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Abstract—In Part 1 [“Fast Transforms for Acoustic
Imaging—Part I: Theory,” IEEE TRANSACTIONS ON IMAGE
PROCESSING], we introduced the Kronecker array transform
(KAT), a fast transform for imaging with separable arrays. Given
a source distribution, the KAT produces the spectral matrix
which would be measured by a separable sensor array. In Part
11, we establish connections between the KAT, beamforming and
2-D convolutions, and show how these results can be used to
accelerate classical and state of the art array imaging algorithms.
We also propose using the KAT to accelerate general purpose
regularized least-squares solvers. Using this approach, we avoid
ill-conditioned deconvolution steps and obtain more accurate
reconstructions than previously possible, while maintaining
low computational costs. We also show how the KAT performs
when imaging near-field source distributions, and illustrate
the trade-off between accuracy and computational complexity.
Finally, we show that separable designs can deliver accuracy
competitive with multi-arm logarithmic spiral geometries, while
having the computational advantages of the KAT.

Index Terms—Acoustic imaging, array imaging, array pro-
cessing, fast transform, regularized least-squares, sparse recon-
struction.

1. INTRODUCTION

S DESCRIBED in [1], array imaging requires solving

the inverse problem of finding the best estimate for a
source distribution, given wavefield statistics sampled by a
sensor array. This is not a trivial problem, since in general one
must rely on arrays with less than 100 elements to reconstruct
source distributions modeled with tens of thousands of point
sources. To obtain accurate reconstructions, regularization is
required to narrow the space of possible wavefields which result
in essentially the same data at the sensors.

Let S € CV*N be a narrowband sample covariance matrix
acquired using a planar sensor array with a separable geometry.
Let Y € RMyXMe be a discretization of the source distribution
at the same frequency. Assume for the sake of this argument that
the true source distribution is represented exactly by Y, and that
the sources are uncorrelated. If s = vec{S}, y = vec{Y}, and
A is the KAT presented in [1], in the absence of noise we have
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that Ay = s. The generic image reconstruction problem then
becomes

¥ = argmin || Py|| suchthat Ay =s (1
y

where W is a sparsifying transform for y. For example, if Y
is known to be sparse in its canonical representation, then one
could consider minimizing ||®y|| = ||y||1, which turns (1) into
an instance of basis pursuit [2].

In the presence of noise, the constraint Ay = s no longer
applies, motivating the formulation

¥ = arg min | ®y|| + ul|Ay — s||3 @

which is a regularized least-squares problem.

The problem of seeking sparse approximations to underde-
termined systems has received significant attention in the recent
years with the advent of compressive sensing [3]-[5]. Recently,
many exact and approximate methods have been proposed for
solving variations of (1) for specific instances of ¥ and || - ||,
such as [6]-[11].

The computational bottleneck for solving (1) or (2) with ef-
ficient convex optimization methods lies exclusively in the im-
plementations of A, A7, ¥, or ¥ For imaging applications,
W can be a fast wavelet transform, fast Fourier transform or a
finite difference operator, which can all be evaluated quickly.
Therefore, the potential bottleneck lies in the implementations
of A and AH . However, the KAT makes A and A¥ orders of
magnitude faster than competing transforms (and in particular,
much faster than explicit matrix representations), allowing the
use of regularized least-squares methods for acoustic imaging.

This Part II describes applications of the KAT for image
reconstruction. In Section II, we present several methods for
acoustic imaging using a common language based on the
transform. Using the KAT, we accelerate these techniques
without compromising quality. We also propose applying the
fast transforms to state-of-the-art, general purpose regularized
least-squares solvers, and obtain more accurate reconstructions
than what was possible with previous methods. Section III
features examples, comparing the performance of the different
approaches. Section IV compares the reconstruction accuracy
using a separable array and a logarithmic spiral array. We show
that by using regularized reconstruction methods, separable
arrays can match logarithmic spiral arrays in terms of recon-
struction accuracy, while allowing the computational benefits
provided by the KAT. Finally, Section V has our conclusions
and final comments.
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II. IMAGE RECONSTRUCTION APPLICATIONS

A. Delay and Sum Imaging

Given a spectral matrix S, its corresponding image is tradi-
tionally approximated using delay-and-sum beamforming with

H
V7 (Ug,, s Uy, ) SV (g, Uy,
1 (tty g ) 0 V30 ) SV (e ) 5
v (s, uy, ) V (U, , Uy, )]
where the approximation is due to convolution effects.
We can rewrite
v (Uz,,,, uy, ) SV (Uz,,, uy,)
= [VT (Uzm , uyn) ® v (Uzm y Uy, )] S “4)
= [v* (us,,, uy,) ® v (us,, , uyn)]H vec{S}, (5
= [AHvec {S}]m_Mern (6)

where (4) is true because (AT @ B)vec{C} = vec{BCA}
whenever BCA is defined, and (6) follows by comparing (5)
with [1, (17)]. Thus, delay-and-sum imaging can be imple-
mented with the KAT adjoint.

It follows that the direct-adjoint composition A¥ A is a trans-
form that obtains the delay-and-sum image from a clean (ideal)
image. If we assume that the sources are in the far-field and
that U-space is sampled uniformly, this delay-and-sum image is
simply the clean image convolved with the beamformer’s point
spread function (PSF). Since it represents a convolution, under
these assumptions A A can also be accelerated with a 2-D
FFT. But as presented in Section V of [1], the KAT can always
be used to implement A” A more efficiently than an equivalent
FFT-accelerated convolution.

B. MVDR Imaging

Imaging using minimum variance distortionless re-
sponse (MVDR) beamforming [12] is often preferable to
delay-and-sum imaging, given that the MVDR beamformer can
get very fine resolution for point sources (as long as the noise
is not excessive, and the regularization parameter is chosen
correctly). Recall that the MVDR processor steered towards
v = V(U , Uy, ) is given by

H viSy!
WAIVDR (Uar s Uyr ) = vjlfSHlvT )
where S,, is the noise spectral matrix.

To obtain S,, for acoustic imaging, one should perform a sep-
arate measurement (for example, with the model removed from
the wind tunnel) [13]. If this is not possible, one can obtain the
minimum power distortionless response (MPDR) processor [14]
by using S + Al instead of S,,, where A is a suitably chosen reg-
ularization parameter, such that

vH[S + A1)t
WitpDR (U s Uy,) = V;;T[S[;Lﬁ @®)
where S is the spectral matrix of the whole signal, including the
sources of interest and noise.

Let x be the frequency domain signal at the array output, such

that S = E{xx}. The acoustic image can be approximated by
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the power at the output of the MVDR beamformer, such that for
W = WMVDR

2
|Y (uIT7uyT)|2 ~ E {|WH (u-TT?uyT) X| }
= w (upy,uy, ) E{xx?} W (ug,,uy,.)
~ viS,'SS, vy

 [vESy vy

From the results of the previous section, one can obtain
v¥ S,flSSn*lvT simultaneously for all look directions by
evaluating A" vec{S, 'SS, '}. Likewise, one can compute
[vH S, !vy]? for all directions with the pointwise square of
Afvec{S,™'}. By dividing one by the other, one can effi-
ciently perform imaging with an MVDR beamformer. MPDR
imaging follows similarly.

C. DAMAS?2

DAMAS?2 [15] is a state of the art deconvolution method for
aeroacoustic imaging. By using a far-field approximation, it as-
sumes that the convolved image produced by delay-and-sum
beamforming is equal to the clean image convolved with the
beamformer’s PSF. These convolutions are the bottleneck of the
algorithm, but if uniform U-space sampling is used, they can be
significantly accelerated with 2-D FFTs.

Let Y be the image obtained with delay-and-sum beam-
forming, P the array PSF for delay-and-sum imaging, Y the
clean image and Y®) the reconstructed image at iteration k.
By definition, Y = PxY, where * represents 2-D convolution.

DAMAS? solves for Y by iterating

Y *+D = max {Y(k) + é [Xv’ — (P * Y(k))] 70} O]

where max{-,-} returns the pointwise maximum, a =
> IPligs Y (©) = 0 and the convolution is implemented with
a 2-D FFT and zero-padding.

Given the fast transform, it is possible to implement a
faster version of the already FFT-accelerated DAMAS?2.
Indeed, from Section II-A we have that y = vec{Y} =
vec{P x Y} = AHAvec{Y} = AFAy. Similarly,
vec{P « Y®} = AHAJ®) where A#A can be imple-
mented with the fast direct-adjoint KAT, described in [1, Sect.
1I-C].

Thus, (9) becomes

S — max {yac) v 2 [v - A7 Ay®)] 70} (10)

where a has the same definition as before and y(*) =
vec{Y ™},

Since convolutions are the bottleneck of DAMAS?2, the per-
formance improvement of (10) with the fast transform with re-
spect to (9) as conventionally implemented is given by the run-
time of A¥ A when compared to that of an FFT accelerated
convolution. By referring to [1, Fig. 4], one can see that sig-
nificant improvements can be obtained for all problem sizes. In
particular, for the examples shown in Section III, the KAT is 8
times faster than an FFT accelerated convolution.
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Even though DAMAS? is considered to be a state-of-the-art
method for computationally efficient acoustic imaging, it does
not use any regularization other than forcing pointwise non-
negativity. Thus, it does not incorporate a prior model of the
source distribution. Furthermore, DAMAS?2 is a deconvolution
approach that relies on restoring detail from very smeared delay
and sum images. We have shown that delay-and-sum imaging is
equivalent to the application of A¥ A or to convolution by the
array PSF, which is a low pass filter. The low-pass characteristic
implies that A¥ A has many small singular values. Applying
AF A significantly attenuates input basis vector components
corresponding to these small singular values, such that solving
¥y = AH Ay for y (as proposed by DAMAS) is not trivial. On
the other hand, the singular values of A are the square roots of
the singular values of A¥ A. Thus, the application of A only
attenuates input basis vector components by the square root of
the previous factors, making it preferable to solve s = Ay fory
(as proposed by least-squares formulations). For these two rea-
sons, we favor regularized least-squares methods.

D. (1-Regularized Least-Squares

To avoid deconvolution, [16] proposes a covariance fitting
technique. Since in the absence of noise, vec{S} = Avec{Y},
the authors propose solving

. 2
‘vec{S} — Avec{Y} — 02vec{I}H
2

(1)

min
Y,02

subject to Y;; > 0, 0> > 0, and ||vec{Y}||; < A, where
o2 is the white noise power and |[vec{Y}|l; < A is a sparsity
constraint. This method assumes that the source distribution is
sparse and that only a small number of U-space points have radi-
ating sources. Equation (11) is a convex optimization problem,
and can be solved with reasonably efficient numerical methods.

The ¢, constraint serves to regularize the problem, and to
permit the inversion of an otherwise ill-conditioned system.
Thanks to the ¢; regularization, the authors of [16] show using
numerical examples that by solving (11) one can indeed recon-
struct sparse images with very high accuracy. Their proposal
outperforms DAMAS regarding reconstruction accuracy due
to the use of regularization and because no deconvolution was
involved.

However, as we have detailed, A can be a very large matrix,
such that solving (11) with a matrix representation of A (as
implemented previously) is very computationally intensive. Of
course, the KAT replaces the multiplications by A and A#,
which is all that most convex optimization algorithms require.

In order to obtain a fast formulation that is amenable to ex-
isting solvers, we propose recasting (11) as a basis pursuit with
denoising problem (BPDN), which has the form

Y

subject to Hvec{S} - Avec{Y}H <o (12)
1 2

min

Y
and has been studied in detail in the compressive sensing litera-
ture. In the examples, we solve (12) with SPGLI1 [10], which is
a state-of-the-art solver designed for large scale problems. The
use of the fast transform not only makes this problem tractable,
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but makes it competitive with our already very efficient varia-
tion of DAMAS?2, despite using a more robust method for re-
construction. Note that the FFT acceleration is not applicable to
(12).

E. Total Variation (TV) Regularized Least-Squares

To address scenarios where the acoustic images are not sparse
in their canonical representations, we propose reconstructing
acoustic images with TV regularization.

Given Y € CMv*M= define its isotropic total variation as

IYllsy =3 IV Y, + [V, YE,

(13)

where V, and V,, are the first difference operators along the =
and y dimensions with periodic boundaries, for 0 < 7 < M,
and 0 < j < M,. || - ||pv is called the bounded variation (BV)
semi-norm.

We propose solving

n;j{n 1Y lzv + pllvec{S} — Avec{Y}|]2 (14

subject to Yl j = 0. The first term measures how much an image
oscillates. Therefore, it is smallest for images with plateaus and
monotonic transitions, and tends to privilege simple solutions
with small amounts of noise. The second term ensures a good
fit between the reconstructed image and the measured data. This
formulation was first proposed for image denoising by Rudin,
Osher, and Fatemi [17], for A = I. It was later generalized and
applied successfully to many image reconstruction problems.

To solve (14), we have chosen TVAL3 [11], which uses
the augmented Lagrangian method and variable splitting to
decouple the TV-minimization and covariance fitting problems.
TVAL3 compares very favorably to other solvers in terms of
processing time and reconstruction quality, and with the fast
transform it becomes practically as efficient as our accelerated
version of DAMAS?2, while providing more accurate and stable
reconstructions with guaranteed convergence.

III. RECONSTRUCTION EXAMPLES

In the following we show image reconstruction examples il-
lustrating the use of delay and sum beamforming, DAMAS2,
¢y regularization, and TV regularization, all implemented with
the KAT. We simulate a 64-element separable array, with N, =
N, = 8, and with horizontal and vertical apertures of 30 cm.
Each N, x 1 and N, x 1 linear subarray is chosen to be a
nonredundant array with minimum missing lags [18], with in-
terelement spacing .1.3.5.6.7.10.2. (where the dots represent el-
ements, and the numbers represent interelement distances). This
geometry is plotted in Fig. 1.

In this section, we present results comparing delay and sum
beamforming, DAMAS?2, /;-regularized reconstruction with
SPGLI1 [10] solving (12), and TV-regularized reconstruction
with TVAL3 [11] solving (14). All methods were acceler-
ated with exact versions of the KAT (not using the NFFT),
and the images were reconstructed with M, = M, = 256.
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Fig. 1. Simulated array geometry.

DAMAS?2, SPGL1, and TVAL3 used 1000, 200, and 100 itera-
tions, respectively, which provide a good compromise between
computational cost and image quality. Thanks to the KAT, the
reconstruction times for delay-and-sum, DAMAS?2, ¢; regu-
larized reconstruction and TV regularized reconstruction were
approximately 5 ms, 1.5 s, 8 s, and 4 s per image, respectively.
DAMAS?2 requires no parameters. SPGL1 used o = 0.01||S||r
in (12). TVAL3 used ¢ = 102 in (14). The signal model is
givenby S = VE{fF}VH 4 521, with o2 set to obtain 20 dB
SNR. Since the intent of these simulations is not to analyze the
noise sensitivity of each method, only one SNR is used.

A. Checkerboard Patterns

Fig. 2 shows reconstructed checkerboard patterns. This re-
construction clearly shows the deficiencies of delay-and-sum
imaging. The images are quite smeared, and all images present
artifacts due to sidelobes. DAMAS?2 produces very good results,
reproducing the checkerboard patterns correctly, with small ar-
tifacts outside the checkerboards. ¢; -regularized reconstruction
shows better defined edges, but some artifacts, since the patterns
are not sparse. Note that some checkerboard squares have dots
where the sound pressure level has been underestimated. Arti-
facts of this kind are common when using ¢; regularization to re-
construct signals with plateaus, because they present a compro-
mise between sparsity and fitness to the measured data. TV reg-
ularization produces reconstructions similar to DAMAS?2, but
with some smearing around the edges of the visible region.

B. Sparse Patterns

Fig. 3 presents reconstruction results for a test image with 17
unit impulses at U-space coordinates (+n/6,+n/6), for 0 <
n < 4. This test is designed to evaluate the equivalent PSF for
the reconstruction methods, as well as detect the presence of
aliasing artifacts. As expected, delay and sum has the lowest
spatial resolution and shows significant sidelobes. DAMAS?2
shows some artifacts, which result from its lack of regulariza-
tion. ¢ -regularized reconstruction presents the best results, with
very small sources and no artifacts. This is a reasonable result,
since the image of interest is indeed very sparse. TV-regulariza-
tion also presents good results, with no discernible artifacts but
with larger sources than /; regularization.
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f = 3000 Hz, Ideal f = 6000 Hz, Ideal f = 9000 Hz, Ideal

|20 dB
15dB

10dB

f=23000 Hz, DAS f=6000 Hz, DAS f=9000 Hz, DAS

-—

f=3000 Hz, DAMAS2 f=9000 Hz, DAMAS2

Fig. 2. Reconstruction of the checkerboard patterns, for M, = M, = 256.
First row: ideal distribution; second row: delay-and-sum; third row:
DAMAS?2; fourth row: (,-regularized least-squares; fifth row: TV-regu-
larized least-squares.

C. Non-Sparse Test Pattern

Fig. 4 shows reconstruction results for a non-sparse test pat-
tern designed for this experiment. Once again, delay-and-sum
has low resolution and rectangular smearing due to the sep-
arable geometry’s sidelobes. DAMAS?2 produces much better
results, but still shows some artifacts, especially for high fre-
quency images. The artifacts are gone with ¢;-regularized re-
construction, which also has better resolution than DAMAS?2.
Nevertheless, it does not represent smooth transitions well, since
they are not sparse. Finally, TV-regularized reconstruction pro-
duces the most accurate representations, with correct shapes and
low noise.

D. Near-Field Imaging

In this section, we show how the far-field assumption can
break down, and how the near-field extension of the KAT can be
used to model near-field effects. We simulate the checkerboard
source distribution positioned over a hemispherical shell with
a radius of 1.0 m. Both the array and the shell are centered at
(0,0,0).
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f = 3000 Hz, Ideal

f = 6000 Hz, Ideal
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I20 dB
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20 dB
. I15dB

f=29000 Hz, L1
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1048 10dB

I5 dB Is dB
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Fig. 3. Reconstruction of the impulsive patterns, for M, = M, = 256. First

row: ideal distribution; second row: delay-and-sum; third row: DAMAS?2; fourth
row: £, -regularized least-squares; fifth row: TV-regularized least-squares.

The top row of Fig. 5 presents the checkerboard images re-
constructed with the exact (slow) near-field transform. Recon-
struction results are very similar to the far-field ones, indicating
that the transform did not degenerate. The second row shows the
reconstruction using a far-field approximation. The estimated
distributions are very smeared and show significant artifacts.
The other rows show reconstruction results for K = 1,4, and 8,
as prescribed in [1, Sect. VI]. The artifacts are essentially gone,
and the smearing has been significantly reduced. Note that the
computational cost for implementing a rank-K KAT is K times
larger than implementing a far-field KAT. Nevertheless, even for
K = 8this approach is about as fast as a direct NFFT implemen-
tation (which cannot be used in this case), while accurately mod-
eling strong near-field effects. Indeed, the reconstruction times
for Fig. 5 (using TVAL) were 4.0, 4.9, 6.4, and 10.0 s for K =
1,2, 4, and 8. In contrast, explicit matrix multiplication requires
approximately 2000 s.

IV. How GOOD ARE CARTESIAN ARRAYS?

Multi-arm logarithmic spiral arrays [19] have been shown to
have low sidelobes over a wide range of frequencies. Since the
low sidelobe characteristic is crucial when performing imaging
with beamforming, these geometries have found widespread
use. Nevertheless, sidelobes have little relevance if one can effi-

2245

f = 3000 Hz, Ideal

f = 6000 Hz, Ideal f=9000 Hz, Ideal

I5dB 0N
0dB

f=6000 Hz, DAMAS2

IsdB
odB
20 dB
I15dB
1008
I5dB
odB
Fig. 4. Reconstruction of the non-sparse test pattern, for M, = M, = 256.
First row: ideal distribution; second row: delay-and-sum; third row:

DAMAS2; fourth row: f;-regularized least-squares; fifth row: TV-regu-
larized least-squares.

ciently use deconvolution or regularized least-squares methods.
In this case, ideal geometries become the ones with zero
redundancy and minimum missing lags (which give highest
bandwidth and some reconstruction artifacts) or minimum
redundancy and zero missing lags (which theoretically allow
ideal reconstruction up to a given frequency, under a far-field
assumption and in the absence of noise). In general, these
geometries do not produce low sidelobes, but the sidelobes are
low enough to allow nonambiguous reconstruction.

In this section, we compare the Cartesian geometry presented
in Fig. 1 and the 63-element logarithmic spiral geometry pre-
sented in Fig. 6. This spiral array has an aperture of 50 x 50
cm, which was chosen to produce images with resolution sim-
ilar to those of our separable array (which has a 30 x 30 cm
aperture). Furthermore, its parameters were carefully chosen to
produce optimal reconstruction for the frequencies of interest.
Fig. 7 shows reconstruction results for this logarithmic spiral
geometry, under the same conditions as Fig. 4.

While the logarithmic spiral geometry produces better results
for delay-and-sum, the other techniques produce results of com-
parable quality. In particular, TV-regularized least-squares pro-
duces very similar results for both geometries. This is not sur-
prising, since the Cartesian geometry was chosen to have op-
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f = 3000 Hz, Exact Transf. f = 6000 Hz, Exact Transf. f = 9000 Hz, Exact Transf.

Fig. 5. TV-regularized reconstruction of the checkerboard patterns. The real
source distribution is located over a hemispherical shell with a radius of 1 m.
From top to bottom: reconstruction using the exact (slow) transform; reconstruc-
tion using a far-field approximation; reconstructions using the best Kronecker
approximation for varying values of K.

Array Geometry

y coordinate (m)
°

35 o2 02 03

01 0 ot
x coordinate (m)

Fig. 6. Logarithmic spiral array geometry with 63 elements, inner radius ro =
1.5 cm, outer radius rmax = 25 cm, 9 concentric circles, 7 arms, and having
each arm perform 2 full rotations.

timal characteristics. While this example is by no means exhaus-
tive, it is meant to convince the reader that given appropriate
image reconstruction techniques, Cartesian geometries can be
nearly as powerful as more traditional logarithmic spiral geome-
tries. Of course, with Cartesian arrays one can apply the KAT
and obtain extremely fast and accurate near-field reconstruction
for arbitrary focal surfaces. With logarithmic spiral geometries,
one has no such option.
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f = 3000 Hz, Ideal f = 6000 Hz, Ideal f = 9000 Hz, Ideal
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Fig. 7. Reconstruction of the non-sparse test pattern with a logarithmic spiral
array, for M, = M, = 256. First row: ideal distribution; second row: delay-
and-sum; third row: DAMAS2; fourth row: ¢;-regularized least-squares; fifth
row: TV-regularized least-squares.

V. CONCLUSION

Using the assumption of a separable array geometry, in [1]
we presented the KAT, which can efficiently transform back and
forth between a hypothetical source distribution and its corre-
sponding spectral matrix, under the assumption of a separable
array. This transform is orders of magnitude faster than explicit
matrix multiplication, and one order of magnitude faster than
NFFT-based approaches. Furthermore, the KAT can be general-
ized for near-field imaging, while the NFFT must use a far-field
approximation.

In this Part II, we have recast delay-and-sum beamforming,
MVDR beamforming and the DAMAS2 deconvolution algo-
rithm [15] as applications of our transform. Thus, we have
shown how the computational benefits from [1] can be realized
in practice. Furthermore, the KAT allows the efficient use of
general purpose regularized least-squares solvers. To demon-
strate this application, we used it to recast acoustic imaging
as least-squares problems with ¢; and total variation regular-
ization. With the KAT, regularized reconstruction becomes
straightforward, elegant and computationally efficient. With
this approach, image reconstruction can be delegated to third
party solvers, saving the time and effort of developing ad hoc
methods.
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Finally, we have shown that by using carefully chosen sepa-
rable arrays one does not have to compromise on reconstruction
quality. Thus, the KAT does not require a tradeoff between ac-
curacy and reconstruction time.
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