Building A Data-center Scale Analytics Platform

Sriram Rao
Scientist/Manager, CISL
CISL: Cloud and Information Services Lab

• Started in May 2012

• Mission Statement: “Applied research lab working on Systems and Machine Learning Big Data technology. Carry out innovative research by building real systems, publishing papers, and contributing to open-source.”

• CISL works closely with Microsoft Big Data teams

• CISL consists of two sub-teams
 • CISL Systems
 • CISL Data Science: Focus on ML
Data Analytics in 2010’s...

• Enterprises/cloud providers are building/operating BIG clusters
 • Clusters are big...10’s of 1000’s nodes and cost $$$ to build and operate

• Diverse application frameworks:
 • Map-Reduce, Spark, Storm, Hbase, Giraph, ...

• Leverage open source for systems infrastructure
 • Hadoop, HDFS, Linux, Puppet, Java etc.

• Key goal for datacenter operators: Maximize ROI
 • “Do more on the same hardware”

• Clusters are evolving from one per application to a shared platform in the datacenter
“Shared” Data Analytics Platform

- Batch jobs
- Interactive queries
- Streaming queries
- Production jobs
- Ad-hoc jobs
Vision: One cluster to rule them all

• Can we build a scale-out analytics platform that:
 • Supports a diverse mix of applications from batch jobs to interactive queries to long-running services
 • Concurrently runs a mix of production jobs with SLAs and ad-hoc jobs
 • Maximizes cluster throughput
 • Scales to 10’s of 1000’s of nodes
 • Always available, software is backwards compatible, support rolling upgrade, auto reconfigure when components fail, ...

Ambitious multi-person, multi-year agenda
BigData Analytics Stack

Application Engines

<table>
<thead>
<tr>
<th>Scope AM</th>
<th>Spark Runtime</th>
<th>M/R AM</th>
<th>Tez</th>
<th>REEF</th>
</tr>
</thead>
</table>

Per-job resource management

- Scope AM
- Spark Runtime
- M/R AM
- Tez
- REEF

Cluster-wide resource management

- YARN + Rayon
- YARN + Federation
- YARN + Mercury
- YARN + Mercury
- YARN + Mercury

Storage

- Tiered HDFS over Cabo
- HDFS Shim
- Cosmos Store API
- Cosmos Store
- WebHDFS
- Azure Data Lake (Cabo)

Service Analytics

- Spark
- HDFS Format
- Helios
(Internal) Product Impact at Microsoft

• Much of our work influenced Microsoft’s Azure Data Lake efforts
• Microsoft’s clusters used for internal workloads will eventually shift to “YARN++ based” stack
• What we have done so far “lays the plumbing” for the next round of innovative research
(Selected) Publications

• Papers published in top conferences
 • Amoeba [SoCC’12]: Ganesh A., Sriram Rao, Chris Douglas, Raghu Ramakrishnan, Ion Stoica
 • Work conserving preemption to Hadoop; code ships starts with Hadoop 2.1
 • Apache YARN [SoCC’13]: Authored by CISL (Chris Douglas, Carlo Curino), Yahoo!, HW, Inmobi
 • Won Best Paper at SoCC’13
 • Rayon [SoCC’14]: Carlo Curino, Chris Douglas, Djellel Difallah, Subru Krishnan, Raghu R., Sriram Rao
 • Rayon ships starting with Hadoop 2.6
 • Tetris [SIGCOMM’14]: Robert Grandl, Aditya Akella, Ganesh A. and Srikanth Kandula, Sriram Rao
 • Enabling YARN’s scheduler to pack tasks efficiently [UW-Madison, MSR, and CISL]
 • Mercury [USENIX’15]: Kostas Karanasos, Sriram Rao, Carlo Curino, Chris Douglas, Raghu Ramakrishnan
 • Hybrid scheduling combining YARN centralized with (Apollo style) distributed scheduling
 • Key components of Mercury checked in to Apache Hadoop/YARN
 • Corral [SIGCOMM’15]: Virajith Jalaparti, Ishai Menache, Peter Bodik, Sriram Rao
 • Network-aware scheduling of data parallel jobs [UIUC, MSR, and CISL]
 • Yaq [Eurosys’16]: Jeff Rasley, Kostas Karanasos, Srikanth Kandula, Rodrigo Fonseca, Sriram Rao
 • Applying network-style packet prioritization ideas to task scheduling [Brown, MSR, and CISL]
Apache YARN Overview
Background

• Cluster setting:
 • BigData clusters are built using commodity hardware
 • Scale-out architecture
 • Racks of machines connected by a ToR to a central switch

• Cluster resources are exposed to applications as “containers” (aka slots)
 • Each slot is a bundle of CPU core, RAM

• For ease of management, there is a centralized scheduler that imposes policy-based sharing (capacity/fairness) of cluster resources
 • Applications negotiate with the scheduler (aka resource manager) for containers
 • When an app gets a container, it “puts” something there and runs it
Unified resource model (elastic sharing of slots)
Heterogeneous applications
Resource vector API: declarative resource management language
Challenges with resource management

Problems

• No way to provide resource allocation SLO’s to production jobs
• High allocation latency, which affects “small” jobs that are majority
• YARN RM has scalability limitations
 • Known to scale to 4K nodes

What have we done so far?

• Rayon: Resource reservation framework on YARN
• Mercury, a hybrid resource management framework that combines centralized and distributed scheduling
• Federation: Extend Mercury to build “federated” YARN clusters
Big Picture

Application Engines

SCOPE U-SQL Azure ML Azure Streaming Hive Spark ...

Per-job/framework Resource Management

SCOPE AM Spark Runtime M/R AM Tez REEF

Cluster-wide resource management: YARN++

YARN + Rayon
YARN + Federation
YARN + Mercury
YARN + Mercury
YARN + Mercury
YARN + Federation (see YARN-2915)

• Based on deployments at Yahoo, LinkedIn, etc., YARN RM is known to scale to 4K nodes
 • They have multiple 4K clusters, each of which is an “island”
 • Operated in this manner for multiple years...
• How do we do resource management at datacenter scale?
 • Want to push the limits of scale 😊
• Key idea: Federation
 • 4K size sub-clusters are “bricks”
 • Federate bricks/sub-clusters to handle large sizes
 • Allows for “always on”
 • Test/flight at scale
 • Self-configuring
Federated Cluster

Sub-cluster 1

Rack 1
RM
RMProxy
RMProxy
RMProxy
RMProxy

Rack 2
RMProxy
RMProxy
RMProxy
RMProxy
RMProxy

Rack 3
RMProxy
RMProxy
RMProxy
RMProxy
RMProxy

Sub-cluster 2

Rack 1
RM
RMProxy
RMProxy
RMProxy
RMProxy

Rack 2
RMProxy
RMProxy
RMProxy
RMProxy
RMProxy

Rack 3
RMProxy
RMProxy
RMProxy
RMProxy
RMProxy

Sub-cluster m

Rack 1
RM
RMProxy
RMProxy
RMProxy
RMProxy

Rack 2
RMProxy
RMProxy
RMProxy
RMProxy
RMProxy

Rack 3
RMProxy
RMProxy
RMProxy
RMProxy
RMProxy

Sub-cluster n

Rack 1
RM
RMProxy
RMProxy
RMProxy
RMProxy

Rack 2
RMProxy
RMProxy
RMProxy
LRM
RMProxy

Rack 3
RMProxy
RMProxy
RMProxy
RMProxy
RMProxy

Router

Sub-cluster RM (One per Sub-cluster)
Proxy to the RM infrastructure (One per Node/Rack, this is an NM service)

GPG
Global Policy Generator

6/16/2014
Microsoft Confidential
15
What next on Federation?

• What we have done so far is put down a baseline architecture
 • Scale-out system, self-configuring/self-healing capabilities
 • We can leverage all the work done in OSS for YARN related improvements

• Implementation Status:
 • There is a branch in Apache for Federation
 • If you are interested in the code, reach out to me

• Need to define policies:
 • binding tenants to sub-clusters,
 • take workload characteristics in placement,
 • …
Service Analytics
Problem Setting

• For cluster operators log data is key to deriving operational insights
• Datacenter size clusters generate massive log data. Suppose:
 • 1 machine generates 10MB/min
 • 60k machines generate: $60k \times 10MB \times 60 \times 24 \approx 1PB/day!$
• Want data to be queryable “near real-time”
 • This makes it possible to take corrective action should go awry
• What we realized...
 • There is no subsystem that is designed for this scale 😊
What did we do...

• Built Helios, a scale-out log collection framework
 • Agent on each machine parses/indexes the data
 • Collect at aggregation nodes, which merge indexes and serve queries
• Added a “HDFS head” at the aggregation nodes
• Leverage open-source tools such as Spark to query the log data
• End-to-end time: From the time log line is generated to when it is queryable is: 90 secs
 • Not bad 😊
Summary

• I only gave you a flavor for the problems we are looking into
• We are a small team
• What we have is a multi-person, multi-year agenda
• We collaborate extensively with MSR, University folks
We are hiring!

Interested in summer internships, full-time researcher positions, talk to us