by J. C. Mason
and M. G. Cox (Clarendon, Oxford, 1987).

43C. A. Micchelli, Constructive Approx. 2, 11 (1986).

“E. Hartman, J. D. Keeler, and J. Kowalski, Neural Comput. 2, 210 (1990).

45, Park and L. W. Sandberg, Neural Comput. 3, 246 (1991).

8. Chen, S. F. N. Cowan, and P. M. Grant, IEEE Trans. Neural Networks
2, 302 (1991).

473. MacQueen, in Proceedings of the Fifth Berkeley Symposium on Math-
ematical Statistics and Probability (University of California Press, Berke-
ley, CA, 1967), Vol. 1, p. 281.

“@. J. McLachlan and K. E. Basford, Mixture Models: Inference and Ap-
plications to Clustering (Marcel Dekker, New York, 1988).

“A. P. Dempster, M. N. Laird, and D. B. Rubin, J. R. Stat. Soc. B 39, 1
(1977).

*G. H. Golub and W. Kahan, SIAM Numi. Analysis 2, 205 (1965).

*'M. D. Richard and R. P. Lippmann, Neural Comput. 3, 461 (1991).

Neural networks 1831

1l

|

52D. W. Ruck et al., IEEE Trans. Neural Networks 1, 296 (1990).

3R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis
(Wiley, New York, 1973).

3*K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed.
(Academic, San Diego, CA, 1990).

3P, A. Devijer and J. Kittler, Pattern Recognition: A Statistical Approach
(Prentice—Hall, Hemel Hempstead, UK, 1982).

S6D. J. Hand, Discrimination and Classification (Wiley, New York, 1981).

3'D. Lowe and A. R. Webb, Network 1, 299 (1990).

%83. Moody, in Advances in Neural Information Processing Systems (Mor-
gan Kaufmann, San Mateo, CA, 1993). :

5%S. Geman, E. Bienenstock, and R. Doursat, Neural Comput. 4, 1 (1992).

S0 A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems (Win-
ston, Washington, DC, 1977).

1G. Wahba, Ann. Statist. 13, 1378 (1985).

62C. M. Bishop, Neural Comput. 3, 579 (1991).

83T, Poggio and F. Girosi, Proc. IEEE 78, 1481 (1990).

$4T. Poggio and F. Girosi, Science 247, 978 (1990).

$5C. M. Bishop, IEEE Trans. Neural Networks 4, 882 (1993).

%M. Stone, Operationforsh. Statis. Ser. Statist. 9, 127 (1978).

§7C. M. Bishop and G. D. James, Nucl. Instrum. Methods Phys. Res. A 327,
580 (1993).

®8R. E. Bellman, Adaptive Control Processes (Princeton University Press,
Princeton, NJ, 1961).

1. T. Jollife, Principal Component Analysis (Springer, New York, 1986).

C. M. Bishop, P. Cox, P. Haynes, C. M. Roach, M. E. U. Smith, T. N.
Todd, and D. L. Trotman, in Neural Network Applications, edited by J. G.
Taylor (Springer, London, 1992), p. 114.

LC. M. Bishop, P. Cox, P. Haynes, C. M. Roach, M. E. U. Smith, T. N.
Todd, and D. L. Trotman, Neural Computation (to be published).

1832 Rev. Sci. Instrum., Vol. 65, No. 6, June 1994

721 Allen and C. M. Bishop, Plasma Phys. Control Fusion 34, 1291 (1992).

7C. M. Bishop, 1. Strachan, J. O’Rourke, G. Maddison, and P. Thomas,
Neural Comput. Appl. 1, 4 (1993). h

™V. A. Morozov, Methods for Solving Ill-posed Problems (Springer, Berlin,
1984).

753. B. Lister and H. Schnurrenberger, Nucl. Fusion 31, 1291 (1991).

D. G. Sandler, T. K. Barrett, D. A. Palmer, R. Q. Fugate, and W. J. Wild,
Nature 351, 300 (1991).

7K. J. Astrém and B. Wittenmark, Adaptive Control (Addison—Wesley,
Redwood City, CA, 1989).

BW. T. Miller, R. S. Sutton, and P. J. Werbos, Neural Networks for Control
(MIT Press, Cambridge, 1990).

7 Handbook of Intelligent Control, edited by D. A. White and D. A. Sofge
(Van Nostrand Reinhold, New York, 1992).

80T. Kohonen, Self-organization and Associative Memory, 3rd ed. (Springer,
London, 1989).

81R. P. Lippmann, Neural Comput. 1, 1 (1989).

8A. Lapedes and R. Farber, in Neural Information Processing Systems,
edited by D. Z. Anderson (American Institute of Physics, New York,
1988), p. 442.

8D, J. C. MacKay, Neural Comput. 4, 415 (1992).

%D. J. C. MacKay, Neural Comput. 4, 448 (1992).

$D.J. C MacKay, Neural Comput. 4, 720 (1992).

8W. L. Buntine and A. S. Weigend, Complex Syst. 5, 603 (1991).

87J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the T} heory of Neural
Computation (Addison—Wesley, Redwood City, CA, 1991).

8R. Hecht-Nielsen, Neurocomputing (Addison—Wesley, Redwood City,
CA, 1990).

Neural networks

111

T
|
l

