Be Fast, Cheap and in Control with SwitchKV

Xiaozhou Li

Raghav Sethi

Michael Kaminsky

David G. Andersen

Michael J. Freedman

Fast and cost-effective key-value store

- Target: cluster-level storage for large, active data sets
 - Small key-value items, persistent, strongly consistent
- Goal: meet the service level objectives (SLOs)
 - Aggregate throughput and tail latency
- Fast SSDs are opening up new points in the design space
 - Emerging hardware and software technology
 - Can meet the SLOs of many cloud services cost-effectively

Scale out SSD-based cluster

Meet the SLOs without substantial over-provisioning

Scale out SSD-based cluster

- Meet the SLOs without substantial over-provisioning
 - under widely varying and rapidly changing workloads.

Key challenge: dynamic load balancing

- Load imbalance hurt performance
 - Lower throughput
 - Higher (tail) latency
- Existing methods (e.g., data migration) have limitations
 - system overhead
 - consistency challenge
- Fast, small cache can ensure effective load balance
 - Only need to cache the O(nlogn) hottest items, n is the total number of backend nodes [Fan, SOCC'11]

SwitchKV: heterogeneous key-value storage cluster

- Large scale SSD-based backend servers
 - Cost-effective but resource-constrained
 - Provisioned for the performance goals
- Specially-configured high-performance node
 - Fast, small in-memory cache

Traditional systems: cache must process all queries

- High system overhead when cache hit ratio is low
 - Throughput is bounded by the cache
 - High latency for queries for uncached keys

Look-aside architecture

Look-through architecture

SwitchKV: effective content based routing

- Exploit SDN and deeply optimized switch hardware
 - Encode key information in the packet MAC header
 - Install exact match rules for all cached keys
 - Switches forward requests directly to the right nodes

How to update the cache?

- Backends add each recently-visited key to the cache?
 - Works fine when the cache hit ratio is high
 - What if backends are responsible for most queries?
 - Unnecessary cache churn
 - High bandwidth and computation overhead
 - Switch rule update rate is limited

SwitchKV: minimize unnecessary cache churn

Conclusion

- SwitchKV: load-balanced cluster-level key-value store
 - Load balancing guaranteed by fast, small cache
 - Efficient content-based routing
 - Reacts quickly to workload changes with hybrid cache updates
- Meet the SLOs more efficiently than traditional systems
- Checkout our NSDI paper this March ☺