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Abstract—The classical approach for acoustic imaging consists
of beamforming, and produces the source distribution of interest
convolved with the array point spread function. This convolution
smears the image of interest, significantly reducing its effective
resolution. Deconvolution methods have been proposed to enhance
acoustic images and have produced significant improvements.
Other proposals involve covariance fitting techniques, which
avoid deconvolution altogether. However, in their traditional
presentation, these enhanced reconstruction methods have very
high computational costs, mostly because they have no means of
efficiently transforming back and forth between a hypothetical
image and the measured data. In this paper, we propose the Kro-
necker Array Transform (KAT), a fast separable transform for
array imaging applications. Under the assumption of a separable
array, it enables the acceleration of imaging techniques by several
orders of magnitude with respect to the fastest previously avail-
able methods, and enables the use of state-of-the-art regularized
least-squares solvers. Using the KAT, one can reconstruct images
with higher resolutions than was previously possible and use more
accurate reconstruction techniques, opening new and exciting
possibilities for acoustic imaging.

Index Terms—Acoustic imaging, array imaging, array pro-
cessing, fast transform, regularized least squares, sparse
reconstruction.

I. INTRODUCTION

A COUSTIC imaging refers to the problem of mapping the
locations and intensities of sound sources over a region

of interest using microphone arrays. For example, a microphone
array can be positioned in a wind tunnel to determine the noise
distribution over a model due to high velocity airflow [1], [2].
These measurements are routinely used to design cars, trains,
and aircraft, which are quieter to outside observers and to pas-
sengers. Microphone arrays have been employed to measure the
noise generated by turbofan engines [3] and wind turbines [4]
for similar noise reduction applications. Acoustic imaging has
also been used to visualize the reverberant structure of concert
halls [5]. We note that techniques for imaging the shapes of
objects and structures via acoustic waves are sometimes called
acoustic imaging, but we will not address these problems.
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Array imaging is possible because sensor arrays can be elec-
tronically steered toward arbitrary directions. One can define a
grid over a region of interest, electronically steer the array over
all elements of the grid, and, thus, create a map of estimated
sound pressure levels. Each point in the grid can be represented
as a pixel. The value of the pixel can be chosen to represent the
estimated sound pressure level, thus creating an acoustic image.

Array imaging differs from source localization techniques,
such as [6]–[10], because these usually produce a pseudospec-
trum of the wavefield, with maxima that indicate the location
of dominant sources but with values that do not map to source
powers. Thus, in this paper, we will assume that accurate power
estimates are desirable.

The simplest and most common method for imaging uses
delay and sum beamforming. This technique consists of de-
laying and summing the signals arriving at each sensor so that
the sources located at a direction of interest are reinforced, and
sources located in other directions are attenuated. Beamforming
is simple, but unfortunately produces the lowest quality images.
Indeed, under the assumption that the sources are in the far-field
of the array, beamforming produces the source distribution of
interest convolved with the array point spread function (PSF).
Since a typical acoustic array has a relatively small aperture with
respect to its operating wavelengths, its PSF can be quite large,
so that delay and sum beamforming produces very smeared im-
ages. Alternative beamforming techniques have been developed
to improve resolution by using data-dependent methods and nu-
merical optimization of the beampattern [11]–[13], but they do
not overcome the fundamental limitation that beamforming pro-
duces convolved images.

To overcome this limitation, several deconvolution tech-
niques have been proposed [14]–[17]. They use as inputs the
image obtained with delay and sum beamforming and the array
PSF, and generally produce a much better approximation of the
original source distribution. Nevertheless, deconvolution is an
ill-conditioned inverse problem, and typically requires some
knowledge of the solution to discriminate between different
solutions which would be equally good fits for the measured
data. The acoustic imaging methods proposed so far tend to use
very simple types of regularization, such as low-pass filtering
between iterations, or no regularization at all.

Regularized signal reconstruction has been a topic of interest
for many decades, and gained significant momentum with the
popularity of compressive sensing [18]–[20]. Indeed, many
image reconstruction problems can be recast as convex opti-
mization problems, which can be solved with computationally
efficient iterative methods. While many of these techniques
were designed for imaging applications, they have remained
limited to fields, such as medical image reconstruction. There-
fore, most of these developments have not been applied to
acoustic imaging.
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A major reason for this separation between fields has been
the absence of computationally efficient transforms for aeroa-
coustic imaging. For example, consider the generic nonlinear
signal reconstruction problem given by

such that (1)

where is the measured signal, is the reconstructed signal,
is a sparsifying transform, and is a transform which models
the measurement process. For an acoustic image, would be a
vectorized version of the image describing the true source dis-
tribution, and would be a vectorized version of the array’s
sample covariance matrix.

Since, in practice, (1) is solved iteratively, one must be able
to quickly evaluate and (and and , as we will
see in [21, Sec. II] of this paper) for arbitrary . This is a very
strong requirement, because the application of these transforms
is the bottleneck of efficient convex optimization algorithms and
completely determines their computational costs (regardless of
whether the transform is fast or slow). While one can choose
a convenient fast sparsifying transform , the transform is
determined by the physical measurement process. For example,
for MRI applications, we naturally have , where is a
fast Fourier transform (FFT) and is a subsampling operator.
Finite differences have been successfully used as the sparsifying
transform with [22], [23].

While sparsity-enforcing approaches have been proposed for
the direction of arrival estimation [24] and acoustic imaging
[25], to our knowledge, no method of acoustic imaging uses a
fast implementation of . To motivate the need for a fast trans-
form, consider a naive matrix representation of . Given an
array of sensors and an image with pixels, has rows
and columns. For , has 4 billion elements
and the products and are computationally very expen-
sive, making convex optimization methods intractable with cur-
rent desktop computers. Thus, the naive implementation of is
only practical for very small images and arrays, thus motivating
the development of a fast transform.

In this paper, we develop the Kronecker Array Transform
(KAT), a fast transform which implements , , and
for separable arrays. The KAT can be applied to many existing
array imaging algorithms, with significant performance gains.
It also allows for the use of state-of-the-art solvers for acoustic
imaging problems, obviating ad-hoc solutions which typically
produce worse results. Indeed, with a fast transform, one can
use most of the general purpose, state-of-the-art solvers devel-
oped for other imaging and compressive sensing applications.
By combining the KAT with these methods, we can accelerate
reconstruction times by several orders of magnitude with respect
to the fastest previously available implementations. In practical
terms, an image which would take minutes to reconstruct can be
obtained in a few seconds. Finally, while this transform was mo-
tivated by applications in aeroacoustics, it also applies to generic
wave fields and separable sensor arrays.

To our knowledge, previous proposals for accelerated
acoustic imaging are all based on beamforming. Zimmerman
and Studer [26] propose offloading delay-and-sum beam-
forming to a field-programmable gate array (FPGA), which

performs all of the computation and draws acoustic images
over a framebuffer. While this approach makes beamforming
faster, it does not reduce its underlying computational cost.
Huang [27] uses a state observer model to recursively obtain
an approximation of the acoustic image while acquiring data
(in contrast to computing an image from a sample covariance
matrix). While this method has the advantage of returning
incremental results, it has the same computational cost as
beamforming, and a comparable beampattern. In contrast, the
KAT dramatically reduces the underlying computational costs
of acoustic imaging, allowing more accurate reconstruction
methods to be used instead of beamforming.

Part I is organized as follows: Section II gives several defini-
tions and further motivates the need for fast transforms. Sec-
tion III introduces the KAT, its adjoint and its direct-adjoint
composition, under the assumption of far-field sources. Sec-
tion IV presents connections with the fast Fourier transform, fast
non-equispaced Fourier transform (NFFT), and fast non-equis-
paced in time and frequency Fourier transform (NNFFT) [28].
These connections are also a contribution, because to our knowl-
edge, the NFFT and NNFFT have never been used for acoustic
imaging. We show how the NFFT and NNFFT can also be used
to accelerate acoustic imaging under a far-field approximation,
despite being an order of magnitude slower than the KAT. Sec-
tion V presents benchmarks comparing the KAT with the NFFT,
NNFFT, and explicit matrix representations. Section VI shows
how to extend the KAT for near-field imaging, modeling spher-
ical wavefronts instead of planar wavefronts. This generaliza-
tion is unique to our proposal, and produces a transform which
is orders of magnitude faster than direct matrix multiplication
(which becomes the only alternative, since the FFT, NFFT, and
NNFFT require a far-field approximation). Section VII con-
cludes this paper.

Reference [21, Sec. II] presents applications. Section I briefly
reviews the results from Part I. In Section II, we use the KAT to
significantly accelerate existing techniques and to enable the use
of general-purpose solvers, obtaining more accurate reconstruc-
tions than possible with current state-of-the-art methods. Sec-
tion III features examples and compares several reconstruction
methods with respect to computational cost and accuracy. Sec-
tion IV compares separable arrays with multiarm logarithmic
spiral arrays, and shows that by requiring separable arrays, we
are not trading reconstruction quality for speed. Finally, Sec-
tion V consists of conclusions and final comments.

II. PRELIMINARIES

Consider a sensor array composed of microphones at
Cartesian coordinates , and an arbitrary
wavefield which we wish to estimate. Suppose that this wave
field can be modeled as generated by the superposition of

point sources located at coordinates ,
where may be a large number in order to obtain an accurate
model. Let

(2)

The time-domain samples of each microphone are segmented
into frames of samples, and each frame is converted to the
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TABLE I
LIST OF SYMBOLS

frequency domain using a fast Fourier transform (FFT). In the
presence of additive noise, the array output vector for a
single frequency on a single frame can be modeled as

(3)

where ,
is the array

manifold matrix,
is the frequency-domain signal waveform, and is the
frequency-domain noise waveform.

The near-field array manifold vector for source is given by
[29]

(4)
where is the speed of sound.

Define , the look direction for source .
Under a far-field approximation (modeling a plane wave), the
time differences of arrival is given by , for

. Since the wavefront is not expanding, the
attenuation disappears, and the far-field array manifold vector
for source is given by

(5)

Using spherical coordinates

(6)

where and are the azimuth and elevation angles, respec-
tively. One can reparameterize the unit half-sphere by defining

(7)

(8)

so that

(9)

for . Uniform sampling in U-space (where
) is convenient in many applications, because under a

far-field approximation, it makes point-spread functions shift-
invariant. In this paper, it will enable us to decouple the and
axes, producing the fast transform.

Since the optimizations presented in the following sections
require Cartesian (not necessarily uniform) parameterizations in
U-space and far-field approximations, we will assume that man-
ifold vectors have the form (5). In Section VI, we extend our re-
sults for near-field sources, which will allow us to approximate
(4) with arbitrary accuracy.

Using the assumption of far-field sources, we rewrite (3)as

(10)

where .
Let

(11)

be the array’s narrowband cross spectral matrix for
. If corresponds to frequency-do-

main frames (also known as snapshots), the spectral matrix can
be estimated with

(12)

We assume that the statistics of the signal and noise are sta-
tionary over the measured period, so that (12) is an unbiased
estimator.

Processing instead of each is typically more
convenient, because carries only the relative phase
shifts between microphones and is the result of averaging, so
that it has less noise content. Indeed, for each ,

has a phase shift which is equal for every element
but unknown, which disappears when computing . To
save space, in the following text, we will assume narrowband
processing and omit the argument . Also, the subscript
will be dropped, and will be written as .

Substituting (10) into (11) and assuming that the noise is spa-
tially white and uncorrelated with the sources of interest, we
have

(13)

where , .
Assume that the wavefield impinging on the array can be

modeled as emitted by the superposition of uncorrelated point
sources located in the array’s far field. One can represent these
sources by a collection of points at coordinates lo-
cated in a sufficiently fine grid in U-space. This representation
is effectively a 2-D digital image, where the pixel coordinates
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correspond to locations in U-space, and the pixel values corre-
spond to source intensities. Note that in (13), assuming that the
sources are uncorrelated implies that is diag-
onal. Furthermore, the diagonal of is a vec-
torized version of the acoustic image.

Given an acoustic image where each pixel corresponds to a
point source, one can easily obtain the array spectral matrix as
long as all point sources (pixels) are assumed to be pairwise un-
correlated. If there were cross-correlations, one would drop the
assumption that is diagonal, and require the
correlation coefficient for each pair of sources, whose determi-
nation would be clearly impractical even for small images (for
example, a 64 64 pixel image would have 4096 pixels
(sources) and million unique cross-cor-
relations). Therefore, unless stated otherwise, we shall assume
that sources are pairwise uncorrelated.

However, we note that a fast transform can also be obtained
for correlated source distributions as a natural generalization of
the KAT. It has special importance because one cannot apply
Fourier methods to accelerate the reconstruction of correlated
source maps. Nevertheless, since the number of cross-correla-
tions scales quadratically, estimating every cross term is only
viable for very simple source distributions. Thus, a proposal
for imaging correlated sources should combine a fast transform
and domain-specific regularization, the latter being an open
problem. Due to space limitations, we will not address these
topics in this text.

Recall that to solve (1) efficiently, one requires a fast
method of obtaining from a hypothetical image. Consider an

pixel acoustic image, define and let
be an enumeration of all pixel coordinates in

U-space. Let be the array manifold vector when steered
towards the look direction . For a single source at
radiating with power , the measured spectral matrix
is . Given the source powers for

, one can reconstruct by superposition, so that

(14)

Unless the image is very sparse, this expression be-
comes computationally intractable. For instance, consider
a 256 element array and a 256 256 acoustic image.
Each outer product generates a
256 256 matrix. Neglecting the cost to scale by

, the outer product requires complex multiply-ac-
cumulate (MAC) instructions.1 This process must be repeated

times, resulting in complex MACs. Since each
outer product has Hermitian symmetry, it suffices to determine
its upper or lower triangular part (including the main diagonal),
which reduces the total complex MAC count to approximately

. Nevertheless, this computational cost is still excessive
for a transform intended to be used in an iterative method. In

1Modern digital-signal-processing (DSP) architectures are able to implement
a multiplication followed by an accumulation in the same clock cycle. This
single cycle instruction is known as a MAC. Since the computational cost of
performing a sum, product, or MAC is the same, for the purposes of estimating
computational complexity, it suffices to estimate the total number of MACs.

the following text, we describe how to implement an efficient
transform to obtain from .

III. KRONECKER ARRAY TRANSFORM

Define . Let us write (14)
as a linear transform so that , with . To
save space, we will write as , and will denote its th
element by (elements of array manifold vectors will be in-
dexed using superscripts). Let be the number of microphones
in the array. Note that

...
(15)

Therefore

(16)

...
...

...

(17)

where is the Kronecker product.
Given a 2-D array, its array manifold vector

is said to be separable if exists and so
that for all valid . Note that

and need not be submanifold vectors. We say that
an array is separable if and only if it has a separable manifold
vector. We will show below how the array geometry relates to
its separability under a far-field assumption.

To simplify the notation that follows, let us specify the
enumeration of look directions we are using.
Suppose that is a digital image representing
the acoustic image. The rows of correspond to horizontal
scan lines of arbitrarily sampled pixels, and the columns of
correspond to vertical scan lines of arbitrarily sampled pixels.
Let and be points which sample
the U-space along the and axes, ordered from left to right
and from top to bottom. We define so that

...
(18)

Breaking into components, this implies that

(19)
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Fig. 1. Example of pixel order and U-space parameterization for an acoustic
image, for� � � � 21 and uniform sampling in the U-space.

Fig. 1 shows an example of how pixels are ordered and param-
eterized in U-space.

We now show that under the far-field parameterization given
by (5), an array is separable if and only if it has elements posi-
tioned over a (potentially nonuniform) Cartesian grid.

To see this, consider an array with sensor coordinates
, for , with and coordinates drawn from

and , respectively, so that

Let be the number of array elements. Define a
horizontal array with sensor coordinates , for

and a vertical array with sensor coordinates , for
, so that

Let and be the and manifold vectors for
these 1-D arrays. Then, for and

which, by definition, is equivalent to

(20)

Thus, arrays with Cartesian geometries are separable under
U-space parameterization. To prove the converse, note that

(21)

where . By hypothesis, and exist
so that . The term from
(21) must belong to , since it is a function of , and

is constant. It follows that and
, with and defined before, imply a Carte-

sian geometry.

A. Fast Direct Transform

To save space, we will use the shorthand notation

(22)

Using the separability of the array in (17), we obtain

(23)

For , the separability of the array also allows
row of to be written as

(24)
where , , , and

.
For and , define

(25)

For , an arbitrary element of can
be written as the inner product of line of and

. Define

Using (24), we have

(26)

(27)

where , , , and
. Also, (26) and (27) are equivalent because
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whenever is defined
[30].

Note that and completely model the response
of the pair of sensors, for all directions of arrival. This
is already a more compact representation than before, since this
model uses the separability of the array. All that is left is how
to efficiently compute all of the responses for all pairs.

For and , define

(28)

and

...
...

(29)
From the results above, it is easy to show that

...
...

...
(30)

Even though one could determine for
and by directly evaluating (28), one should or-
ganize the computations to eliminate redundancy. Also, since in
modern computer architectures the arithmetic units can process
data faster than the main memory can provide via random ac-
cesses, one should maximize the locality of reference to ensure
that the arithmetic operands are typically in the cache. In par-
ticular, the algorithm should promote sequential memory ac-
cesses so that the arithmetic units do not stall while waiting for
a memory read. We will present this implementation below.

Let

(31)

(32)

Given , it is very easy to obtain , since every block of
can be obtained by unstacking .

Define (33) and (34), shown in the equation at the bottom of
the page. In comparison with (28), one can verify that

(35)

Define so that . (Note that is a permu-
tation.) Thus, and

(36)

Since is a computationally efficient permutation and
, (36) can be implemented as a

fast transform (as follows).
From (30), it can be seen that each contains the cross-

covariance between two columns of sensors. Thus,
is a reorganization of which stacks these cross-covariances
with a regularity that matches the row order of (since

).
We now make some remarks regarding computational

cost. The direct product in (16) requires approximately
complex MACs when considering the

Hermitian symmetry . Evaluating and
requires and
complex MACs, respectively. Since is real-valued,
the first product can be optimized and the costs drop to

and
complex MACs, respectively. Using the first expression and
neglecting the time to obtain from , the relative speedup in
terms of MACs is given by

If the array geometry is symmetric with respect to the axis,
then has conjugate symmetry with respect to its middle row.
An analogous statement applies to . If applicable, these sym-
metries can be used to further reduce the computational cost.

Recall that we introduced as having scan lines which re-
alize an arbitrary Cartesian sampling of U-space. If and

uniformly sample U-space, then and can be in-
terpreted as DFT matrices for nonuniform frequency sampling.
(This fact can be verified by explicitly writing and in
terms of complex exponentials.) Therefore, for sufficiently large
values of and , a further optimization consists of using a

...
...

(33)

...
...

(34)
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fast nonequispaced Fourier transform (NFFT) [28] instead of
each matrix product in (35). A rule of thumb obtained from nu-
merical experiments is to use the NFFT for or
and or . Details regarding the performance
with and without the NFFT are presented in Section V.

B. Fast Adjoint Transform

As we present [21, Sec. II], with a measured spectral matrix ,
many computationally efficient image reconstruction methods
require only fast implementations of and to estimate a
source distribution . A computationally efficient reconstruc-
tion algorithm must have fast implementations of both; other-
wise, the slow transform becomes the bottleneck for the solver.

Let and so that
. It follows from (36) that:

(37)

Since is a permutation, . If
, then

(38)

which is the fast implementation of . (Note that it has the
same computational cost as the direct transform.)

If the U-space sampling is symmetric with respect to the
axis, then has conjugate symmetry with respect to its center
column. An analogous statement applies to . If applicable,
this symmetry can be used to further reduce the computational
cost.

For separable arrays which are uniformly sampled in
U-space, multiplication by and can again be optimized
by using NFFTs, under the same considerations presented for
the direct transform.

C. Fast Direct-Adjoint Transform

Given the direct transform and its adjoint , consider the
transform given by . This composition will be used in [21,
Sec. II] for image reconstruction, and in this section, we present
a method of accelerating it further. Since , it follows
from the previous results that can be
implemented as

(39)

This implementation is especially interesting when and
are sufficiently large in comparison to and , because it
can be evaluated as

(40)

with precomputed versions of and , which are
real valued.

Implementing the direct-adjoint transform with (39) can be
much faster than using a composition of the direct and adjoint
KAT, because for large problems, one can precompute
and . Furthermore, (39) can be parallelized more effec-
tively, since it avoids applying .

TABLE II
APPLICABILITY OF THE FFT, NFFT, NNFFT, AND KAT

The implementations, which use the NFFT for further ac-
celeration, are at a disadvantage for the direct-adjoint trans-
form, since one cannot precompute the equivalent of
and . Therefore, one is forced to use a composition of
the previously presented transforms.

IV. CONNECTIONS

In this section, we briefly describe how the KAT relates to
the 2-D FFT, NFFT, and NNFFT. To our knowledge, the NFFT
and NNFFT have never been applied to acoustic imaging. With
the exception of the NNFFT, each transform is only suitable for
specific array geometries or U-space sampling patterns. Trans-
forms, which make more restrictive assumptions about the array
geometry and U-space pattern, can generally be more computa-
tionally efficient, so the choice of which transform to use de-
pends on a series of tradeoffs, summarized in Table II.

Assume that the sampled wavefield is a zero-mean random
process which is stationary in time and homogenous in space.2

Consider a sensor array consisting of microphones at coordi-
nates . For a fixed frequency , the cross-
spectral matrix is, by definition, a co-
variance matrix. For , holds the fre-
quency-domain cross-covariance of the wavefield between any
two points whose coordinates differ by . Let

be the power spectral density when parameterized
as a function of the wave number , and

be the spectral covariance between two points whose
coordinates differ by . It can be shown [29] that

(41)

(42)

which is essentially a generalization of the relationship between
the cross-covariance and cross-spectral density for wide-sense
stationary spatial-temporal processes, and is expressed as a
Fourier transform.

Therefore, the knowledge of , limited to a finite
set of baselines , allows us to approximate a discrete space
version of , which is the image of interest. The fol-
lowing connections arise naturally from different ways of sam-
pling these relations in order to evaluate them numerically for
discrete space and discrete U-space.

2The random process model follows naturally from the fact that we do not
know a priori what the source waveforms are. We model this process using its
second-order statistics given by the cross-spectral matrix. Stationarity in time
and homogeneity in space let us estimate the power spectral density of the
process as a function of � and �, which is the acoustic image of interest.
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A. NFFT Imaging

A d-dimensional NDFT [28] (nonequispaced discrete Fourier
transform) is defined by a set of arbitrary spatial nodes and a
frequency bandwidth vector . Each node belongs to
the sampling set so
that , where indicates set cardinality. The index set

(43)

defines a rectangular grid over which a function of interest is
sampled.

Given as input a set of samples for , the NDFT
is defined as

(44)

for .
The NFFT is a fast implementation of the NDFT obtained by

interpolating an oversampled FFT. It is an approximate method
which provides a very good compromise between accuracy and
computational complexity.

Let be an image obtained by uniform rectan-
gular sampling of U-space with even and , and sampling
coordinates drawn from

(45)

We now show that can be obtained from by using a 2-D
NFFT. Due to the linearity of the NFFT, it suffices to show that
this transform is exact for an image containing one arbitrary
unit impulse at coordinates , which must be in the U-space
sampling grid.

Using (9), for arbitrary and
, define

(46)

and

if

otherwise.
(47)

By definition

(48)

(49)

(50)

(51)

To obtain (51) by using the NFFT, rectangular U-space sampling
and an arbitrary geometry of microphones, we use

(52)

(53)

(54)

where represents the pointwise (Hadamard) product, and the
baselines are represented only by their and coor-
dinates. We now show that this parameterization of the NFFT
produces the direct transform.

Once again

(55)

where is also represented only by its and components.
Comparing (55) with (44), the first term in parentheses clearly

belongs to . Since for ,
spans all possible baselines, the second term in parentheses be-
longs to . The enumeration given by in-
dexes the elements of row by row. Given the Hermitian sym-
metry of , this is equivalent to conjugating (55) and indexing
the elements of column by column (in the order of ),
making (55) equivalent to (44).

It is possible to show that for uniform rectangular arrays with
horizontal and vertical interelement spacings
(where is the wavelength of the signal of interest), this NFFT
reduces to a 2-D FFT. This implementation is not convenient for
aeroacoustic imaging, since: 1) the constraint
can only be satisfied for one frequency, and we are interested
in wideband operation; 2) the 2-D FFT is inefficient, since
it ignores that image pixels significantly outnumber array
sensors, and determines covariances for sensors that do not
exist; 3) the 2-D FFT requires uniform rectangular geometries,
which have their upper operating frequency constrained by the
Nyquist–Shannon sampling theorem.

The NFFT has the advantage of allowing arbitrary array ge-
ometries, but as we will see in Section V, it is one order of
magnitude slower than the KAT. Furthermore, as will be shown
in Section VI, the KAT can be generalized to approximate the
spherical wavefronts due to near-field sources. In contrast, the
FFT, NFFT, and NFFT require a far-field assumption.

Finally, the KAT has the advantage of allowing separable
(as opposed to uniform) U-space sampling grids. Acoustic im-
ages are often formed by clusters of distributed sources (for ex-
ample, located over a model in a wind tunnel) and large regions
with no significant sources. Thus, the KAT allows one to over-
sample the regions which are expected to have sources and un-
dersample quiet regions, while maintaining low computational
requirements.
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B. NNFFT Imaging

By dropping the uniform sampling constraint (45), one ob-
tains the far-field array transform in its fullest generality. This
transform can be accelerated with the nonequispaced in time and
frequency fast Fourier transform (NNFFT). While the NNFFT
is significantly slower than the KAT and the NFFT, it requires
much less memory than the matrix representation of , which
makes it useful for smaller problems that can be solved offline.

Given as input a set of samples for , the
NNDFT is defined as

(56)

for , and arbitrary . The
NNFFT is a fast approximation of the NNDFT.

To obtain (51) using the NNFFT, arbitrary U-space sampling
and an arbitrary geometry of microphones, we use
and , with

(57)

(58)

(59)

which has the same form as (52)–(54), but allows arbitrary
U-space sampling.

V. COMPUTATIONAL COST

A. Asymptotic Complexity

To simplify the following formulas, we will assume that
and . We will present the asymptotic

complexity for the direct and adjoint transforms.
The product in (16) requires approximately

complex MACs to compute and, thus, has complexity
. For the KAT, the cost of computing can be

neglected. Evaluating with matrix multiplication
requires complex MACs and, thus, has
complexity .

One can also evaluate by interpreting each
matrix product as a 1-D NFFT. Evaluating requires

1-D NFFTs, each with cost [28].
The second product requires 1-D NFFTs, each with cost

. Assuming that , the total com-
plexity becomes . The direct NFFT and
NNFFT implementations have complexity
[28].

Table III summarizes these results. Note that since the asymp-
totic complexity is similar for most of the fast transforms, it
simply guarantees that these methods will scale about as well
as an FFT. Nevertheless, the constants hidden in the no-
tation are significant. As we show next, the direct NNFFT im-

TABLE III
ASYMPTOTIC COMPLEXITY OF THE KAT, FFT, NFFT, NNFFT,

AND EXPLICIT MATRIX REPRESENTATION

plementation is much slower than a KAT with 1-D NFFTs, de-
spite having similar asymptotic complexity. Also, since the
matrix is very large, memory bandwidth becomes the limiting
factor for the explicit matrix representation. Thus, the constant
hiding in the notation for the explicit matrix representa-
tion is greater than the MAC count suggests. Furthermore, for
practical problem sizes, one does not have enough memory to
store a full matrix representation and is forced to recompute the
rows of every time a matrix-vector product is required. This
can dramatically increase the computational cost of the explicit
matrix representation.

B. Numerical Benchmarks

This section presents experiments to assess the execution
times for the KAT, the NFFT, and the NNFFT. Even though the
relative performance of algorithms based on matrix multiplica-
tion can be easily estimated in terms of MACs, actual runtimes
can deviate significantly from these estimates for certain
problem sizes. Indeed, for modern architectures, performance
is strongly dependent on the interaction of parallel arithmetic
units, memory bandwidth, cache size, and branch prediction,
so that the number of floating-point operations only serves as
an approximate measure of computational complexity.

The runtimes presented in Figs. 2 and 3 are averages col-
lected over 10 s for each algorithm and problem size. All sim-
ulations were run on an Intel Core 2 Duo T9400 processor in
64-bit mode, using only one core. The permutation , which
obtains from , was written in ANSI C, the NFFT library
was compiled with default optimizations as used by its authors,
and all other functions were written in M-code for MATLAB
R2008b. Since the code does not feature time-consuming loops,
and MATLAB uses the Intel Math Kernel Library for matrix
and vector arithmetic, the proposed transforms run very much
like machine-specific tuned code. MATLAB and the NFFT use
FFTW [31] for computing FFTs, so that they also run like ma-
chine-specific code. Thus, having the code written in MATLAB
actually incurs negligible computational overhead when com-
pared to an optimized implementation in C and machine-spe-
cific assembly code.

The computational cost of efficient convex optimization
methods (and, in particular, of the regularized least-squares
methods presented in [21, Sec. II] is completely dependent on
the cost of applying , , , and . Since depends on
the regularization method and can be chosen to be very fast,
the bottleneck is on applying , , and possibly .
Thus, from the runtimes of , , and presented in this
section, one can assume with good approximation that a -fold
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Fig. 2. Runtimes for the direct transform. : KAT implemented with matrix
multiplication, �: KAT implemented with 1-D NFFTs replacing matrix mul-
tiplication, �: direct NFFT implementation with (52)–(54), �: direct NNFFT
implementation with (57)–(59), �: explicit matrix representation.

Fig. 3. Runtimes for the adjoint transform. : KAT implemented with matrix
multiplication, �: KAT implemented with 1-D NFFTs replacing matrix mul-
tiplication, �: direct NFFT implementation with (52)–(54), �: direct NNFFT
implementation with (57)–(59), �: explicit matrix representation.

decrease in computational time translates to an algorithm which
reconstructs an image times faster.

It is clear that the KAT with the NFFT optimization is the
fastest transform for arrays with more than 64 elements (
8 and 8). This is the case because as and grow,
the NFFT scales better than matrix multiplication. The direct
implementation with the NFFT is useful if one must have an ar-
bitrary array geometry, but it has the drawback of being around
an order of magnitude slower and requiring a far-field approxi-
mation. (As we show in Section VI, the KAT can be extended for
near-field imaging.) The direct implementation with the NNFFT
is by far the slowest. For all implementations, the direct and ad-
joint transforms perform similarly.

Fig. 4 presents runtimes for the direct-adjoint composition.
The implementation using (39) analyzes the problem size and
automatically selects the optimal order for matrix multiplica-
tion. For large values of and , it also uses precomputed
versions of and , which makes the computational
complexity depend only on and . The NFFT implemen-
tation uses a composition of the direct and adjoint transforms,
without any additional optimizations.

As shown in [21], under a far-field assumption and uniform
U-space sampling, the direct-adjoint composition reduces to a
2-D convolution of the input image with the array point-spread
function. Thus, it can be accelerated with a 2-D FFT (with zero
padding to prevent edge effects). Fig. 4 shows that the direct-ad-
joint composition implemented with the KAT also outperforms

Fig. 4. Runtimes for the direct-adjoint composition. : KAT implemented with
(39), �: KAT implemented with the composition � and � , with the 1-D
NFFT optimization, �: 2-D FFT-accelerated convolution, �: composition of
the explicit matrix representation.

2-D FFT accelerated convolutions. As we show in the following
section, the KAT can be generalized to near-field scenarios, al-
lowing us to drop the far-field assumption. Note that for near-
field cases, the direct-adjoint composition no longer reduces to
a convolution, and KAT becomes the only fast transform suit-
able for imaging.

Finally, the KAT has the additional advantage of being easy
to implement and parallelize, since it only requires relatively
small matrix multiplications and computationally efficient
permutations.

VI. NEAR-FIELD IMAGING

Up to this point, we have assumed that the sources were lo-
cated in the far field. Thus, we used a plane-wave model. In
this section, we show how to generalize the KAT and address
near-field scenarios, where one has spherical wavefronts.

Note that the KAT does not impose any structure onto the
array manifold vector other than its separability. The specific
far-field representation was only chosen for convenience, since
for any Cartesian geometry, the far-field array manifold vector is
separable. Nothing prevents us from choosing a different sepa-
rable representation that is more suitable for the near-field case.
In this section, we show that the problem of finding the best sep-
arable representation can be recast as a rank-1 approximation of
a rearranged version of . By using a rank- ap-
proximation (for ), one is able to obtain an arbitrarily ac-
curate model for near-field propagation, while maintaining low
computational requirements.

To simplify the language in this section, we will use the fol-
lowing notation. Given suitably sized matrices , we use

to denote .
We approximate by , for small

values of . Note that can be efficiently imple-
mented as . Compared with (36), we
are approximating the near-field transform with a series of

separable transforms, to which we can apply the KAT.
Let us consider the problem of approximating a generic

with and with a sum of Kronecker
products, so that
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where and for . This
problem is addressed in [32], where it is shown to be equivalent
to

(60)

where is a matrix rearrangement operator so that
. This is a low-rank approximation problem which

can be solved with the SVD of .
For our purposes, we approximate . We note that
is the key to a successful low-rank decomposition. As we

show later in this section, using is not useful, since
has too many significant singular values.

Computing the dominant singular values and vectors of
is not trivial, since, in practice, is too large to be stored
explicitly in memory. Nevertheless, one can use the Lanczos
methods [32], [33] which only require the implementation of
the matrix-vector products and for arbitrary

. One can also use approximate SVD methods which are
designed to require a small number of passes over (e.g.,
[34] and [35]).

Using the definition of from [32], it can be shown that

...
... (61)

(62)

Since can be precomputed for
and and is a very fast permutation,
and can be evaluated with relative efficiency. Indeed,
using the Lanczos method from [33], 64 and
256, we can solve (60) for 8 in 8 min on an Intel Core
2 Duo 2.4-GHz processor, using only one core. Note that this
procedure only has to be performed once.

The decomposition obtained with (60) is especially useful for
1. Indeed, even in the presence of strong near field effects,
can be well approximated by a low-rank decomposition.

Even though the transform cost grows linearly with , due to
the Kronecker representation, the cost of applying each
is very small, so a transform with 8 is still very fast.

Since we discretize the focal surface with Cartesian sampling
grids, some images may have invalid regions. For example, one
can parameterize a spherical half-shell with radius by using

and for , so
that source locations for are invalid. Note that this
implies that some in are not defined. Referring to
(60), the optimal are now given by

where is the pointwise (Hadamard) product and is a binary
mask set to 1 for valid elements and 0 for invalid elements of

. This masked-SVD problem was considered in [36], and
can be solved by iterating

Fig. 5. First 100 singular values for ���� and ����� ��, out of a total of
16 384, normalized to 1.

where is a rank- approximation as computed by the
SVD, and . In
our experiments, 1 or 2 iterations have shown to be sufficient
for a good fit.

Fig. 5 compares the first 100 (out of a total of 16384) singular
values for and . In this experiment, models
256 256 sources radiating at 9 kHz, located over a spherical
half-shell with a radius of 1.0 m, as measured by an 8 8 sep-
arable array with a 30 30-cm aperture. (This configuration is
the same used in the examples from [21].) The sharp decay of the
curve for highlights the importance of in enabling
an accurate low-rank approximation. For lower frequencies, the
singular values show an even sharper roll-off. Also, this trans-
form models the complete hemisphere. By modeling a smaller
field of view, near-field effects are not as severe, and the singular
values also decay faster.

Note that by using a rank- approximation, we obtain a
transform with a computational cost that is times larger
than the far-field KAT presented in the previous sections.
Nevertheless, as we show in [21], will be small enough that
this penalty is not significant. In fact, we will show that it is
possible to compensate for strong near-field effects with
8, which makes the KAT about as fast as the NFFT, while being
able to model arbitrary near-field focal surfaces.

VII. CONCLUSION

This paper presents the KAT, which was designed to enable
computationally efficient and accurate acoustic imaging. To ob-
tain fast implementation, we assumed a separable microphone
array, source parameterization in U-space, and far-field sources.
The KAT transforms back and forth between a hypothetical
source distribution and the corresponding covariance matrix
which would be measured by the array. Another contribution
is the novel application of the NFFT and NNFFT to acoustic
imaging, which we used as baselines against which our pro-
posal was compared.

The KAT is orders of magnitude faster than equivalent im-
plementations using explicit matrix representations. Despite the
fact that the NFFT and NNFFT are already fast transforms, we
have shown in Section V that our proposal is at least one order
of magnitude faster than them. In contrast with FFT- and NFFT-
based transforms, the KAT allows arbitrary Cartesian samplings
of the source distributions, which let one oversample regions
with sources and undersample silent areas without performance
degradation. Also, in contrast with the NFFT, the KAT makes
no numerical approximations, and can be more easily imple-
mented and parallelized, since it only requires relatively small
matrix products and simple permutations.
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Even though the KAT was motivated with the far-field as-
sumption, it does not impose any structure onto the array man-
ifold vector other than its separability. We have used this fact
to extend it for near-field imaging, providing a computationally
efficient approximation of the exact near-field transform.

Future work involves developing fast transforms for other
array geometries. In contrast with the KAT, which is exact for
far-field sources, transforms for other geometries will most
likely require approximations to obtain good performance.
Furthermore, the KAT can be generalized for correlated distri-
butions, which we also intend to address in future work.
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