Engineering SDN for Scale

Deepak Bansal
Partner Development Manager
Microsoft Azure

>90,000

New Azure customer subscriptions/month

>1.5Million

SQL Databases running on Azure

>5Billion

Authentications per week using Azure Active Directory

Azure momentum

2 Trillion

Messages per week processed by Azure IoT

90 Trillion

Storage Objects in Azure

>40%

Revenue from Start-ups and ISVs

>80%

of Fortune 500 use the Microsoft Cloud

SDN Motivation and Challenges

- Enable customers to run the cloud services with similar or better network than on-premise
 - Per customer network, with richness, flexibility, control, isolation and programmability of onpremise network (firewalls, routes, load balancing, DMZ, VPN etc)
 - Virtual appliances in the "virtual network" in the cloud
- Deploying and managing complex policies on physical devices does not scale
- Challenge: How do we deliver and scale virtual networks across millions of servers?
- Solution:
 - Network Controller: Centralized, scalable, highly available, goal state based management of the customer's virtual networks
 - Host SDN: scalable virtual network data plane via host agents and host drivers
 - Virtual network functions: Provide virtual network services like load balancing and address resolution implemented as services on Azure

Network Controller

- Challenges:
 - Scale
 - 1DC/1 region -> ~50DCs/17 regions
 - 1000s of virtual networks and network endpoints -> 100,000s -> millions
 - Rate of virtual network provisioning
 - 30min provisioning time -> <5s provisioning time with containers
 - Scope of virtual network
 - Within cluster -> region -> global
- Solution: Scalable and highly available network controller that is
 - Hierarchical
 - Partitioned and regional
 - Micro-services based

Hierarchical Network Controller

RNM Micro-Service Architecture

Regional Network Controller Stats

- 10s of millions of API calls per day
- API execution time
 - Read : <50 milliseconds
 - Write: <150 milliseconds
- Varying deployment footprint
 - Smallest: <10 Hosts
 - Largest : >100 Hosts

SLB high level architecture

SLB Components:

- SLBM (SLB manager): Control plane that tracks vip dip mappings, health and programs Muxes and hosts
- Mux: Data plane that forwards traffic as well as announce routes
- SLB Host agent: Does NATting

SLB Scale

- 600+ SLBs in production
- 1 Tbps (aggregated) of data
- 17 million of SNAT slot requests
- 1 million total endpoints

Virtual Filtering Platform (VFP)

- Acts as a virtual switch inside Hyper-V VMSwitch
- Provides core SDN functionality for Azure networking services, including:
 - Address Virtualization for VNET
 - VIP -> DIP Translation for SLB
 - ACLs, Metering, and Security Guards
- Uses programmable rule/flow tables to perform perpacket actions
- Supports all Azure data plane policy at 40GbE+ with offloads
- Coming to private cloud in Windows Server 2016

Flow Tables: the Right Abstraction for the Host

We are Hiring!

- BA/BS, MS, PhD
- Interns, Full time positions

{Dbansal, parveenp,umkrishn}@microsoft.com