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One sentence summary:  

HIV transmission selects for viruses with high in vivo fitness, especially among males lacking 

genital ulcers or inflammation. 

Abstract:  

Heterosexual transmission of HIV-1 typically results in one genetic variant establishing systemic 

infection.  We compared, for 137 linked transmission pairs, the amino acid sequences encoded 

by non-envelope genes of viruses in both partners and demonstrate a selection bias for 

transmission of residues that are predicted to confer increased in vivo fitness on viruses in the 

newly infected, immunologically naive recipient. Although tempered by transmission risk 

factors, such as donor viral load, genital inflammation, and recipient gender, this selection bias 

provides an overall transmission advantage for viral quasispecies that are dominated by viruses 

with high in vivo fitness. Thus, preventative or therapeutic approaches that even marginally 

reduce viral fitness may lower the overall transmission rates and offer long-term benefits even 

upon successful transmission. 
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SUMMARY 

Introduction: Heterosexual HIV-1 transmission is an inefficient process with rates reported at 

<1% per unprotected sexual exposure. When transmission occurs, systemic infection is typically 

established by a single genetic variant, taken from the swarm of genetically distinct viruses 

circulating in the donor. Whether that founder virus represents a chance event or was 

systematically favored is unclear. Our work has tested a central hypothesis that founder virus 

selection is biased toward certain genetic characteristics.  

Rationale: If HIV-1 transmission involves selection for viruses with certain favorable 

characteristics, then such advantages should emerge as statistical biases when viewed across 

many viral loci in many transmitting partners. We therefore identified 137 Zambian heterosexual 

transmission pairs, for whom plasma samples were available for both the donor and recipient 

partner soon after transmission, and compared the viral sequences obtained from each partner to 

identify features that predicted whether the majority amino acid observed at any particular 

position in the donor was transmitted. We focused attention on two features: viral genetic 

characteristics that correlate with viral fitness, and clinical factors that influence transmission. 

Statistical modeling indicates that the former will be favored for transmission, while the latter 

will nullify this relative advantage. 

Results: We observed a highly significant selection bias that favors the transmission of amino 

acids associated with increased fitness. These features included the frequency of the amino acid 

in the study cohort, the relative advantage of the amino acid with respect to the stability of the 

protein, and features related to immune escape and compensation. This selection bias was 

reduced in couples with high risk of transmission. In particular, significantly less selection bias 

was observed in women and in men with genital inflammation, compared to healthy men, 

suggesting a more permissive environment in the female than male genital tract. Consistent with 

this observation, viruses transmitted to women were characterized by lower predicted fitness 

than those in men. The presence of amino acids favored during transmission predicted which 

individual virus within a donor was transmitted to their partner, while chronically infected 

individuals with viral populations characterized by a predominance of these amino acids were 

more likely to transmit to their partners. 
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Conclusion: These data highlight the clear selection biases that benefit fitter viruses during 

transmission in the context of a stochastic process. That such biases exist, and are tempered by 

certain risk factors, suggests that transmission is frequently characterized by many abortive 

transmission events in which some target cells are nonproductively infected. Moreover, for 

efficient transmission, some changes that favored survival in the transmitting partner are 

frequently discarded, resulting in overall slower evolution of HIV-1 in the population. 

Paradoxically, by increasing the selection bias at the transmission bottleneck, reduction of 

susceptibility may increase the expected fitness of breakthrough viruses that establish infection 

and may therefore worsen the prognosis for the newly infected partner.  Conversely, preventative 

or therapeutic approaches that weaken the virus may reduce overall transmission rates via a 

mechanism that is independent from the quantity of circulating virus, and may therefore provide 

long-term benefits even upon breakthrough infection. 

  

Fitter viruses (red) are favored more in woman-to-man than in man-to-woman transmission. The probability that a 

majority donor amino acid variant is transmitted is a function of relative fitness, here estimated by the frequency of the 

variant in the Zambian population. Even residues common in the population are less likely to be transmitted to healthy 

men than to women, indicative of higher selection bias in woman-to-man transmission. 
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Introduction 

Heterosexual HIV-1 transmission is characterized by a severe genetic bottleneck, in which 

infection is typically established by a single genetic variant selected from the large and diverse 

quasispecies typically present in the donor (1-7). The source of this bottleneck is likely mediated 

by multiple physical and immunologic factors that limit which virus particles can reach the 

genital tract, penetrate the mucosal barrier, productively infect target cells, and then traffic out of 

the mucosa for systemic dissemination—the sum total of which effectively blocks transmission 

in >99% of unprotected sexual exposures (8, 9).  

One potential source of this bottleneck is the unique environment of the male and female genital 

tracts, which may feature different target cell populations than those the majority of viruses face 

in systemic infection. The Envelope (Env) protein, expressed on the surface of virus particles, 

determines target cell specificity; thus variations in target cell populations are likely to exert 

selection pressure on the virus. Indeed, selection pressure appears to favor viruses encoding 

envelope proteins that utilize CCR5 as a co-receptor (10), that favor target cells more likely to be 

trafficked out of the gut (11), and that have higher Env concentrations (12). There is also 

evidence that envelopes with lower levels of glycosylation (1-3, 13) and that are closer to 

ancestral sequences (14, 15) are similarly favored. Glycosylation serves as a steric shield from 

the humoral immune response (16), while the move toward an ancestral state may involve the 

reversion of immunological escape mutations. Because the naïve host lacks an HIV-specific 

adaptive immune response, these escape features are no longer necessary and any fitness cost 

associated with them may become a hindrance in transmission.  

If general fitness plays a role in transmission, then fitness preferences will manifest themselves 

in non-envelope proteins as well, the possibility of which has been recently suggested by 

observations that transmitted founder viruses are relatively more resistant to -interferon (12, 

17), a phenotype that is unlikely to be dependent on Env. The ability of virus particles to grow 

and efficiently infect target cells has clear pathological consequences, with in vitro 

measurements of viral replicative capacity (vRC) correlating with viral loads (VL) and CD4 

decline in both acute and chronic infection (18-21). Importantly, VL is also closely linked with 
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the odds of transmission, raising the possibility that general in vivo viral fitness could play a 

significant role in the transmission process as well. 

The severe nature of the transmission bottleneck suggests that the selection of the breakthrough 

virus is a stochastic process in which a virus with a modest growth advantage in the mucosal 

compartments would be more likely to succeed in establishing infection. When viewed across 

many linked transmission partners, such viral advantages should emerge as measurable statistical 

biases. We provide evidence here that the genetic bottleneck imposes a selection bias for 

transmission of amino acids that are consensus in the cohort and are predicted to confer 

increased in vivo fitness in the newly infected, immunologically naive recipient. This bias is 

tempered by transmission risk factors, such as donor viral load, genital inflammation, and 

recipient gender, and provides an overall transmission advantage for viral quasispecies that are 

dominated by viruses with high in vivo fitness. 

Results 

Consensus residues are preferentially transmitted 

If some viruses with a general growth advantage are more likely to establish infection, then 

transmission of minority variants will be more frequent when the majority variant has lower 

fitness. To test this hypothesis, we collected plasma samples from 137 donors and their 

virologically linked seroconverting partners (recipients) a median of 46 days beyond the 

estimated date of infection (Table S1) and compared the amino acid variants determined by 

Sanger sequencing at each position in the Gag, Pol, and Nef proteins. Restricting our analysis to 

the 228,362 instances in which a dominant (non-mixture) residue was observed at a given 

position in both partners, we observed a clear bias for transmission of cohort consensus (≥50%) 

residues, with 99.65% of donor variants that matched cohort consensus transmitted to the partner 

compared with 92.61% of variants that were defined as polymorphisms (216,589 of 217,348 vs 

10,200 of 11,014; p<1e-16, Fisher’s exact test), indicating that donor minority variants are more 

likely to be transmitted when the donor majority variant differs from the cohort consensus. An 

example of this bias was observed at Nef71, which is adjacent to the critical PxxP motif 

implicated in SH3 domain binding and MHC Class I down regulation (22, 23). Among the 114 

donors where the consensus arginine was observed as the dominant donor variant, arginine was 



 

 

7 

 

transmitted to 112 recipients; in contrast, the dominant residue was transmitted from only 7 of 14 

donors where polymorphic lysine or thronine was dominant (p=1e-6, Fisher’s exact test), 

suggesting a bias toward the transmission of consensus arginine at this site. 

Within each couple, a median of 99.69% of donor sites matching cohort consensus were 

transmitted, compared to only 94.38% for polymorphic donor sites (p<1e-16, sign-rank test) 

(Fig. 1A). Similar results were observed for sites in the donor where we observed a mixture of 

two amino acids in the population sequences but a single amino acid in the recipient: in these 

instances, consensus was still preferentially transmitted (median 60%, p=1.9e-10, sign-rank test), 

suggesting that this result was not driven by perfectly conserved sites that would be expected to 

be similarly conserved in the host (Fig. 1B). 

Modeling selection bias 

To further investigate the apparent bias against the transmission of non-consensus amino acids, 

we modeled transmission as a binomial mixture process, which assumes that each virus in the 

donor quasispecies is part of a subpopulation, and each virus within that subpopulation is equally 

and independently likely to establish infection (see methods). Assuming a low probability of 

transmission, the odds that a donor amino acid 𝑎 at a given position is observed in the recipient 

founder virus 𝐹 is approximately the relative frequency of 𝑎 in the donor quasispecies multiplied 

by the relative selection advantage of 𝑎, given by 

Pr(𝑎 ∈ 𝐹)

Pr(𝑎 ∉ 𝐹)
≈

𝑓𝑎

1 − 𝑓𝑎
×

𝑝𝑎

𝑝𝑎
, 

where 𝑓𝑎 is the frequency of viruses with 𝑎 in the donor quasispecies, and 𝑝𝑎/𝑝𝑎 is the relative 

advantage for transmission that viruses with 𝑎 have over viruses without 𝑎 (𝑎) (𝑝𝑎 is the a priori 

probability that a virus of type 𝑎 will establish infection, and similarly for 𝑎 ). We refer to this 

latter ratio as the selection bias and say that the transmission bottleneck is unbiased if the ratio is 

one (i.e., if there is no selection advantage for or against 𝑎). The log of this approximation yields 

the following linear relationship: 

 logodds(𝑎 ∈ 𝐹) ≈ logodds(𝑓𝑎) + bias𝑎, (1) 

in which the log-odds that the founder virus 𝐹 includes a virus with 𝑎 is approximately the log-

odds of the frequency of 𝑎 in the donor quasispecies, shifted by the extent of selection bias 



 

 

8 

 

(bias𝑎 = log (
𝑝𝑎

𝑝𝑎
)) for or against 𝑎. We use increased selection bias to refer to an increase in the 

absolute value of the bias, and decreased selection bias to mean the bias moves toward zero. The 

bias can be modeled as a linear function of fixed or random effects, allowing the estimation of 

the effects of features of interest on overall selection bias.  

Confirmation of statistical model by deep sequencing 

We confirmed the above relationship by deep sequencing of viruses from five linked 

transmission pairs, treating 𝑎 as an indicator that a virus matches the donor dominant variant in 

the virus quasispecies at a particular site, then treating each site as an independent set of 

observations, to obtain sensitive estimates of the frequency of each site (𝑓𝑎) in each donor. We 

observed a linear relationship between the log-odds of 𝑓𝑎 and the observed log-odds of the 

transmission probability, with a clear bias against transmission of non-consensus polymorphisms 

(Fig. 2A), consistent with Eq. 1.  For example, an amino acid observed in 85% of the donor 

viruses will be transmitted with 85% probability if it matches cohort consensus, compared to 

only a 65% probability if it does not.  

Odds of transmission is predicted by factors related to viral fitness 

Although the frequency of the amino acid in the cohort (cohort frequency) and in the donor’s 

quasispecies (quasispecies frequency) were weakly correlated (Spearman ρ =0.18, p<1e-16; Fig 

S1), each was a significant predictor in a multivariable logistic regression model of transmission 

(p<5e-9; Table 1), consistent with cohort frequency serving as a marker of selection bias. We 

therefore examined the relationship between the cohort frequency of a donor amino acid and the 

odds of transmission in all 137 linked transmission couples and observed a strong continuous 

relationship between cohort frequency and transmission probability, both at sites where a 

mixture of amino acids was observed in the donor (Fig. 2B) and at sites where a single residue 

was observed (Fig. 2C). The continuous nature of these transmission/frequency curves is striking 

and indicates that even small changes in the relative cohort frequency of an amino acid will have 

a measurable effect on the odds that that amino acid will be transmitted.  

Although cohort frequency is not a direct measure of in vivo fitness, as it may also reflect 

founder effects or genetic drift, it likely correlates with population-wide in vivo fitness. We thus 
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hypothesized that features that independently predict in vivo fitness would modulate the 

frequency/transmission curve. First, we found that in silico predicted protein stability costs of 

amino acid substitutions modulated the transmission curve, such that amino acids with minimal 

impact on the protein structure were most likely to be transmitted (Fig. 2D). Our in silico 

measure of protein stability was, by construction, biased toward consensus residues, which were 

most likely to match the sequence of the protein used to define the crystal structure. 

Nevertheless, we found that, for any given cohort frequency, an amino acid that did not impact 

the structure was more likely to be transmitted than an amino acid with a large impact (in the 

case of polymorphisms), or than a residue that occurred at a site where many other residues were 

equally well suited for the structure. Similarly, we found that the number of putative 

compensatory mutations associated with a given amino acid residue (as estimated from statistical 

linkage (24)) was correlated with an increased probability of transmission, consistent with such 

mutations being fixed by the compensations, or of compensatory mutations reducing the fitness 

cost that would otherwise be predicted by cohort frequency (Fig. 2E). Finally, sites consistent 

with immune escape from the donor’s HLA alleles (Fig. 2F, S2A-C) were less likely to be 

transmitted, consistent with replicative costs frequently associated with uncompensated immune 

escape mutations (18, 19, 25). We also observed a bias against transmission of residues that 

could be targeted by the recipient’s HLA alleles (Fig. S2D). This may suggest a selection 

advantage for pre-escaped viral sequences, though rapid escape and fixation after transmission 

could not be ruled out as an alternative cause. Differences were also observed among viral 

proteins (Fig. S2E and F), though such differences may primarily reflect differences in 

quasispecies diversity.  

Each of these features was significant in a multilevel, multivariable logistic regression model 

(26) that included per-couple random effects to account for correlated regression residuals 

among sites taken from the same couples (Table 2). Thus, because each of these features is 

consistent with in vivo fitness, the transmission bottleneck appears to favor viruses with 

replicative advantages (i.e., bias𝑎 ≠ 0). 
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Transmission risk factors reduce selection bias 

The selection bias is defined above as the relative ability of viruses of type 𝑎 to establish 

infection.  Some risk factors increase the odds that any virus will establish infection.  If a risk 

factor increases the ability of each virus to establish infection by a constant factor c, as opposed 

to simply increasing the frequency of exposure or the viral dosage upon exposure, then the 

resulting selection bias is approximately log
𝑝𝑎+𝑐

𝑝𝑎+𝑐
, which tends toward zero as c becomes large 

relative to 𝑝𝑎 and 𝑝𝑎. Such risk factors will therefore reduce the selection bias. To test for a 

reduction in selection bias during transmission, we analyzed three previously reported risk 

factors: donor viral load (VL) (27, 28), male-to-female transmission (29), and the presence of 

genital ulcers or inflammation (GUI) in the recipient partners over the 12-month period prior to 

the event of transmission (30, 31). We observed a significant reduction in selection bias (most 

easily seen as a reduction in the effect of cohort frequency on transmission) for couples in which 

the donor had a high VL (Fig 3A) or the recipient was a female (Fig. 3D). Although presence of 

GUI had no effect on female recipients, GUI eliminated the increased selection bias experienced 

by male recipients (Fig. 3D). Consistent with prior observations that donor VL is a more 

important risk factor for male than female recipients (27), increased donor VL reduced the 

bottleneck in female-to-male (Fig. 3B), but not male-to-female (Fig. 3C), transmission, with high 

donor VL eliminating the increased selection bias experienced by GUI-negative male recipients 

(Fig. 3D-F). A composite risk index (standardized donor VL plus one if the recipient is female or 

a male with GUI) was significant in a multilevel, multivariable logistic regression model (p=6E-

5; Table 2).  

Under the assumption that the number of transmitted viruses is binomially distributed (i.e., the 

per-virus particle probability of transmission is independent and identically distributed), the size 

of the donor viral population will not substantially impact selection bias (See supplementary 

Notes S1 and S2 and fig. S3 for a further discussion on this topic). Thus, these results suggest 

that the increased risk of transmission among male recipients that is linked with higher donor VL 

is attributable, at least in part, to increased in vivo viral fitness, consistent with the observation 

that donor VL is correlated with higher in vitro replicative capacity and higher early set point 

viral load in recipient partners (32-34). In contrast, the reduction in selection bias experienced by 
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female recipients and male recipients with GUI suggests an overall reduced selection bias, which 

is more conducive to infection by lower-fitness variants. 

Variable reversion rates compensate for variations in selection bias 

Transmission of immune escape amino acids characterized by low fitness often results in gradual 

reversion to high-fitness (consensus) amino acids (35-39), suggesting that relative reversion rates 

can serve as a marker for the transmission of low-fitness variants. We hypothesized that, if the 

selection bias acts against the transmission of less fit polymorphisms, and such bias is reduced in 

female recipients, then the founder viruses of women will include a higher number of costly 

variants, which will revert more quickly than the variants transmitted to men. We therefore 

collected longitudinal plasma samples for 81 of the transmission pairs at an average interval of 3 

months out to 24 months post infection. Consistent with the selection bias analysis, consensus 

residues were transmitted at a greater proportion of polymorphic donor sites to male recipients 

compared to female recipients (5.98% vs 4.22%); as hypothesized, the rate at which transmitted 

polymorphisms reverted to consensus was significantly faster among female (0.24%/mo) than 

male recipients (0.12%/mo) (p=0.016; Fig. 4A; Fig. S4), providing further evidence that 

selection bias is less stringent in male to female than female to male transmission (Fig. 3D).  

When we included all selection bias features in a Cox-proportional hazard model of reversion 

from the early founder sequences through 24 months post infection, the relative hazard of all but 

one feature (the structural impact of an amino acid, which had no significant effect on reversion) 

was consistent with what would be predicted from selection bias: selection features consistent 

with increased viral fitness predicted slower reversion, while selection features consistent with 

increased susceptibility predicted faster reversion (Table S2). In addition, recipients who were 

transmitted a higher number of polymorphisms at sites where the donor was polymorphic had 

lower early set point VL (Spearman ρ=-0.34, p=0.002; Fig. 4B), consistent with previous reports 

that the in vitro gag fitness of early viral isolates (19, 21), as well as transmission of HLA-B 

escape variants (40, 41), predicts early set point VL.  This further corroborates the in vivo fitness 

costs of polymorphisms that are actively selected against during the transmission bottleneck and 

is consistent with our previous observation of a significantly lower VL in these women early in 

infection (34). 
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Estimating the odds of transmission of entire viral sequences and populations 

The selection bias models described above result in a predicted log-odds that a given residue at a 

given site will be transmitted. If we treat all sites within an individual as independent 

(conditioned on the protein), then the mean of the predicted log-odds over a given viral sequence 

yields a transmission index that estimates how likely overall an individual sequence is to be 

transmitted. Given the observed selection bias, we expect that founder viruses will tend to have 

above-average transmission indices relative to the donor quasispecies. Using limiting dilution 

single genome amplification, we obtained a median of 19 (range [4, 27]) gag sequences for each 

of 17 donors and compared the transmission indices of donor amplicons to those of the linked 

founder sequences. Overall, founder sequences had higher than expected gag transmission 

indices (Fig. 5A-B; p=0.02), though viruses with even higher transmissibility indices were 

frequently observed in the donor quasispecies, highlighting the stochastic nature of transmission. 

The observed variation in mean donor transmissibility suggests that some quasispecies are, on 

average, more transmissible than others and may therefore be more likely to establish infection. 

To test this, we obtained gag, pol and nef sequences from 181 risk-matched, chronically infected 

individuals who had not transmitted to their partners. Overall, chronically infected partners who 

had transmitted exhibited higher median transmission indices than individuals who had not yet 

transmitted (p=0.009; Fig. 5C), an effect that remained significant when controlling for the donor 

VL, recipient gender, and GUI risk factors (Table S3).  

Discussion 

The recognition that a single virus, or at most a handful of viruses, establishes infection led to 

great optimism that the defining characteristics of transmitted founder viruses would be readily 

identified, leading to a clear vaccine strategy. Although selection bias has been observed to act 

upon the Env protein (1-3, 10, 12, 42), and may favor viruses that are relatively resistant to 

interferon-α (12), no deterministic features have yet been identified. Rather, the bottleneck 

appears to act at a stochastic level, favoring, though not exclusively, viruses with higher overall 

fitness in the context of the mucosal compartment. Here we show that selection bias also acts on 

non-Env proteins and can be estimated by such generic features as the effect of a variant on 

protein stability, dependency of the variant on compensation, and the overall frequency of the 

variant in the cohort. That each of these features also predicts rates of reversion in the linked 



 

 

13 

 

recipient further supports their role as markers of in vivo fitness. These observations confirm the 

hypothesis that minor fitness advantages play an important role in transmission beyond features 

that depend on the nature of target cells in the mucosa. Although the majority of these features 

likely correlate with fitness in many immunological compartments, the observation that variants 

linked to immune escape in the donor were less likely to be transmitted—and more likely to 

revert if they were transmitted—highlights the fact that in vivo fitness in chronic infection must 

account for immune pressures that may be absent at the site of transmission. As a result of 

selection bias, transmission often results in a step back in evolutionary time towards consensus, 

thereby slowing the rate of population-wide evolution, consistent with the low rate of population-

wide evolution observed in the North American epidemic (43). 

The observation that transmission risk factors reduce the selection bias further corroborates the 

role of fitness in transmission and provides important clues as to the mechanisms of increased 

risk. In the case of donor VL, while the quantity of virus during exposure likely plays a role in 

increased risk, it cannot explain the observed reduction in selection bias, suggesting that the 

underlying fitness typical of high VL is playing an important role as well (see supplemental note 

S1 for simulation experiments and a further discussion on this point). This in turn suggests that 

interventions that reduce VL without altering viral fitness (such as antiretroviral therapy in the 

absence of virologic escape) will have diminished effects on transmission compared to those that 

similarly reduce VL but additionally weaken the virus. Conversely, immunological escapes that 

confer a net advantage to the virus in the donor, and therefore result in higher VL, may 

nonetheless reduce the rate of transmission as a result of weakening the virus.  

Selection bias was here measured by comparing genetic variants found in donor and recipient 

blood, and thus in principle could reflect selection occurring at any number of steps, including 

selection of viruses in the donor genital compartment or productive infection followed by 

reversion. Our previous SGA analysis of virus variants in the donor genital tract of Zambian 

transmission pairs argued against preferential selection in this compartment (44), and a deeper 

analysis of the reversion data also provides evidence that the selection bias observed above is not 

an artifact of rapid reversion in the narrow time frame of acute infection. First, non-parametric 

estimates of reversion rates place the rate of reversion at 0.12% per month for males (0.24% for 
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females), a rate that holds constant after 3 months of infection. In contrast, the inferred rate of 

reversion peaks during the transmission window with a maximum that is an order of magnitude 

higher than the constant rate observed during the remainder of the sample period (Fig S4). It is 

unlikely that reversion rates would change so suddenly, and phylogenetic analyses of single 

genome amplified viral sequences from these early time points in this cohort (3, 6, 44) strongly 

argue against the founder virus undergoing significant rapid reversion in the first few days post 

transmission that must be enabled by rapid selective sweeps.  Moreover, the observation in this 

study that features that reduced selection bias predict faster reversion is not consistent with the 

proposition that selection bias is an artifact of rapid reversion, as it would require reversion rates 

to be faster in men in the first month of infection and faster in women in the following years. 

These data thus argue that selection bias occurs primarily at the site of transmission, and suggest 

that sexual exposure frequently results in non-productive infection of target cells until viruses 

with higher fitness gain a foothold for successful dissemination. 

The observation that sequence features alone can predict the odds of transmission for a particular 

virus population highlights the importance of transmission selection bias and provides a clear 

mechanism for risk factors that reduce selection bias by increasing virulence or susceptibility. In 

addition, transmission of even subtly weaker viruses, either by increased susceptibility that 

allows transmission of less fit viruses from the donor quasispecies or because all variants in the 

donor quasispecies have lower fitness, may result in a clinical advantage for recipients (40, 41). 

Although the advantage of such subtle effects may be short-lived due to increased reversion that 

typically restore viral fitness, previous reports indicate that replicative fitness costs of early viral 

sequences result in a sustained clinical advantage for the linked recipient (19, 21). Paradoxically, 

by increasing the selection bias at the transmission bottleneck, reduction of susceptibility would 

increase the expected fitness of breakthrough viruses that manage to establish infection and may 

therefore worsen the prognosis for the newly infected partner.  Conversely, preventative or 

therapeutic approaches that even marginally weaken the virus may reduce overall transmission 

rates via a mechanism that is independent from the quantity of circulating virus and may provide 

long-term benefits even upon successful transmission. 
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Tables: 

Table 1: Donor quasispecies and cohort frequencies as additive predictors of transmission 

     

Likelihood Ratio 

Test2 

Feature 

γ  

Estimate1 

Std. 

Error 

z 

value Pr(>|z|) χ2 (df) Pr(>χ2) 

(Intercept) 7.63 0.557 13.70 <1E-16   

Donor Quasispecies Frequency3 0.56 0.053 10.65 <1E-16   

Cohort Frequency (cfreq)4 1.98 0.541 3.66 2.5E-4 
40.1 (2) 2.0E-9 

cfreq^2 0.30 0.121 2.45 0.014 
1Fixed effect parameters. Model was fit using logistic regression. Model fit was not improved by the addition of protein domain features or 
random effects. Compare to Figure 2A in the main text. 
2Combined significance for sets of features were estimated using the likelihood ratio test. 
3The standardized smoothed log-odds of the frequency of the amino acid in the donor from deep sequencing. Smoothing factor is 𝑞 = 1/50. 
4The standardized smoothed log-odds of the frequency of the amino acid in the cohort. Smoothing factor is 𝑞 = 1/350. 
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Table 2: Multilevel multivariable logistic regression model of transmission selection bias 

     Likelihood Ratio Test2 

Feature γ  Estimate1 

Std. 

Error z value Pr(>|z|) χ2 (df) Pr(>χ2) 

(Intercept) 6.43 0.558 11.53 <1E-16   

Cohort Frequency (cfreq)3 1.70 0.119 14.24 <1E-16   

cfreq^2 0.24 0.019 12.28 <1E-16   

# Covarying sites 0.04 0.012 3.35 8.2E-4   

Susceptible to Recipient HLA -0.60 0.142 -4.18 2.9E-5   

Donor Esc Polymorphism : Gag4,5 0.00 0.253 0.00 0.998 

13.3 (3) 0.004 Donor Esc Polymorphism : Pol -0.69 0.197 -3.49 4.9E-4 

Donor Esc Polymorphism : Nef 0.48 0.326 1.48 0.140 

Risk Index5 0.15 0.084 1.74 0.081 

22.2 (3) 5.9E-5 Risk Index : cfreq6 0.14 0.067 2.15 0.032 

Risk Index : cfreq^2 0.06 0.015 3.65 2.6E-4 

ETI -0.16 0.132 -1.18 0.236   

p177 0.22 0.228 0.97 0.333   

p17 : cfreq 0.19 0.103 1.83 0.067   

p24 1.72 0.285 6.03 1.7E-9   

p24 : cfreq 0.64 0.116 5.47 4.6E-8   

p15 0.65 0.241 2.71 0.007   

p15 : cfreq 0.28 0.106 2.66 0.008   

Protease 0.62 0.307 2.03 0.042   

Protease : cfreq 0.15 0.135 1.09 0.278   

RT 0.62 0.208 2.98 0.003   

RT : cfreq 0.15 0.095 1.60 0.109   

Integrase 0.50 0.225 2.23 0.026   

Integrase : cfreq 0.19 0.105 1.78 0.076   

Nef 0.97 0.236 4.12 3.8E-5   

Nef : cfreq 0.41 0.310 1.34 0.181   

Nef CD4/MHC Domains 0.50 0.104 4.80 1.6E-6   

Nef CD4/MHC Domains : cfreq 0.52 0.133 3.88 1.0E-4   

       

Structural Frequency (sfreq)8 0.33 0.144 2.29 0.022 

24.2 (3) 2.2E-5 sfreq : cfreq 0.49 0.129 3.80 1.5E-4 

sfreq : cfreq^2 0.13 0.029 4.45 8.6E-6 

       

Random Effects9 Std. Dev. Corr     

(Intercept) 0.91      

cfreq 0.08 -1.00     
1Fixed effect parameters. Model was fit using multilevel logistic regression. Model fit was not improved by the addition of quadratric interaction effects 

between cohort frequency and protein domains or couple ID. See methods for feature definitions. Compare to Figures 2 and 3 in the main text. 
2Likelihood ratio test performed between full model and a model excluding the grouped set of features. 
3Cohort frequency was standardized (zero mean, unit variance). 
4Donor CTL escape features were scaled by 1−cfreq to reflect the probability that de novo escape occurred in the donor.  
5Colon (:) signifies a multiplicative interaction. 
6Standardized (zero mean, unit variance) donor VL plus one if the recipient if female or a male with GUI.  

7Protein domain features are treated as covariates. It is not clear whether significance implies a different relationships between cohort frequency and odds 

of transmission, or simply reflect variations in mean donor quasispecies diversity. 
8Defined as the expected frequency of an amino acid in the cohort based on the impact of that amino acid on the protein structure (see methods; frequency 

was standardized). Structural features were evaluated separately from the rest of the model because crystal structures are available for only a subset of 

sites. Model estimates reflect model fit using all parameters. Likelihood ratio test is against a null model including only the main parameters, but fit on 
sites with structural information.  
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9Random effects were applied to each couple. The intercept and the slope of cohort frequency were allowed to vary as a bivariate Guassian. 

Maximum likelihood standard deviations are reported. The maximum likelihood covariance term is presented as a correlation. 

 

Figures Legends:

Fig. 1. HIV-1 viruses with amino acid residues matching the consensus of the study 

population are preferentially transmitted.  For each linked transmission couple, the proportion 

of sites that were transmitted was defined to be the proportion of sites in which the variant 

observed in the recipient matched that observed in the donor. Sites with a mixture in the recipient 

were excluded. (A) Donor variants that matched cohort consensus were more likely to be 

transmitted among all non-mixture sites in the donor, while (B) a consensus residue that was 

observed in mixture with one other variant was more likely to be transmitted than was the other 

variant. A nucleotide mixture was called if more than one base resulted in a >25% Sanger peak 

height. An amino acid mixture was called if the nucleotide mixture resulted in a mixture of 

amino acids. Dashed gray line represents the expected frequency of transmission of consensus. 

Consensus was defined to be any amino acid observed in at least 50% of chronically infected 

individuals in the Zambian cohort.  
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Fig. 2. Viral fitness modulates selection bias in heterosexual HIV-1 transmission. The odds 

that the donor’s amino acid will be transmitted to the recipient is a function of the relative 
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frequency of the amino acid in the quasispecies as well as the fitness of that amino acid, as 

estimated here by several independent metrics. Each plot shows the empirical transmission 

probability (odds on a log10 scale) of a variant as a function of one or more parameters. Empirical 

transmission probabilities (solid colored lines) are estimated counting the proportion transmitted 

within a continuous sliding window of width 1 log-odds with respect to the feature represented 

on the abscissa. All log-odds values are smoothed by adding a pseudo-count. Grey lines 

represent a quadratic fit to the sliding window averages; shaded areas represent 95% confidence 

intervals estimated using the percentile-t method on 1000 multilevel bootstraps. P-values are 

taken from Table 1 (A) or Table 2 (D-F) and represent the p-value from a multilevel logistic 

regression model in which all features are treated as continuous variables, as described in 

Materials and Methods. (A) The log-odds of transmission is linearly related to the relative in vivo 

frequency of the variant in the donor quasispecies, with a near 1-to-1 mapping for variants that 

match cohort consensus. In contrast, polymorphisms are uniformly less likely to be transmitted 

(N=8314 observations over 5 couples). (B) Among N=3,115 donor sites containing two-amino 

acid mixtures from 137 couples, the probability of transmission is also strongly predicted by the 

relative cohort frequency of the amino acid. Transmission probability is with respect to a 

randomly chosen member of the mixture; the abscissa represents the relative frequency of that 

amino acid in the cohort compared to the other amino acid in the mixture. (C-F) Among 

N=228,362 non-mixture donor sites from 137 couples, the odds of transmission is predicted by: 

(C) the frequency of the amino acid in the cohort; (D) the relative impact of the variant on the 

stability of the protein structure (low impact implies high fitness); (E) the number of covarying 

sites statistically linked with the variant; and (F) whether the variant is consistent with immune 

escape from one of the donor’s HLA alleles (only polymorphic sites are shown). See methods for 

feature definitions. 
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Fig. 3. Transmission risk factors reduce selection bias in heterosexual HIV-1 transmission. 

The empirical log-odds of transmission is plotted as a function of the frequency of each variant 
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in the cohort, as defined in Figure 2. Donor viral load (VL) near the time of transmission, sex of 

the recipient, and presentation of genital ulcers or inflammation (GUI) in male recipient partners 

each affect the selection bias. (A-C) Individuals are segregated by donor VL levels used in 

previous studies of transmission risk (27, 28). High donor VL reduces transmission selection bias 

in (B) female-to-male, but not (C) male-to-female, transmission. (D-F) Male recipients appear to 

have increased selection bias compared to female recipients, an effect that is mitigated by the 

presence of GUI (D, E) or high donor VL (F).  95% confidence intervals (shaded area) and 

quadratic polynomial fit (solid gray lines) were estimated as in Figure 2. P-values are estimated 

from a non-parametric, block-bootstrap method that tests the null hypothesis that the normalized 

area under two curves are identical (see methods for details).  
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Fig. 4. Transmission of low-fitness viruses changes reversion dynamics and predicts lower 

early set-point viral load in the recipient. (A) The proportion of donor non-consensus, 

polymorphisms that remain polymorphic, is plotted as a function of days after the first available 

recipient sample (N=6,220 polymorphisms from 81 couples). The ordinate at time 0 represents 

the fraction of donor polymorphisms that were transmitted. Female recipients permit 

transmission of more polymorphisms than males, but these revert at a faster rate. Hazard ratio 

and p-value was taken from a multivariable Cox-proportional hazard model (see Table S2). See 

Figure S4 for estimates of instantaneous reversion rates as a function of time since the estimated 

date of infection. (B) The number of transmitted polymorphisms at sites that were polymorphic 

in the linked donor negatively correlates with early set-point VL in the recipient (N=81), 

corroborating the fitness cost imposed by many of these variants.  

  



 

 

35 

 

 

Fig. 5. Sequence-derived transmission index predicts transmission. The transmission index 

of a sequence was calculated as the mean of the expected log-odds of transmission for each site 

in the sequence, as estimated by logistic regression model that included a second-order 

polynomial of cohort frequency, the number of covarying sites, and offsets and cohort frequency 

interactions for each protein domain. Transmission indices were computed out-of-sample using 

leave-one-out cross validation. (A-B) The transmission index for individual donor Gag 

amplicons compared to the transmission index for the linked founder Gag sequence. Models 
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trained on Gag alone. (A) Transmission index for each couple. Black bar represents median 

transmission index of donor sequences. Four sequences with transmission index < 6.7 were 

excluded as outliers. (B) The transmission index of each founder virus, median-centered against 

the transmission indices for linked donor sequences (p-value from two-tailed Wilcoxon signed-

rank test). (C) The overall transmission index of Gag, Pol and Nef is significantly different 

between donor and potential source partners in risk-matched discordant couples (p-value from 

two-tailed Mann-Whitney rank-sum test).  
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Methods 

Study subjects 

All participants in the Zambia Emory HIV Research Project (ZEHRP) discordant couples cohort 

in Lusaka, Zambia were enrolled in human subjects protocols approved by both the University of 

Zambia Research Ethics Committee and the Emory University Institutional Review Board. Prior 

to enrollment, individuals received counseling and signed a written informed consent form 

agreeing to participate. The subjects selected from the cohort were initially HIV-1 serodiscordant 

partners in cohabiting heterosexual couples with subsequent intracouple (epidemiologically 

linked) HIV-1 transmission (46-48). Epidemiological linkage was defined by phylogenetic 

analyses of HIV-1 gp41 sequences from both partners (49).  Viral isolates from each partner in 

the transmission pair were closely related, with median and maximum nucleotide substitution 

rates of 1.5 and 4.0%, respectively.  In contrast, median nucleotide substitution rate for unlinked 

HIV-1 C viruses from the Zambian cohort and elsewhere was 8.8% (49). The algorithm used to 

determine the estimated date of infection (EDI) was previously described by Haaland et al. (3). 

All patients in this cohort were antiretroviral therapy naïve. Zambian linked recipients were 

identified with a median [IQR] estimated time since infection (ETI) of 46 [42-60.5] days, at 

which time plasma samples were obtained from both the transmitting source partner (donor) and 

the linked seroconverting partner (recipient). All of the transmission pairs included in this study 

are infected with subtype C HIV-1.  

A control group of 181 Not Yet Transmitting (NYT) HIV positive partners were selected from 

discordant couples enrolled for a minimum of 1 year, and matched as a group with the 

transmitting couples for a risk factor score derived from data on recent 1) sexual activity with the 

primary partner, 2) sperm count in vaginal wash of female partner, 3) pregnancy history and 4) 

genital ulcer or inflammatory (GUI) disease.  These factors were used to create a risk profile for 

every transmission pair, and then NYT partners in each of four successive risk strata were 

selected in the same proportion to the representation of donor in each of the four strata, so that 

the two sets of HIV positive partners were frequency matched by their risk profile. 

Summary statistics for donor and NYT individuals are available in Table S1. 
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Parameter definitions and methods 

Amplification and sequencing of gag, pol, and nef genes 

Viral RNA was extracted from 140 μL of plasma samples using the Qiagen viral RNA extraction 

kit (Qiagen) and eluted in 60 µl of elution buffer. Gag-pol population sequences were generated 

using nested gene specific primers. Combined RT-PCR and first round synthesis was performed 

using SuperScript III Platinum One Step RT-PCR (Invitrogen) and 5 μL viral RNA template. 

RT-PCR and first round primers include GOF (forward) 5’ ATTTGACTAGCGGAGGCTAGAA 

3’ and VifOR (RT-PCR and reverse) 5’ TTCTACGGAGACTCCATGACCC 3’. Second round 

PCR was performed using Expand High Fidelity Enzyme (Roche) and 1 μL of the first round 

PCR product. Nested second round primers include GIF (forward) 5’ 

TTTGACTAGCGGAGGCTAGAAGGA 3’ and VifIR (reverse) 5’ 

TCCTCTAATGGGATGTGTACTTCTGAAC 3’. Nef sequences were generated in a similar 

fashion, using an additional set of nested gene specific primers. RT-PCR and first round primers 

include Vif1 (forward) 5’ GGGTTTATTACAGGGACAGCAGAG 3’ and OMF19 (RT-PCR 

and reverse) 5’ GCACTCAAGGCAAGCTTTATTGAGGCTTA 3’. Second round primers 

include Vif2 (forward) 5' GCAAAACTACTCTGGAAAGGTGAAGGG 3' and OMF19 

(reverse). An average of 800 RNA templates were added to the One Step RT-PCR reaction. 

Three positive amplicons per individual were pooled, representing on average 2400 input 

genomes, and purified via the Qiagen PCR purification kit (Qiagen).  Purified products were 

sequenced by the University of Alabama at Birmingham DNA Sequencing Core. Sequence 

chromatograms were analyzed using Sequencher 5.0 (Gene Codes Corp.) and degenerate bases 

were denoted using the International Union of Pure and Applied Chemistry (IUPAC) codes when 

minor peaks exceeded 25% of the total peak height in both forward and reverse reads. Codons 

containing degenerate bases were defined as mixtures, whereas those with no evidence of 

degenerate bases or with minor peaks comprising less than 25% of the total were defined as 

dominant variants. 

Sequences were codon aligned to the HXB2 reference sequence using HIVAlign 

(http://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html), followed by hand-editing. 

For all analyses, we considered sites where a dominant variant was identified and we excluded 

sites where a gap or a stop codon was present. In cases where transmission was considered, a site 

http://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html
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was excluded if a mixture, gap or stop codon was observed in either the donor or the recipient. 

For transmission indices, exclusion criteria were based on the sequence in question alone—no 

information was taken from the individual’s partner.  For a given couple, a residue was defined 

to have been transmitted if the same amino acid was observed in both donor and recipient. For 

Figure 2B (transmission from mixtures), we limited the analysis to mixtures consisting of two 

amino acids in the donor, then randomly selected one of the residues to test if it transmitted. For 

Figure 1B (proportion of mixtures that transmitted consensus), we limited the analysis to donor 

mixtures consisting of two amino acids, one of which matched cohort consensus, then measured 

the per-couple proportion of these sites in which the consensus residue was transmitted. 

Protein domains were used as covariates in the modeling. Protein domains were defined as 

follows: Gag was split into p17, p24 and p15; Pol was split into Protease (Pr), Reverse 

Transcriptase (RT), Integrase and the Gag-Pol transframe (GagPolTF) region. The CD4- and 

MHC- downregulation domains of Nef, here defined as HXB2 positions 2, 17–26, 57–58, 62–65, 

69–81, 154–155, 164–165, and 174–175 (50), were treated as a separate Nef domain. 

454 sequencing was performed on five donors to estimate the quasispecies frequency of donor 

variants. For each donor, we amplified from an average of 13,000 RNA templates and obtained 

two overlapping PCR amplicons spanning the entire protein-coding region of the HIV-1 genome.  

Pooled amplicons were acoustically sheared to produce fragments between 300-800 bases in 

length. Batched, bar-coded samples were amplified by emulsion PCR and sequenced on a 454 

Junior (Roche) as described previously (51).  To achieve sufficient detection of minor variants 

we required a targeted coverage per site of 250 fold. The raw sequence output (“reads”) were 

assembled by Vicuna (52) and V-FAT (Broad Institute, http://www.broadinstitute.org/scientific-

community/science/projects/viral-genomics/v-fat) to form a single genome which represents the 

majority base at each nucleotide position (the consensus assembly). The reads were then 

corrected for systematic 454 errors such as homopolymer indels and carry forward/incomplete 

extensions (CAFIE) and aligned to the consensus assembly using previously developed software 

RC454 and V-Phaser (51) as well as with custom programs written in Perl. These alignments 

were hand-refined to match the corresponding population sequences. Codon positions in which 

the 454-derived dominant variant differed from the Sanger sequencing-derived amino acid were 

http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/v-fat
http://www.broadinstitute.org/scientific-community/science/projects/viral-genomics/v-fat
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excluded.  The quasispecies frequency of a codon was taken to be the fraction of reads spanning 

a codon position that contained the codon. Amino acid frequencies were defined to be the sum of 

the frequencies of codons encoding the same amino acid. Sites with a read-depth of less than 10 

were excluded. 

Limiting dilution, single genome amplification (SGA) sequencing of gag was performed on 11 

donor-recipient pairs, as previously described (3) but using gag-specific primers.  Briefly, full-

length gag was amplified from PBMC DNA by nested PCR using primers: outerfor1 5’ 

AAGTAAGACCAGAGGAGATC-TCTCGAC 3’, gagR2b 5’ GCCAAAGAGTGATTTGAGGG 

3’, innerfor1 5’ TTTGACTAGCGGAGGCTAGAAGGA 3’ and innerrev1 5’ 

GTATCATCTGCTCCTGTGTCTAAGAGAGC 3’. In addition, 6 pairs of gag SGA sequences 

were extracted from near-full length genome sequences amplified by similar methods to those 

described previously (44). Sequences were aligned to the cohort Sanger sequence alignments.  

Cohort frequencies were defined with respect to sequences taken from 375 (gag), 327 (pol), or 

350 (nef) chronically-infected individuals in the Zambian cohort. The donor and NYT 

individuals studied here were the subset for whom gag, pol and nef sequences were available. 

The cohort frequency was taken to be the proportion of individuals with a given amino acid, 

excluding all individuals with gaps, stop codons or missing data at the site in question. Amino 

acid mixtures containing k amino acids contributed 1/k observations to each amino acid in the 

mixture. Cohort consensus was defined to be residues observed in a majority (≥50%) of 

sequences, while polymorphism was defined as all non-majority (<50%) residues. All residues at 

highly polymorphic sites in which no residue was observed in at least half the population were 

thus defined as polymorphisms. 

Smoothed log-odds ratios were used to transform cohort and quasispecies frequencies as input 

variables for the logistic regression models, as well as for visualization of cohort, in vivo and 

transmission frequencies. The smoothed log-odds account for finite sampling by including a 

prior that pushes log-odds ratios toward 0.  For a probability p with smoothing factor 𝑞, 𝑞 ∈

[0,1], the smoothed log odds ratio is defined as 𝑠𝑙𝑜𝑑(𝑝) = log(𝑝 + 𝑞) − log (1 − 𝑝 + 𝑞), which 

is equivalent to adding a pseudo-count of 𝑞𝑁 if the probability is a proportion derived from N 



 

 

41 

 

observations. Here, we use 𝑞 = 1/350 for cohort frequencies and 𝑞 = 1/50 for quasispecies 

frequencies. For visualization, empirical transmission frequencies are smoothed by the same 

factor as the variable to which it is being compared. 

Virologic and clinical parameters 

HIV plasma viral load (VL) was determined at the Emory Center for AIDS Research Virology 

Core Laboratory using the Amplicor HIV-1 Monitor Test (version 1.54; Roche). Early set point 

VL in recipients was defined as the earliest stable nadir VL value measured between 3 and 9 

months post infection and which did not show a significant increase in value within a 3-4 month 

window., as previously described (19). Donor VL was defined as the VL determined at or near 

the time of seroconversion in the previously HIV negative partner. 

Genital Ulcers or Inflammation (GUI) in the linked recipient was defined as at least one instance 

where genital inflammation or ulceration was noted on a physical or was treated between 

enrollment and seroconversion or during the 12 month period prior to seroconversion for 

individuals enrolled for greater than 12 months, as previously described (53). Recipient GUI data 

were missing for three men and three women.  

Physics-based estimation of structural impact of point mutations 

One possible mechanism by which a mutation can reduce overall fitness is by altering the 

stability of the viral protein. We therefore used an in silico estimate of protein stability to 

estimate the impact of a point mutation on the viral structure, then used these estimates to define 

the energy-based expected frequency of each amino acid. In particular, we first estimated the 

thermodynamic stability changes caused by each of the 20 amino acids at each site using the 

FoldX software package (http://foldx.crg.es), as previously described (54). Briefly, the structures 

of p17 (Protein Data Bank [PDB] code: 2GOL) (55), p24 hexamer (PDB:3H4E) (56), Protease 

dimer (PDB:3IXO) (57), RT (PDB:1DLO) (58), Integrase (PDB:1BIS) (59), and Nef 

(PDB:1EFN) (60), were mutated to the clade C consensus sequence (as defined by the consensus 

of our combined southern African cohort) and the FoldX optimization procedure and probability-

based rotamer libraries were used to remove steric clashes and other estimation errors and to 

reconstruct missing side chain atoms (61). Then the absolute changes |ΔΔ𝐺| in the Gibbs free 

http://foldx.crg.es/
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energy were estimated using the FoldX software for each of the 20 amino acids. Next, we 

converted these predicted changes in free energy into a probability distribution for each site. The 

structurally-based expected frequency 𝐸𝑠[𝑓𝑖𝑗] (structural frequency) of amino acid 𝑗 and site 𝑖 

was defined using a normalized negative exponential (Boltzmann distribution) 

𝐸𝑠[𝑓𝑖𝑗] =
exp(−|ΔΔ𝐺𝑖𝑗|)

∑ exp (−|ΔΔ𝐺𝑖𝑘|)20
𝑘=1

. 

This measure thus captures the relative impact on the structure of the 20 amino acids at a given 

site: if all amino acids results in roughly the same protein stability, then the expected frequency 

of each amino acid will be 1/20. We use the absolute value of the change in Gibbs free energy on 

the assumption that the structural stability of the viral protein is optimized in vivo. Thus, by 

construction, all consensus residues will have |ΔΔ𝐺𝑖𝑗| = 0. Nevertheless, the expected frequency 

of consensus residues at different sites will vary, based on the predicted impact of the other 

residues at each site. 

The smoothed log-odds of 𝐸𝑠[𝑓𝑖𝑗], with smoothing factor 𝑞 = 1/350 to match cohort frequency 

smoothing, was then used as a feature in the models. Estimated values for structural frequency 

(𝐸𝑠[𝑓𝑖𝑗]) are available in Table S4. 

HLA-HIV associations and covariation 

For HLA-class I genotyping, genomic DNA was extracted from whole blood or buffy coats 

(QIAamp blood kit; Qiagen).  HLA class I genotyping relied on a combination of PCR-based 

techniques, involving sequence-specific primers (Invitrogen) and sequence-specific 

oligonucleotide probes (Innogenetics), as described previously (62).  Ambiguities were resolved 

by direct sequencing of three exons in each gene, using kits (Abbott Molecular, Inc.) designed 

for capillary electrophoresis and the ABI 3130xl DNA Analyzer (Applied Biosystems). 

Correlations between HIV amino acids and HLA types were estimated using a phylogenetic 

dependence network, as previously described (24). Briefly, a maximum-likelihood phylogeny 

was estimated for each protein using Phyml (version 3.0; (63)), using the general time reversible 
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substitution model, a gamma distribution over substitution rates, and inferred nucleotide and 

constant site probabilities. A phylogenetically-corrected logistic regression model (64), 

conditioned on the PhyML-inferred phylogenies, was then used to assess the significance of an 

HLA allele in determining the amino acid for a given site. Forward selection was used to identify 

HLA alleles that correlate with a given amino acid at a given site. The model was run twice: 

once including other sites as covariates (covariation), and once without. To increase power, all 

variables were treated as binary, and all residues were tested against all HLAs (at “4-digit” 

subtype and “2-digit” type levels).  All associations significant at q<0.2 (corresponding to a false 

discovery rate of 20%) in either run are available in Table S4.  

An amino acid at a given site in a given individual was defined to be consistent with escape in 

that individual if: (1) the individual expresses an HLA with an association at that site; and (2) 

either the residue is positively correlated (referred to as Adapted in the literature) with the HLA, 

or any other residue is negatively correlated (referred to as NonAdapted in the literature) with the 

HLA. Donor escape is thus a binary variable that indicates whether the residue is consistent with 

escape from the donor. In multivariable models, we weight the donor escape binary variable by 

the probability that escape was selected in the donor, which is estimated one minus the frequency 

of the residue in the cohort.  A residue is susceptible to an individual if (1) the individual 

expresses an HLA with an association at that site; and (2) the residue is negatively correlated 

(NonAdapted) with that HLA. Recipient Susceptible is thus a binary variable that indicates 

whether an amino acid is putatively susceptible to the recipient. We limited analyses to 

associations identified at q<0.01, indicating that 99% of the associations are expected to be non-

spurious. These generally represent the strongest associations and are characterized by higher 

escape frequencies in individuals expressing the HLA and lower background frequencies in 

individuals not expressing the HLA.  

Covariation among HIV sites was determined using the phylogenetically-corrected logistic 

regression. However, rather than building a dependency network using forward selection, we 

liberally kept all pairwise associations significant at q<0.01. Thus, a mutation at site a that 

initiates a chain reaction of compensation at sites b followed by c, will be picked up as two 

separate covarying sites under the pairwise analysis. Thus, this pairwise analysis, while 
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identifying indirect associations, will characterize the breadth of downstream compensation 

events expected to result from a given point mutation. We defined the number of covarying sites 

(# Covarying sites) of a particular amino acid at a particular site to be the number of unique 

positions that were significantly associated (positively or negatively) with that amino acid. The 

number of covarying sites for each amino acid are available in Table S4. 

HLA and covariation associations were trained on a multi-cohort dataset of 2,066 chronically 

clade C infected, antiretroviral-naïve individuals with HIV sequence and high resolution HLA 

type information. These cohorts have been previously described, but were here merged together 

for the first time to yield greater statistical power. Briefly, in addition to the Zambian individuals 

described above (n=360), the cohort consists of individuals from Durban, South Africa (n=968) 

(65, 66), Bloemfontein, South Africa (n=260) (67), Kimberley, South Africa (n=26) (68), 

Gaborone, Botswana (n=386) (69), and southern African subjects attending outpatient HIV 

clinics in the Thames Valley area of the United Kingdom (n=66), originally from Botswana, 

Malawi, South Africa and Zimbabwe (68). From these individuals, population sequences were 

available for Gag-p17/p24 (n=1897), Gag-p15 (n=1135), Pol-Pr (n=1315), Pol-RT(n=1364), Pol-

Int (n=698) and Nef (n=1336). High-resolution HLA types were missing or ambiguous for at 

least one allele in 239/2066 (11.5%) of non-Zambian individuals. For these, a probability 

distribution over haplotypes was estimated using a machine learning approach that infers 

haplotype frequencies, as previously described (70) and extensively validated for this purpose 

(71). The inferred HLA completion probability distributions were used as a prior for the 

phylogenetic-logistic regression analysis, as previously described (71). 

Statistical modeling of transmission selection bias 

Infection as a binomial process 

The observation that the majority (>99%) of sexual encounters among heterosexual partners do 

not result in transmission, coupled with the observation that the majority of transmissions are 

established by a single founder virus, implies that this process is stochastic. Here, we assume that 

the number of transmitted founder viruses is distributed binomially, parameterized by the 

number of viruses in the donor genital compartment and the probability that each virus will 
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establish infection. We then build on this model to estimate the probability that the founder virus 

population contains a particular genotype, and use this to model selection bias. 

Suppose the average sexual encounter is characterized by 𝑛 viruses present in the infected 

partner’s genital compartment, and that a priori probability that any particular virus will 

establish infection is 𝑝. If the probability that a given virus establishes productive infection is 

independent of the state of other viruses, then the total number 𝑇 of viruses establishing infection 

is a binomially-distributed random variable. Of particular interest is the probability that at least 

one virus establishes infection, providing the rate 𝑟 of transmission, given by 

 𝑟 ≝ Pr(𝑇 > 0; 𝑛, 𝑝) = 1 − (1 − 𝑝)𝑛 ≈ 𝑛𝑝, (2) 

where the approximation follows from a Taylor series expansion because the rate is small: 

observed rates of transmission have been reported in the range 0.01–0.001 (9).  

A model for selection bias 

The question of selection bias can now be phrased as the question of whether 𝑝 depends upon the 

type of viruses. Suppose the population of viruses in the infected donors is grouped into two 

types: type 𝑎 and type 𝑎. Such binarization can be defined arbitrarily, but in this study, we 

categorize the viruses based on whether they contain the dominant amino acid variant at a 

particular site (𝑎) or not (𝑎). Extending the above formulation, we can write 𝑛 = 𝑛𝑎 + 𝑛𝑎 and 

𝑝 = 𝑓𝑎𝑝𝑎 + (1 − 𝑓𝑎)𝑝𝑎, where 𝑛𝑎 = 𝑓𝑎𝑛 is the number of viruses of type 𝑎, written in terms of 

the frequency 𝑓𝑎 of 𝑎 in the quasispecies, 𝑛𝑎 = (1 − 𝑓𝑎)𝑛 is the number of viruses of type 𝑎, 

and 𝑝𝑎, 𝑝𝑎 are the a priori probabilities that a virus of type 𝑎 or 𝑎 will establish infection, 

respectively. Then the total number of transmitted viruses becomes 𝑇 = 𝑇𝑎 + 𝑇𝑎, for binomially-

distributed random variables 𝑇𝑎 and 𝑇𝑎 that represent the total number of transmitted virons of 

type 𝑎 and 𝑎, respectively. 

In the context of transmission selection bias, a natural quantity of interest is the odds that a virus 

of type 𝑎 is in the population of viruses that establish infection, conditional on infection being 

established, which is approximately 
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 Pr(𝑇𝑎 > 0|𝑇 > 0)

Pr(𝑇𝑎 = 0|𝑇 > 0)
≈

Pr(𝑇𝑎 > 0|𝑇 > 0)

Pr(𝑇𝑎 > 0|𝑇 > 0)

 ≈
𝑛𝑎𝑝𝑎

𝑛𝑎𝑝𝑎
=

𝑓𝑎𝑝𝑎

(1 − 𝑓𝑎)𝑝𝑎
,

 
(3) 

where the first step follows because 𝑎 and 𝑎 are mutually exclusive and complete and our 

assumptions of independence and low rates of infection imply that the probability of transmitting 

both 𝑎 and 𝑎 is negligible (see Supplementary Note S2). The log of Eq. 3 fits nicely into the 

logistic regression framework: 

 
ln (

Pr(𝑇𝑎 > 0|𝑇 > 0)

Pr(𝑇𝑎 = 0|𝑇 > 0)
) = ln (

𝑓𝑎

1 − 𝑓𝑎
) + ln (

𝑝𝑎

𝑝𝑎
) (4) 

 ≡ 𝛽𝑓 + 𝑥𝛽, (5) 

where the offset term 𝛽𝑓 estimates ln (𝑓𝑎/(1 − 𝑓𝑎)), 𝑥 = (𝑥1, … , 𝑥𝐿) is a row vector of features 

and 𝛽 = (𝛽1, ⋯ , 𝛽𝐿) is a column vector of weights. From Eq. 4 we see that the ratio 𝑝𝑎/𝑝𝑎  has 

the effect of biasing the probability that 𝑎 is in the founder virus, which is otherwise determined 

by the frequency of 𝑎 in the donor quasispecies. Thus, we define the bias with respect to a to be 

 bias𝑎 = ln (
𝑝𝑎

𝑝𝑎
) (6) 

and say transmission is unbiased if bias𝑎 = 0. By fitting (𝛽𝑓 , 𝛽) to the observed data consisting 

of all dominant variants observed in all individuals, we can estimate the effects of our 𝐿 features 

on selection bias and test the null hypothesis that a given feature has no effect on selection bias 

(i.e., 𝛽𝑙 = 0).  

A key observation of this formulation is that the log-odds that the majority variant is transmitted 

is equal to the log-odds of the frequency of that variant in the quasispecies, plus or minus some 

bias term. This is validated in Figure 2A of the main text, where the log-odds transmission 

probability is equal (within the limits of estimation) to the log-odds quasispecies frequencies for 

consensus residues, but is shifted down for polymorphisms. This formulation further predicts that 

donor quasispecies frequency will be the primary determinant of transmission except in the most 

extreme cases of selection bias, consistent with previous reports (7).  



 

 

47 

 

The effect of transmission risk factors on selection bias 

Transmission risk factors may increase the risk of transmission in one of two ways: (1) by 

increasing the number of viruses 𝑛 that have an opportunity to establish infection, for example 

by increasing VL or increasing the number of sexual exposures; or (2) by increasing the 

probability 𝑝 that any one virus can establish infection, either by increasing the transmission 

fitness of all virus particles, or increasing the susceptibility of the uninfected partner.  

A key observation from Eq. 4 is that 𝑛 is completely absent, indicating that the number of 

exposures or quantity of virus present at the time of exposure will not alter the selection bias. In 

contrast, suppose all individual viruses are equally more likely to establish infection (e.g., due to 

increased susceptibility in the uninfected partner), by a quantity 𝑐. Then the selection bias with 

respect to 𝑎 becomes 

 
bias𝑎 = ln (

𝑝𝑎 + 𝑐

𝑝𝑎 + 𝑐
) , 

(7) 

which converges toward 0 as 𝑐 becomes relatively large. Thus, individuals with high risk factors 

will experience a reduced selection bias, as observed in Figure 3 of the main text. Our 

observation that VL reduces selection bias in female-to-male transmission indicates that VL 

increases transmission risk in this population at least in part by serving as a marker of increased 

transmission fitness, and not simply due to exposure by a higher quantity of virus particles. 

The absence of 𝑛 and the simple form of Eq. 6 are the result of our assumptions of independence 

of transmission among virions and of a low overall rate of transmission. These assumptions 

warrant further exploration and are discussed in supplementary notes below. 

Multilevel logistic regression (generalized linear mixed models) 

Parameter estimation and hypothesis testing under logistic regression assumes independence of 

observations: in this case, each site in each individual is treated independently. However, as 

observed in Figure S2, the relationship between cohort frequency and transmission probability 

differs among proteins (indicating non-independence among sites within the same protein); and 

as suggested by Eq. 6, all sites within a couple may experience higher or lower transmission 

probabilities as a result of couple-specific risk factors (indicating non-independence among sites 
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within the same couple). In this section, we describe our specification of a multilevel, 

multivariable logistic regression model (also known as a generalized linear mixed model) to 

account for these non-independences (26). A multilevel logistic regression is similar to a 

standard logistic regression, but with random variables embedded in the definition of some of the 

coefficients. In the current context, an instantiation of a random variable is indexed by 

transmission couple, allowing the coefficients to be constant among observations drawn from the 

same individual, but to vary randomly between individuals. 

For 𝑁 total observations over 𝐽 proteins in  𝑀 couples, let 𝑝𝑖𝑗𝑘 be the probability that the 

dominant variant observed at position 𝑖 (𝑖 = 1, … , 𝑁) in protein 𝑗 (𝑗 = 1, … , 𝐽) in couple 𝑘 (𝑘 =

1, … , 𝑀) is transmitted. Let 𝑋 = {𝑥𝑖𝑙} be a 𝑁 × 𝐿 data matrix of 𝐿 features. The features of the 

model are in Table 2 and described in detail in the section entitled “Parameter definitions and 

methods”. Here, we call attention to two features of particular interest: let the column vectors 𝑋𝑐 

and 𝑋𝑟 be the cohort frequencies and risk indices (the aggregate of sex, VL and GUI, defined 

above) for the observations. Because we call special attention to these features, we define a new 

𝑁 × (𝐿 − 2) predictor matrix W, such that 𝑋 = [𝑊 𝑋𝑐 𝑋𝑟]. Then the multilevel logistic 

regression is defined by level one: 

 logodds(𝑝𝑖𝑗𝑘|𝑋) = 𝛽𝑖𝑗𝑘
(0)

+ 𝛽𝑖𝑗𝑘
(1)

𝑥𝑖𝑐 + 𝛽𝑖
(2)

𝑥𝑖𝑐
2 . (7) 

This model assumes a quadratic effect between cohort frequency and odds of transmission. (The 

quadratic polynomial was chosen by first testing a model that included only protein effects and 

cohort frequency as a cubic on cohort frequency, then observing that the linear and quadratic 

effects, but not the cubic effects, were significant).  Each of the 𝛽 terms are composite, mixed-

effect terms, defined by level two: 

 𝛽𝑖𝑗𝑘
(0)

= 𝛾00 + 𝑊𝑖Γ + 𝛾0𝑟𝑥𝑖𝑟 + 𝛾0𝑗 + 𝜖0𝑘 (8) 

 𝛽𝑖𝑗𝑘
(1)

= 𝛾10 + 𝛾1𝑟𝑥𝑖𝑟 + 𝛾1𝑗 + 𝜖1𝑘 (9) 

 𝛽𝑖
(2)

= 𝛾20 + 𝛾2𝑟𝑥𝑖𝑟 (10) 

where Γ is a column vector of fixed effects, the 𝛾 terms are fixed effects, with separate 𝛾0𝑗 and 

𝛾1𝑗 terms for each protein domain, and the 𝜖 terms are random effects, which are normally 
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distributed as 

[
𝜖0𝑘

𝜖1𝑘
] ~𝑁 ([

0
0

] ; Σ𝜃) , 𝜃 = (𝜎0, 𝜎1, 𝜎01), 

with an independent sample taken for each couple 𝑘. Thus, the offset 𝛽𝑖𝑗𝑘
(0)

 (Eq. 8) is determined 

by a grand mean (𝛾00), a linear combination of all predictors and their coefficients (𝑋𝑖Γ), and 

protein- and couple- specific offsets; the linear term 𝛽𝑖𝑗𝑘
(1)

 (Eq. 9) is determined by a grand mean 

(𝛾10), the risk (𝛾1𝑟𝑥𝑖𝑟), and protein- and couple-specific slopes; and the quadratic term 𝛽𝑖
(2)

 (Eq. 

10) is determined by a grand mean (𝛾20) and the risk (𝛾2𝑟𝑥𝑖𝑟). Proteins are treated as fixed 

effects. Because the couples in our study represent a random draw from an assumed population, 

the couple-specific offset and slope terms (𝜖0𝑘, 𝜖1𝑘) are treated as random effects, with the 

effect for any given couple drawn from a bivariate normal distribution in which the offset and 

slope are allowed to be correlated. The final model learns the variance-covariance matrix Σ𝜃, 

which specifies the level of variability in slope and offset among couples, then integrates out 

(𝜖0𝑘, 𝜖1𝑘). The multilevel logistic regression was carried out using the glmer routine of the lme4 

package (72) in R v3.0.2 (73). Protein- and couple- specific linear effects significantly improved 

the fit of the model (p<10E-8 by likelihood ratio test); quadratic effects did not improve the fit 

(p>0.4 for both protein and couple-specific terms). The final fit model is shown in Table 2.  

Transmission index 

Given a set of features 𝑥 = 𝑥, … , 𝑥𝐿, and a trained model (𝛽𝑓 , 𝛽), 𝛽 = 𝛽1, … , 𝛽𝐿, we can compute 

the expected log-odds of transmission for any residue and any site. We define the transmission 

index of a sequence (or <Gag, Pol, Nef> tuple of sequences) to be the mean log-odds of 

transmission over all sites in the sequence. Sites containing mixtures, stop codons, or gaps are 

ignored. To avoid overfitting, models for the transmission index were estimated using leave-one-

out cross validation, such that the transmission index for each donor was computed using a 

model inferred from data that did not include that couple. The NYT transmissibility scores were 

taken from randomly selected models learned from the leave-one-out donor-recipient training 

runs to ensure that any differences in observed variance were not due to differential model 

variance. Transmission indices were computed using a subset of features: log-odds cohort 

frequency, and its square; the number of statistically-linked covarying sites; and corrections for 

subproteins (p17,p24,p15, GagPolTF, Protease, RT, Integrase and the Nef functional domain, as 
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described above). SGA sequences were only available for Gag; we therefore used models trained 

on Gag alone for Figure 5A-B in the main text. For computational efficiency, random effects 

were not used in model inference for transmission indices. 

Statistical analyses 

Empirical transmission probability curves 

To visualize the probability of transmission as a function of the frequency of a variant in the 

cohort or donor quasispecies (Figs. 2,3,S2), we used a sliding window approach in which we 

measure the observed proportion of sites that were transmitted within a given window. For 

example, for a given donor quasispecies frequency 𝑓, the empirical transmission probability 

corresponding to 𝑓 is the proportion of all variants 𝑖 such that |logodds(𝑓) − logodds(𝑓𝑖)| < 𝑤 

for some window size 𝑤. The reported values are the empirical transmission frequency and the 

mean cohort frequency, over all observations within the window. We use 𝑤 = 1, and only 

includes values of 𝑓 with at least 20 points in the window.  

To estimate 95% confidence intervals for an empirical transmission probability curve, we 

employ a block bootstrap approach using the percentile-𝑡 method (45). Briefly, for each of 𝐵 =

1000 bootstrap replicates, we sample with replacement the couples, then the sites within each 

sampled couple. We then estimate the empirical transmission probability for each cohort 

frequency value observed in the complete dataset. The percentile-𝑡 95% confidence interval is 

then estimated independently for each cohort frequency value.  

In Figure 3 in the main text, we report p-values for comparing two empirical transmission 

probability curves (e.g., comparing male-to-female versus female-to-male transmission). The 

statistic we used was the difference in the mean empirical transmission probability calculated 

over all cohort frequencies with at least 20 observations within the sliding window. Mean 

empirical transmission probabilities were calculated using the trapezoid method over the cohort 

and transmission frequencies output by the sliding window method. We then compared the 

observed difference in means to a normal distribution with mean 0 and standard deviation �̂� to 

test the null hypothesis that the observed difference between the means of the two curves was 
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zero. �̂� was estimated as the standard deviation of the difference in means observed over the 𝐵 =

1000 bootstrap replicates used to construct the confidence intervals.  

Reversion analysis 

The rates of reversion from polymorphism to consensus, for sites in which a polymorphism was 

present in both the donor and recipient, were estimated as a function of fitness and susceptibility 

features. The date of reversion or loss-to-followup was determined relative to the date of the first 

available recipient sample. Thus, reversion rates are conditional on a polymorphism being 

present in both the donor sample and the first recipient sample.  (Because we tracked reversion to 

consensus, the polymorphism in the recipient may differ from that in the donor). The date of 

reversion was defined as the midpoint between the last non-mixture polymorphism and the first 

non-mixture consensus, minus the date of the first recipient sample. Mixtures were counted as 

missing data. Hazard ratios (HRs) were estimated using a Cox proportional hazard model. To 

account for assumed non-independence among sites sampled from the individuals, a multilevel 

bootstrap was performed (Level 1 = sites, Level 2 = individuals), with 1000 replicates. Reported 

HR values are those from the full model. P-values are computed from the standard errors of the 

bootstrap HR values, assuming a standard normal distribution. Only sites with available 

structures were used in the Cox proportional hazard model (Table S4); all sites were used for 

Figure 4 in the main text. Statistical modeling was carried out using Matlab ® (MATLAB and 

Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States). 
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Supplementary Text 

Note S1: The role of donor VL in transmission risk and selection bias 

In Eq. 6 we noted that an overall increase 𝑐 in the probability that any donor virus 

will be able to establish infection will lower the odds of transmission. Notably, 

transmission risk factors that increase risk by simply increasing exposure (reflected by 𝑛, 

the number of viruses in the quasispecies, which could be generalized to account for the 

number of exposures) were not present in Eq. 6, having canceled out in prior steps. 

Importantly, this cancelation was possible because of the assumption that the overall rate 

of transmission is small, leading to the approximation in Eq. 2. But how good is this 

approximation and what happens when transmission rates are high, violating the 

assumption that enables this approximation? This question is particularly relevant for 

donor VL, a well-established transmission risk factor. Although VL is known to increase 

transmission risk, there are at least two possible mechanisms: (i) high donor VL is a 

marker of increased viral fitness, consistent with the observations that in vivo replicative 

capacity correlates with VL (18-21) and that donor VL predicts early setpoint VL in 

linked recipients (32-34); and (ii) high donor VL simply increases the probability of 

transmission by increasing overall exposure.  Our observation that increased donor VL 

reduces transmission selection bias suggests that fitness is at least one factor, but only if 

the approximation in Eq. 2 is valid. 

To explore the validity of the approximation in Eq. 2 in the context of selection bias 

as expressed in Eq. 4, we implemented the formula for the exact rate of transmission 

under the binomial distribution in Matlab®, given by 

𝑟 ≡ Pr(𝑇 > 0) = 1 − (1 − 𝑝𝑎)𝑓𝑎𝑛(1 − 𝑝𝑎)(1−𝑓𝑎)𝑛 

then plotted the relationship between 𝑟 and the conditional probability that the founder 

virus included a virus of type 𝑎 (fig. S3), given by 

𝑟𝑎|𝑟 ≡ Pr(𝑇𝑎 > 0|𝑇 > 0) =
1 − (1 − 𝑝𝑎)𝑓𝑎𝑛

1 − (1 − 𝑝𝑎)𝑓𝑎𝑛(1 − 𝑝𝑎)(1−𝑓𝑎)𝑛
=

𝑟𝑎

𝑟
 

where 𝑟𝑎 = 1 − (1 − 𝑝𝑎)𝑓𝑎𝑛 is the rate of transmission of viruses of type 𝑎. If 

transmission is unbiased, then 𝑝 = 𝑝𝑎 = 𝑝𝑎 and we can write 

𝑟𝑎|𝑟 ≡ Pr(𝑇𝑎 > 0|𝑇 > 0) =
1 − (1 − 𝑝)𝑓𝑎𝑛

1 − (1 − 𝑝)𝑛
≈ 𝑓𝑎 

where the approximation again assumes a low rate of transmission. Thus, for small rates 

of transmission, transmission will be unbiased with respect to 𝑎 if 𝑟𝑎|𝑟 = 𝑓𝑎; that is, if the 

probability that the founder virus includes a virus of type 𝑎 is equal to the proportion of 

donor viruses that are of type 𝑎. For each simulation experiment, we first set the baseline 

selection bias 𝑏 = (𝑝𝑎 + 𝑐)/(𝑝𝑎 + 𝑐), the frequency 𝑓𝑎 of 𝑎 in the donor quasispecies, 

and initial values of 𝑛 and 𝑝𝑎 such that 𝑟 was low (initially 0.001). Setting 𝑐 = 0, and 

𝑛 = 1000, we then manipulated 𝑟 by increasing either 𝑛 or 𝑐, and then plotted the 

relationship between 𝑟 and 𝑟𝑎|𝑟. 
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From this experimental setup, we observed that, for very high rates of transmission 

(𝑟 > 0.5), the odds that a virus of type 𝑎 is in the founder population increases due to the 

increased odds of multiple-virus infection (fig. S3). For cases where selection bias favors 

the minority variant (𝑝𝑎 < 𝑝𝑎; top rows of fig. S3), increasing the rate of infection by 

increasing 𝑐 (that is, increasing the ability of each individual virus to establish infection; 

blue circles) causes selection bias to shrink toward zero, as seen by the convergence of 

𝑟𝑎|𝑟 toward 𝑓𝑎; this convergence is slowest when 𝑎 represents 99% of the population, 

which is close to the mean value of 𝑓𝑎 over all sites in our deep sequencing data.  In 

contrast, increasing the quantity of donor viruses, 𝑛, has no effect on selection bias: until 

𝑟 is sufficiently high to make multiple-virus infection likely, the probability that the 

founder includes 𝑎 remains near 𝑓𝑎. Similar results are observed when the selection bias 

favors the donor majority variant (𝑝𝑎 > 𝑝𝑎; bottom rows of fig. S3), though here the 

effect of multiple-virus transmission is to induce a U-shape on the selection-bias curve. 

Notably, in each of these plots, the approximation in Eq. 3 (solid red and blue lines) 

closely tracks the exact probabilities for cases of single-virus infection, validating our use 

of this approximation in the models. 

Thus, these simulations confirm that the overall donor viral population size 𝑛 does 

not affect transmission selection bias in cases of single-virus transmission, while the 

effect of multiple-virus transmission is to increase the probability that a virus of type 𝑎 is 

transmitted, regardless of the selection bias. In Fig. 3, we observed that increased donor 

VL predicts lower selection bias and that this effect is strongest for polymorphisms, an 

observation that is inconsistent with high VL simply increasing the rate of multiple-virus 

transmission. These results thus suggest that high VL is in this context primarily a marker 

for increased viral transmission fitness. That donor VL is a more important predictor for 

transmission in male compared to female recipients [(27); see also table S3] is consistent 

with our observation that female recipients generally have a lower selection bias than 

males and that donor VL has a stronger effect on selection bias among male recipients 

(Fig. 3). These observations suggest that the increased effect of donor VL on female-to-

male transmission may primarily be the result of an increased barrier among male 

recipients that increases the importance of overall viral fitness (in effect, 𝑐 is much 

smaller in males than females). Together with our observation that transmission index 

predicts transmission (Fig. 5), these models predict that reduction in overall viral fitness 

(for example, via drug resistance mutations, or as a result of immunological adaptation), 

will have a larger effect on female-to-male than on male-to-female transmission. 

These results also suggest that therapeutic approaches to lowering VL without 

lowering VL fitness (for example, anti-retroviral therapy [ARV] in the absence of viral 

escape) will have no effect on transmission selection bias. Indeed, to the extent that ARV 

failure is caused by mutations that concomitantly weaken the virus, these models predict 

that high viral loads resulting from virologic failure will be correlated with increased 

selection bias, as in these cases higher VL will be a marker of decreased fitness in the 

absence of drug due to the escape mutations. Similar effects may arise in the case of elite 

controllers—if elite control is primarily indicative of an effective immune response and 

not a general inability of the virus to replicate.  
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Note S2: Independence of viruses 

Thus far, we have assumed that the probability that two different viruses will 

establish infection are independent of each other. However, it has been reported that the 

distribution of multiple-virus infections exceeds what would be expected under 

independence (1). Indeed, the rate of multiple-virus infections (≈ 10%) exceeds by 10 to 

100 fold what would be predicted from the binomial distribution given observed rates of 

transmission (see next section). But what is the effect of non-independence on our 

modeling and on our conclusions? 

The hypothesis that transmission is non-independent is supported by the relatively 

high frequency of multiple-virus infections. One possible mechanism for this non-

independence would be a process in which the successful transmission of one virus 

makes it easier for another virus to break through the physical and immunological 

barriers (for example, if infection of one target cell causes the recruitment of other target 

cells). This mechanism would imply that the probability that no viruses establish 

infection remains (1 − 𝑝)𝑛, and thus the overall probability of infection is still given by 

𝑟 = Pr(𝑇 > 0; 𝑛, 𝑝) = 1 − (1 − 𝑝)𝑛, and the observed low rates of transmission, 𝑟 <
0.01, still allow the approximation 𝑟 ≈ 𝑛𝑝. The primary issue of non-independence is 

that the frequency of multiple-virus transmission will be non-negligible—roughly 10% in 

heterosexual cohorts. For these 10% of individuals, the odds that a virus of type 𝑎 is in 

the founder population is no longer a simple function of 𝑓𝑎 and 𝑝𝑎/𝑝𝑎 (Eq. 3), because 

the denominator needs to account for the probability that viruses of both type 𝑎 and 𝑎 are 

transmitted. In effect, the odds as stated in Eq. 3 will overestimate the true odds. 

However, while 10% of individuals are infected with multiple viruses, in our model 

setup, we group all viruses into two types: type 𝑎, comprising >75% of all donor viruses, 

and type 𝑎. In this context, transmission of multiple viruses is irrelevant if they are all of 

the same type, as will be the case for the vast majority of sites for any particular instance 

of multiple-virus transmission. Furthermore, by filtering out instances where a mixture is 

observed in the recipient, we likely exclude many instances in which the founder 

population includes viruses from both the donor majority and minority variants. Thus, the 

overall proportion of sites in our modeling setup that includes viruses of both types is 

likely much less than 10%.  

Nevertheless, what is the effect of non-independence on the small number of sites 

where this is relevant? With respect to viral fitness features (primarily those in Fig. 2), 

the effect will be to dilute the signal, making it harder to detect a selection bias between 

viruses of type 𝑎 and 𝑎. Thus, non-independence does not change our conclusions with 

respect to the existence of selection bias at the transmission bottleneck in general, nor the 

observation that these features are related to viral fitness in particular. With respect to the 

reduction of selection bias by risk factors, the effect will be to uniformly increase the 

probability that the founder population includes a virus of type 𝑎, regardless of whether 

selection bias favors or restricts 𝑎. Indeed, this can be observed among the high rates of 

transmission observed in fig. S3 (see Note S1), in which increasing 𝑛 to very high rates 

of transmission increases the probability that 𝑎 is in the founder population, regardless of 

𝑝𝑎/𝑝𝑎. Importantly, while the risk factors considered here (sex, GUI and donor VL) 

likely increase the rate of multiple-virus transmission [as any transmission risk factor will 

under the binomial distribution, and as previously reported for GUI (3)], the observation 

that this effect is most extreme among variants with low cohort frequency, where 𝑝𝑎 ≪
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𝑝𝑎 (Fig. 3), argues that this effect is largely driven by a reduction in selection bias, not by 

very high rates of multiple-virus transmission. 

 

The expected rate of multiple infection under the binomial distribution is approximately 

the rate of transmission 

We asserted in the previous section that the pattern of multiple-virus infection 

suggests that transmission is non-independent. This observation was first made by 

Abrahams and colleagues, who argued from the Poisson distribution that the observed 

distribution of the number of virus genotypes per infection was not consistent with the 

independence assumption (1). Here, we briefly re-derive the Abrahams result using the 

binomial distribution and show that, under independence, the proportion of founder 

populations with more than one virus will be approximately the same as the overall rate 

of infection. Since the observed rate of multiple-virus infection greatly exceeds that 

predicted by the binomial distribution, we conclude that transmission is characterized by 

non-independence among individual viruses, such that the transmission of one virus 

particle increases the probability that other virus particles will be part of the founder 

population. 

Equation 2 provides the exact probability (assuming a binomial process) that at least 

one virus establishes infection: that is, the probability, or rate 𝑟, of infection per exposure 

incident. Similarly, the binomial distribution provides the exact probability that a single 

virus establishes infection as 

Pr(𝑇 = 1; 𝑛, 𝑝) = 𝑛𝑝(1 − 𝑝)𝑛−1 

Thus, the conditional probability that productive infection was established by a single 

virus is 

Pr(𝑇 = 1|𝑇 > 0; 𝑛, 𝑝) =
𝑛𝑝(1 − 𝑝)𝑛−1

1 − (1 − 𝑝)𝑛
 

From the approximation in Eq. 2, we see that the probability that a successful 

transmission event involves multiple viruses is approximately  

Pr(𝑇 > 1|𝑇 > 0; 𝑛, 𝑝) = 1 −
𝑛𝑝(1 − 𝑝)𝑛−1

1 − (1 − 𝑝)𝑛
 

≈ 1 −
𝑛

𝑝
1 − 𝑝

(1 − 𝑛𝑝)

𝑛𝑝
 

= 1 −
1 − 𝑛𝑝

1 − 𝑝
 

= 1 −
1 − 𝑟

1 −
𝑟
𝑛

 

≈ 𝑟  

where we have again used the assumption of small per-virus transmission probability, 

p<<1. That is, the proportion of infections established by multiple variants will be 
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approximately equal to the proportion of sex acts that result in any infection. Note that 

while the above approximations allow for an intuitive understanding of the relationship 

between the probability of transmission and the conditional probability of transmitting 

multiple viruses, exact probabilities are easily computed by statistical software and reveal 

that the above approximations overstate expected transmissions that involve multiple 

viruses, especially when the probability of transmission exceeds 20% (data not shown). 

Note that, for small transmission rates, the precise values of 𝑛 and 𝑝 are irrelevant: 

𝑛𝑝 is the statistic of interest, as it determines the transmission probability 𝑟. Furthermore, 

note that this result holds under models in which individual viruses have different 

probabilities of establishing infection (in which case 𝑝 represents the mean over the entire 

population of viruses). For example, it is well known that some couples represent high 

infection risk, while others represent low infection risk (27, 28). In these scenarios, the 

above model can be extended to a probabilistic hierarchical model, with the same result 

that the expected number of multiple-virus transmissions will be approximately equal to 

the overall rate of transmission. Briefly, if high risk couples have a rate of transmission of 

𝑟↑ while low risk couples have a rate of transmission of 𝑟↓, then the overall rate of 

transmission in the population will be the average rate of transmission, weighted by the 

proportion of individuals in the high (𝑓↑) or low (1 − 𝑓↑) risk groups. Similarly, because 

within each group the rate infection will be approximately the same as the rate of 

infections involving multiple viruses, the conditional probability that productive 

transmission results in multiple transmitted viruses will also be the weighted average 𝑟 ≈
𝑓↑𝑟↑ + (1 − 𝑓↑)𝑟↓. That is, the overall rate of transmission will still be approximately 

equal to the overall proportion of transmissions that involve multiple transmitted viruses. 

  



 

 

7 

 

 

Fig. S1. Cohort frequencies of donor majority variants correlate with the frequency 

of those variants in the donor quasispecies.  

Deep sequencing (454) was performed on 5 donors to estimate the quasispecies 

frequencies of dominant variants, as called from population sequences. The mean 

quasispecies frequency computed as a sliding window over cohort frequency (window 

size of 1 unit in log-odds space) is plotted in Green (all sites) and Red (all sites with 

observed quasispecies variation in the donor). Cohort and quasispecies frequencies are 

computed as smoothed log-odds scores with smoothing factor 𝑞 = 1/50. 
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Fig. S2. Additional features that impact selection bias. 

(A-C) Selection bias against transmission of variants that are consistent with escape from 

donor HLA alleles in (A) Gag, (B) Pol, and (C) Nef. (D) Residues that are susceptible to 

recipient HLA alleles—meaning they represent an un-escaped amino acid residue that is 

linked to at least one recipient HLA allele—are less likely to be transmitted. However, 

because transmission is defined as differences between recipient and donor sequences, as 
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measured a median of 46 days after transmission, these curves could represent rapid 

escape in the recipient. (E) Differences among proteins Gag, Pol and Nef, or (F) among 

protein domains. Although these differences were significant (see Table 2), no 

differences were observed when correcting for donor quasispecies frequency among the 5 

couples for whom deep sequencing was available (Table 1), suggesting that these protein-

specific difference may primarily result from differences in mean quasispecies 

frequencies of variants for these proteins. Nevertheless, these protein domains are 

included as covariates in all multivariable models to correct for confounding. Nef 

functional CD4 and MHC downregulation domains are taken from (49). 
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Fig. S3. Simulation of selection bias versus transmission probability. 

The exact binomial probability mass function was used to explore the relationship 

between the probability of transmission, 𝑟, and the conditional probability that the 

transmitted founder virus population contains at least one virus of type 𝑎 (𝑟𝑎|𝑟). For a 

range of 5 bias values (𝑝𝑎/𝑝𝑎) and a range of donor quasispecies frequencies for 𝑎 (𝑓𝑎), 
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we plotted the conditional transmission probability of 𝑎 as a function of the overall 

transmission probability 𝑟. For each plot, we set the donor viral population size to 𝑛 =
1000, then solved for 𝑝𝑎 to achieve a transmission probability of 0.001, satisfying bias, 

𝑓𝑎, and 𝑛. We then increased the rate of transmission 𝑟, either by increasing the overall 

donor population size, 𝑛 (red dots), or by increasing 𝑝 for all viruses by adding a constant 

𝑐 to both 𝑝𝑎 and 𝑝𝑎 (blue circles). The red and blue solid lines indicate the predicted 

conditional transmission probability of 𝑎, as estimated by the approximation in Eq. 3. A 

reduction in selection bias is here visualized as the convergence of the conditional 

transmission probability toward 𝑓𝑎 (gray line). 
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Fig. S4. Empirical reversion rates. 

Empirical reversion rates of donor polymorphisms to non-mixture consensus were 

estimated using a kernel smoothing function, as implemented in the Matlab statistics 

package, using a Gaussian kernel with widths of 1 week and 1 month. The plot shows the 

curves with 1 week smoothing for <3mo and 1 month smoothing for >3mo (the larger 

smoothing window accommodates the sparser sampling times).  Dotted lines show the 

mean reversion rates in the 3-12 month interval. Reversion rates are an order of 

magnitude higher in the first three months of infection compared to the following 18 

months; steady state reversion rates are lower in males compared to females, whereas 

initial reversion rates are higher in males compared to females. These data are thus 

consistent with an initial selection bias and are not likely artifacts of early reversion, as 

further supported by the ability to estimate the odds of transmission of viruses and virus 

populations (Fig. 5). Compare to Fig. 4, which shows cumulative reversion. Note that 

Fig. 4 measures reversion times relative to the first available sample date in the recipient; 

here, reversion times are measured relative to the estimated date of infection. 
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Table S1. Clinical characteristics of the cohort. 

 

 
Transmitting 

Non- 

Transmitting 

N 137 181 

Male (%) 62 (45%) 87 (48%) 

Male recipient* GUI (%) [missing] 17 (29%) [3] 10 (12%) [1] 

Female recipient GUI (%) [missing] 27 (38%) [3] 15 (16%) [2] 

Male donor† log10 VL, median [IQR‡] 5.2 [4.7,5.7] 5.0 [4.3,5.3] 

Female donor log10 VL, median [IQR] 4.8 [4.3,5.3] 4.3 [3.6,4.9] 

ETI§, median [IQR] 46.0 [42.0,60.5]  
*In the case of non-transmitting couples, the “recipient” refers to the seronegative partner.     †In the case of non-
transmitting couples, the “donor” refers to the seropositive partner.     ‡Interquartile range.     §Estimated time 

between infection and first available sample. 
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Table S2. Reversion of donor polymorphisms transmitted to recipients 

Feature Ln(HR)* P value† Transmission‡ 

 Cohort frequency§ -0.28 0.016 + 

Viral fitness features** 

# Covarying sites -0.10 0.031 + 

Donor escape 0.99 0.003 − 

Structural frequency§ 0.01 0.496 + 

Donor log10 VL -0.16 0.131 + 

Is male-to-female 0.58 0.016 + Recipient susceptibility 

features† † Recipient is GUI male 0.17 0.406 + 

Is escape to consensus¶ 1.45 0.004 

  p17 -0.16 0.315 

  p24 0.11 0.409 

  Protease -1.92 0.196 

  Reverse transcriptase -1.42 3.1 × 10-6 

  Integrase -1.77 0.215 

  Nef CD4/MHC domains 1.40 0.207 

  *The hazard ratio of reversion from polymorphism to consensus, for sites in which a polymorphism was present in both the donor and recipient, 

were estimated using a Cox proportional hazards model. Only sites with available protein structures were used in the model; all sites were used in 
Fig. 4.     †P-values were estimated using a multilevel bootstrap (1000 replicates) to estimate the standard error for each parameter.     ‡The effect 

of the feature on odds of transmission (Table 2) is indicated: +, the feature generally increases odds of transmission; −, the feature generally 

decreases the odds of transmission.     §Because we are tracking reversion to consensus, and not any mutation away from the polymorphism, 
observed cohort and predicted structure frequencies are here represented as the negative standardized log-odds of the respective measure for the 

cohort consensus at that site.     ¶A binary variable indicating whether a mutation to consensus is consistent with escape from recipient HLA 

alleles, and thus may more likely represent immune escape than reversion.     **Viral fitness features are expected to elicit opposite effects on 
transmission and reversion: amino acids with high odds of transmission will have low rates of reversion and vice versa.     † †Recipient 

susceptibility features are expected to elicit concordant effects on transmission and reversion: individuals who have low selection bias will have 

high overall odds of transmitting the dominant donor variant; those variants will in turn revert faster because they on average have lower fitness. 
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Table S3. Transmission index of the seroprevalent partner is predictive of 

transmission 

Feature Ln(OR)* P value 

Offset 0.64 0.031 

Transmission index† 1.28 0.047 

Is male-to-female 1.11 0.705 

Donor‡ log10 VL (M2F)§ 1.47 0.031 

Donor log10 VL (F2M) 2.18 4.4 × 10-4 

Recipient¶ has GUI (M2F) 1.00 0.986 

Recipient has GUI (F2M) 3.41 0.010 
*Model was fit using logistic regression. Dependent variable was whether the seroprevalent 

individual had transmitted to their partner. Compare to Fig. 5C.     †Transmission index is 
standardized (zero mean, unit variance) for comparison purposes.     ‡Or the seropositive 

partner in the case of NYT couples.     §Donor VL and recipient GUI were given separate 

parameters for male-to-female (M2F) and female-to-male (F2M) couples.     ¶Or the 
seronegative partner in the case of NYT couples. 

 

Table S4. HLA associations, covariation associations and structural energy 

estimates (xls). 

 

 

 

 

 


