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Abstract: One of the key factors which limits the
use of neural networks in many industrial applica-
tions has been the difficulty of demonstrating that
a trained network will continue to generate reli-
able outputs once it is in routine use. An import-
ant potential source of errors is novel input data;
that is, input data which differ significantly from
the data used to train the network. The author
investigates the relationship between the degree
of novelty of input data and the corresponding
reliability of the outputs from the network. He
describes a quantitative procedure for assessing
novelty, and demonstrates its performance by
using an application which involves monitoring
oil flow in multiphase pipelines.

1 Introduction

Neural networks have been shown to have a useful
degree of performance over a wide range of industrial
and medical applications. However, a key factor which
limits the widespread implementation of neural-network
solutions in many areas has been the difficulty of demon-
strating that the outputs generated by the network in the
field are reliable. In general, the problem of network val-
idation is a difficult one, and it involves many issues,
some of which are generic to any software system. Here
we consider only those aspects which are specific to
neural networks and related methods.

It is useful to distinguish between two broad levels of
network validation. At the first level we provide, in addi-
tion to the network outputs, some associated measure of
confidence so that potentially unreliable outputs can be
detected. In many applications this will give a useful
degree of validation, since it could allow the bulk of the
input data to be processed with high confidence, with

remaining data either being discarded or processed by -

other means. An example would be the automation of
medical image interpretation for mass screening pro-
grammes, in which images that gave network outputs
with a low confidence could be rejected by the network
and interpreted instead by human experts. The second
level of validation requires a guarantee that the network
outputs are reliable for any achievable input vector. This
represents a much more rigorous degree of validation,
and it would be appropriate for networks used in safety-
critical applications, for example. In this paper we shall
consider only the first level of validation.
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Intuitively we expect that a network will generate reli-
able results when presented with data which are similar
to those used during training, but that when substantially
novel data are presented the network outputs will be
prone to serious error. In Section 2 we investigate the
relationship between the novelty of input data and valid-
ity of network outputs, and we use this as the basis of a
practical system for network validation [2]. The tech-
nique is illustrated in Section 3 using an example from
the monitoring of multiphase flows in oil pipelines. Pos-
sible extensions of this approach are discussed in Section
4.

2 Netwark validation

Consider a feedforward network trained by minimising a
sum-of-squares error function. If we denote the joint
probability density functions for the training data by
p(x, t;), then we can write the error in the form

E= i fU,{x; w) — t;1p(x, t)) dx dt, (1)
=1

where j = 1, ..., c labels the output units, x is the input
vector to the network, y; denotes the output from unit j,
and t; is the target value for that unit. The network
corresponds to a set of functional mappings yfx; w),
parametrised by a set of weights and biases w whose
values are found by minimising E.

We note that the joint density p(x, ¢;) can be factorised
into the product of the unconditional density of the input
data p(x) and the conditional density of the target data
p(t;| x). After some simple algebra, we can then rewrite
the error of eqn. 1 in the form

E= éil Lyix; w) — <t;1x>1%p(x) dx

+ 3 [(<dio - oo @

where we have defined the conditional averages of the
target data as

ylx) = thp(tjlx) dt, €]

x) = ft}p(tjlx) dt; @

Note that only the first term in eqn. 2 depends on the
network weights. Provided that the functions y(x; w)
have sufficient flexibility, for instance if they correspond
to a network with a sufficient number of hidden units,
then the minimum of this error function occurs when

yilx; w) = <l x> 6

so that the network outputs represent the regression of
the target data, conditioned on the input vector. Note
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that we are implicitly assuming an infinitely large data
set, as we have replaced sums over data points with
integrals over distributions. For finite data sets, it is
necessary to limit the complexity of the network to
control the trade-off between the bias and the variance of
the solution. In principle, the solution given by eqn. 5
would then be obtained by considering a sequence of
ever larger data sets and correspondingly more flexible
network functions, such that (in the limit) both the bias
and the variance of the solution are made to vanish [3].

The neural network solution represented by eqn. 5 can
be regarded as optimal in the sense that, if the training
data were to be generated from a deterministic function
with superimposed zero-mean noise, then the network
would average over the noise and learn the underlying
function. Similarly, for classification problems in which
the training data are labelled using a 1-of-N target
coding scheme, eqn. 5 implies that the network outputs
represent the posterior probabilities of the input vector x
belonging to the corresponding classes, and so they can
again be regarded as optimal. Note that the residual
value of the error function at the minimum is given by
the second term in eqn. 2, which represents the average
variance of the noise on the data. Since this term is inde-
pendent of the network weights, it plays no role in
network training.

The key point to note is that the first term in the error
function of eqn. 2 is weighted by p(x) which represents
the unconditioned density of the input data. In a pract-
ical application the goal of network training is to find a

good approximation to the regression by minimisation of -

a sum-of-squares error defined over a finite training set.
From eqn. 2 we expect this approximation to be most
accurate in regions of input space for which the density
p(x) is high, since only then does the error function pen-
alise the network mapping if it differs from the regression.
In regions of input space where p(x) is small, there is little
contribution to E if the network outputs y(x; w) and the
regression functions {t;|x) differ significantly. A similar
argument applies to other error functions, such as the
cross-entropy.

This suggests that the unconditional density can
provide an appropriate quantitative measure of novelty
with respect to the training data set. If a new input vector
falls in a region of input space for which the density p(x)
is high then the network is effectively interpolating
between training data points, and the network per-
formance will generally be good. If the input vector falls
in a region of input space for which p(x) is low, then the
input is essentially novel and the network could easily
generate erroneous outputs.

We therefore arrive at the following procedure for
validating network outputs. The data which are used to
train the network are also used to construct an estimate
p(x) of the (unknown) density p(x). Standard cross-
validation (using partitions of the training set) may be
used at this point to optimise the network topology and
the values of regularisation parameters, and this can also
serve to optimise any smoothing parameters in the
density model p(x). When the network is in use, each new
input is presented to the trained network, and is also
used to evaluate p(x) to provide a quantitative measure of
the degree of novelty of the input vector. Input vectors x
which have relatively small values of p(x) are those which
are likely to generate spurious outputs. This is illustrated
schematically in Fig. 1.

From eqn. 2 we see that the sum-squared error
between the network outputs and the regression is
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weighted by a variance factor of the form

a,(x) = {p(x)} 1/ ‘ (6)

S(x)

o
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Fig.1  Use of the unconditional probability density to measure the
degree of novelty of new input vectors

x denotes the vector of input variables to the network, the circles denote the
training data, and the curve depicts a model p(x) for the unconditional density
estimated from the training data points. A new input A4, for which p(x) is large, is
considered to be similar to the training data, while an input B, for which p(x) is
small, is considered novel

and this can be used to assign x-dependent error bars to
the network outputs y,(x), via the model p(x). Thus for
each new input vector x we obtain the values of the
network outputs y;, together with a value o, for the con-
fidence associated with this value. Note that this con-
fidence value reflects the uncertainty in the value of the
network estimate for the regression, and it is distinct
from the variance of the target values around their condi-
tional mean as determined by the intrinsic noise on the
target data. .

In some applications it will be more appropriate to

- place a threshold on p(x) and to reject all new data points

for which p(x) falls below this threshold. The justification
for such an approach is as follows. In applying a thresh-
old we are implicitly classifying all new input vectors into
one of two classes: those which are similar to the training
data, which we denote by class C,; and those which are
novel, which we denote by class C,. The training data
are assumed to be drawn entirely from C,, whereas new
data could arise from either class, with prior probabilities
P(C,) and P(C,), respectively, where P(C,) + P(C,) = 1.
Given a new input vector x, we wish to assign it to one of
the two classes in such a way as to minimise the prob-
ability of misclassification. This is achieved when the
vector is assigned to the class with the larger posterior
probability [4], so that the vector is assigned to class C;
if

P(C,|x)> P(C;|x) ()
and to class C, otherwise. From the Bayes theorem the
posterior probability of the vector x to belong to class C;
is given by
p(x| C)P(C)

m(x)

where the unconditional density n(x) is given by

n(x) = P(x| C;)P(C,) + P(x| C,)P(C,) )

which acts as a normalisation factor and ensures that the
posterior probabilities sum to unity.

P(Cy|x)+ P(C,lx) =1 10)

Since the denominator in eqn. 8 is the same for both
classes, it can be omitted from the comparison of prob-
abilities needed to assign x to a particular class. Using

P(Ci|x) = ©)
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eqns. 7 and 8, we therefore assign x to class C, if

p(x| Cr)P(C,)
P(Cy)

and otherwise to class C,. The quantity p(x|C,) is the
probability density from which the training data were
drawn, which we have modelled by p(x). The density
p(x| C,) represents the distribution of novel data, and so
by definition we can have little idea of what form it
should take. The simplest assumption is to take it to be
constant over some large region of input space, falling to
zero outside this region to ensure that the density func-
tion can be normalised. (In many applications, such as
the one discussed in the next Section, the range of pos-
sible input values will in fact be bounded.) In this case the
condition 11 is then equivalent to a threshold on p(x).
This is illustrated in Fig. 2.

D(XIC‘|)P(C]>

p(x|Cy) > (11

p(x|Co)P(Cy)
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1
“— Ry — Ry Ry —»

Fig. 2  Bayesian formalism for determining whether a new input vector
is novel

It is assumed that the training data have arisen from class C, with prior probabil-
ity P(C,) and distribution p(x|C,) (which we model using j(x)), and that novel
data are drawn from class C, with prior probability P(C,) whose distribution
function p(x | C,) is taken to be constant over some large region of input space.
From Bayes theorem, the optimal decision boundary for classifying new data as
novel is equivalent to a threshold on p(x|C,). This divides the input space into
two (possibly disjoint) regions R, and R, such that new input vectors which fall in
the region R, are classified as novel

More generally, we might suppose that the density of
novel data should be smaller in regions of input space
where the density p(x) is large. Thus we could choose
p(x|C,) to be of the form F(p(x|C,)), where F(-) is a
monotonically decreasing function. It is easily seen that
this too gives rise to a threshold criterion on p(x|C,),
which takes the form

- P(cl))
G Y —==*) = const. 12

px| Cy) > <P(C2) (12)
where G(z) = F(z)/z. Since F(-) is monotonic, so too is
G(-), and hence G ! is unique.

In a practical application of neural networks, an inde-
pendent test set (one not used in the training and cross-
validation process) is generally used to confirm the
performance of the trained network. The same test can
also be used to find a suitable threshold value for p(x).
This is achieved by evaluating p(x) for all points in the
test set, and then choosing a value for the threshold such
that most (or all) of these points are classified as belong-
ing to C,. This procedure will be illustrated in the next
Section.

Many conventional techniques exist for constructing
probability density estimates p(x) from finite samples
[4, 9] and various adaptive ‘neural’ approaches have also
been suggested. In the next Section we illustrate these
ideas using one of the standard methods for density
estimation.
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3 Example application

To illustrate the concept of novelty detection as the basis
of a practical system for network validation, we consider
a specific industrial application of neural networks con-
cerned with the determination of the oil fraction in a
multiphase oil pipeline. Full details of this application
can be found in Reference 1.

To reduce costs, the oil industry makes use of multi-
phase pipelines to transfer mixtures of oil, water and gas
directly from offshore production fields to an onshore
facility where the various components can be separated.
This has led to the need for an effective noninvasive
method for monitoring the oil fraction in such pipes, with
sufficient accuracy for reservoir monitoring and custody
transfer purposes. The problem is a complex one owing
to the fact that the multiphase flow can exhibit a wide
variety of configurations, and that numerical modelling
of such flows is notoriously difficult.

One technique to determine the phase fractions in the
pipeline uses multiple-beam dual-energy gamma dens-
itometry [1], which is based on the attenuation proper-
ties of gamma beams passing through the pipe. The
degree of attenuation of a gamma beam depends on the
particular material in the path of the beam (expressed in
terms of an absorption coefficient), the length of material
through which the beam passes, and the gamma energy
(ie. wavelength). Fig. 3 shows a schematic illustration of

''''' fg/ gas

Xw
) Y \ water

Fig. 3  Gamma beam passing through a pipe containing water, oil and

. gas in a stratified configuration

a collimated gamma beam passing through a circular
cross-section pipe containing water, oil and gas in a strat-
ified configuration.

We wish to determine the path lengths x,,, x, and X,
in each of the three phases. By measuring the attenuation
of the beam at two energies we obtain two independent
pieces of information. The constraint that the three path
lengths must sum to the total path length, so that x,, + x,
+ x, =L, provides a third piece of information
Knowing the absorption coefficients of the gamma beam
in each of the three phases at each energy, it is then
straightforward to evaluate the required path lengths [1].

If measurements could be made along many transverse
paths through the pipe, it would in principle be possible
to perform a tomographic reconstruction of the phase
configuration, and hence to calculate the oil fraction. In a
practical system, however, only a few lines of sight will be
available, and so alternative analysis methods need to be
used.

We have investigated linear mapping methods, as well
as neural networks based on the multilayer perceptron
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(MLP), to analyse the outputs from the densitometer [1].
It is found that the nonlinearity offered by the MLP gives
a useful improvement in performance over the linear
approach, and reduces the RMS error on new data by a
factor of about two. We have considered a system with
three vertical and three horizontal beams, with each of
the six detectors generating two signals which correspond
to the attenuation at each of the two wavelengths. These
are first preprocessed to extract the fractional path
lengths along the lines of sight in the oil and water
phases. (The fractional path lengths in the gas phase are
not considered because they represent redundant
information). The resulting 12 numbers are used as inputs
to a multilayer perceptron with a single hidden layer of
sigmoidal units followed by two linear output units
whose activations represent the fractions of oil and water
in the pipeline.

For the purposes of this study synthetic data have
been generated using configurations selected at random
from the four examples shown in Fig. 4. Note that these

stratified annular
’.-szs

N
y 4 AN
ﬂ B
A | J

\
N\ v
i
inverse annular homogeneous

Fig. 4  Cross-sections of a pipe illustrating the four multiphase config-
urations used for network training

Data generated from a fifth configuration, ‘inverted-stratified’, are used to rep-
resent novel data

gas

W oil

[0 water

configurations are chosen mainly for computational sim-
plicity, and they do not necessarily give accurate repre-
sentations of real multiphase flows. They are, however,
sufficiently representative for the purposes of the present
study. An important feature of this synthetic data is that
the distribution of noise can be accurately modelled, as
discussed below. To generate a data point, a config-
uration is chosen at random with equal probability from
the four shown in Fig. 4. The oil, water and gas fractions
are then also selected at random by choosing three
numbers F,, F, and F, at random with uniform distribu-
tions in the range (0, 1), and then calculating the. oil frac-
tion f, using
F,

Jo F,+F,+F, (13
with similar expressions for the water and gas fractions.
This ensures that the three fractions sum to unity. The
path lengths are then calculated, allowing for the effects
of noise. In a practical system, the dominant contribution
to the noise arises from the photon statistics, owing to
the limited integration time of the detectors (necessary to
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avoid averaging over temporal variations in the flow) and
the limited source strength of the gamma beams, and has
been accurately modelled with the correct Poisson sta-
tistics.

For a training set with 1000 points, the best gener-
alisation performance is obtained from a network with
eight hidden units. Fig. 5 shows a plot of the predicted oil

1.0[-

predicted oil fraction

0 e 1 I
0 0.5 1.0
actual oil fraction

Fig. 5  Scatter plot of the oil fraction predicted by the neural network
against the actual oil fraction

The original test set contains 1000 points

fraction against the actual oil fraction for 1000 points in
an independent test set. It is clear that the network can
predict the oil fraction with high accuracy. In a practical
application of this technique the network would be
trained using data from a multiphase flow test rig in
which a variety of conditions, typical of those which arise
in practice, can be produced.

To determine the degree of novelty of the input data
we need a procedure to estimate the unconditional prob-
ability density p(x) which corresponds to the training
data set. For simplicity we have chosen '‘a standard
Parzen window approach with Gaussian kernel functions
[9]. We shall discuss alternative approaches in Section 4.
The Parzen estimator has one kernel function for each
point in the training set, with its centre given by the cor-
responding input vector. For Gaussian kernels this gives
a density model of the form

— x4]2
p(x) = n(2n)"/2 y Zexp{ l_xza_xl} 14)

where x? represents a data point from the training set
(which consists of n points in total), and d is the dimen-
sionality of input space (so that here d =12 The
smoothing parameter o controls the degree of smooth-
ness of the estimated density function, and its value must

~ be neither too large (since this gives the estimate a large

bias) nor too small (since this gives the estimate a large
variance). We have adopted the simple heuristic of setting
o to the average distance of the ten nearest neighbours
from each point in the training set, averaged over the
whole training set. This gave a value of o close to that
obtained using cross-validation.
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To test the performance of this novelty detector we
have generated a further data set which consists of 1000
examples with randomly chosen oil and water fractions,
each corresponding to a fifth ‘inverted-stratified’ config-
uration which is obtained by inverting the stratified con-
figuration of Fig. 4.

The value of the density function p(x) for a new value
of x is generally called a likelihood. Fig. 6 shows a plot of
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log likelihood
Fig. 6  Magnitude of the oil fraction error from the neural network
prediction against the log likelihood from the novelty detector
1000 points from the original test set are shown

the log likelihood against the magnitude of the error
between the oil fraction predicted by the neural network
and the true value obtained from the data set, for the
1000 points from the test set used to plot Fig. 5. We see
that the points all have large values for the log likelihood,
and that the network output errors are correspondingly
small. By comparison, Fig. 7 shows the corresponding

O.SF

oil fraction error

log likelihood

Fig. 7  Magnitude of the oil fraction error from the neural network
prediction against the log likelihood from the novelty detector

1000 points corresponding to inverted-stratified configurations are shown

plot (on the same scale) for the 1000 examples of the
novel inverted-stratified configuration. The majority of
these points have log likelihood values which are sub-
stantially smaller than those of the test set points, and a
corresponding larger range of oil fraction errors. We see
that the network can indeed generate poor results when
presented with data from this new configuration. Such
data points can, however, easily be rejected on the basis
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of their log likelihood values. Setting a threshold any-
where between —5 and — 10 would reject all data points
with significant phase fraction errors.

It can also be seen from Fig. 7 that there are some
inverted-stratified points which have log likelihood
values comparable to those from the original test set.
Examination of the phase fractions for these points
shows that they represent configurations which could
also be classified as stratified configurations. For
instance, if the oil phase fraction is sufficiently large then
the three horizontal beam lines pass through oil only,
and there exist stratified and inverted-stratified config-
urations which have the same phase fractions and which
give rise to the same 12 path length measurements. The
novelty detector ‘correctly’ interprets these as being
similar to the training data, and indeed the network pre-
dicts the phase fraction with high accuracy.

4 Discussion

In this paper we have considered the problem of valid-
ating the outputs generated by a trained neural network,
once it has been installed in an application. One of the
most important sources of high errors in network predic-
tions arises from novel input data, i.e. data which differ
significantly from those used to train the network. We
have shown that novelty can be quantified by modelling
the unconditional probability density of the input data
used during training, and by subsequently evaluating this
density for all new data points. This can be used to assign
error bars to the network outputs, or it can be used to
classify input vectors on the basis of a novelty threshold.

We have illustrated the technique of novelty detection
using a simple kernel-based estimator of the uncon-
ditonal input density. Such an estimator is easy to imple-
ment and fast to train, but it is computationally
expensive to evaluate for new data points, since the
number of kernel functions is equal to the number of
data points in the training set. An alternative approach is
to use a semiparametric estimator, constructed from a
Gaussian mixture model of the form

CEDLTICR (13
where

1
¢ix) = ) 5,72 %P {=Ce— ) 27 e — p)} (16)

where Z, is the covariance matrix, and the mixing coeffi-
cients a, satisfy

o0 =1 7

3

o

1

13

The parameters a;, u; and X, are adaptive parameters of
the model, and their values are chosen by maximising the
log likelihood of the training data with respect to the
model p(x), given by

n

log & = Y log p(x9) 18)
q=1 .

This can be done by using standard optimisation algo-

rithms (such as conjugate gradients) or by using re-

estimation techniques based on the EM algorithm [6].

The optimum value for the number of components m can

be found by cross-validation. By comparison with the
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simple Parzen method used in Section 3, the Gaussian
mixture model requires significantly more computational
effort to train. However, since the value of m is generally
much smaller than the number of training data points,
the computation time needed to evaluate p(x) will typic-
ally be much less than with the Parzen estimator. Tech-
niques for density estimation in which the number of
basis functions is grown incrementally as part of the
learning process, have been proposed in Reference 10,
and these can also be used to measure novelty. In this
case an appropriate threshold to detect novelty arises
naturally as part of the training process.

We have discussed the validation of network outputs
in terms of the detection of novelty with respect to the
network input vectors. However, many practical applica-
tions of neural networks require that the raw input data
be preprocessed before presentation to the network. This
is especially important for problems with many input
variables, from which a relatively small number of fea-
tures are usually extracted. In such cases the novelty
detection should be performed at the inputs to the pre-
processing stage. This is important because the pre-
processing itself is generally not information-preserving
(for instance, it will often involve a reduction in
dimensionality). Thus an input vector which is novel
could be mapped to a vector at the inputs to the network
which is similar to the training data, and which therefore
would not be detected as novel.

An exception to this arises, however, when the pre-
processing is constructed on the basis of some form of
prior knowledge which is believed to hold accurately. For
example, we know that the classification of the image of a
character should be invariant to translations. In such
cases, novel inputs whose novelty arises solely from
application of the transformation should be accepted,
because we expect the network to generate a satisfactory
response, and so the novelty detection should be applied
after the preprocessing.

The above discussion also makes it clear why (in
general) it is incorrect to measure novelty in the space of
activations of the hidden units in a network, since the
transformation from inputs to hidden units is not in
general information-preserving. There is one situation,
however, in which the information provided by the
activations of the hidden units can be used in the deter-
mination of novelty. The hidden units of a radial basis
function network can be configured using unsupervised
techniques based on density estimation in the input space
[5, 8]. This might, for instance, be done using the
approach discussed above to adapt the parameters of a
Gaussian mixture model. In this case the resulting basis
function ¢,(x) can be used directly as the hidden units in
a radial basis function neural network, in which the
second-layer weights are found by minimising a sum-of-
squares error function using linear techniques. If the
values of the mixing coefficients «;, found from the opti-
misation of the basis functions, are retained they can be
used to provide an estimate of the likelihood of new
input data. In this case the «; can be considered as
weights to an extra output unit whose activation, given
by eqn. 15, represents the likelihood. Such a network
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combines in a natural way the generation of predictions,
and the validation of those predictions, into a single
network structure, as indicated in Fig. 8. (A related

likelihood
A
p(x) Y1 Ye

inputs

Fig. 8  Radial basis function network in which the basis functions are
used both in the evaluation of the network outputs y£x), and to provide an
estimate p(x) of the likelihood of input data for validation of the outputs

scheme, called the ‘validity index’ network, was proposed
in Reference 7. An important difference is that the tech-
nique described above makes use of a principled method
for density estimation based on maximum likelihood
with respect to a Gaussian mixture model, rather than
the more complex heuristic approach discussed in Refer-
ence 7.) Note, however, that the optimum choice of basis
functions for density estimation need not be the optimum
for prediction of the values of y, .
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