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We numerically study the fractional quantum Hall effect at filling factors ν = 12/5 and 13/5 (the particle-hole
conjugate of 12/5) in high-quality two-dimensional GaAs heterostructures via exact diagonalization including
finite well width and Landau level mixing. We find that Landau level mixing suppresses ν = 13/5 fractional
quantum Hall effect relative to ν = 12/5. By contrast, we find both ν = 2/5 and (its particle-hole conjugate)
ν = 3/5 fractional quantum Hall effects in the lowest Landau level to be robust under Landau level mixing
and finite well-width corrections. Our results provide a possible explanation for the experimental absence of the
13/5 fractional quantum Hall state as caused by Landau level mixing effects.
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Introduction – There is interest across physics, mathemat-
ics, engineering, materials research, and computer science in
finding robust experimental manifestations of topologically
ordered phases with non-Abelian anyonic low-energy excita-
tions. Not only are non-Abelian anyons (i.e., neither fermions
nor bosons) suitable for topological quantum computation,
but they are described by topological quantum field theo-
ries (TQFT) of various universality classes of intrinsic fun-
damental interest [1]. The fractional quantum Hall effect [2–
4] (FQHE) is the canonical example of a system supporting
topologically ordered phases and is widely thought to sup-
port non-Abelian anyons in the second orbital electronic Lan-
dau level (LL), most probably at filling factor ν = 5/2 [5].
There is a possibility that the experimentally observed FQHE
at ν = 12/5 supports particularly exotic topologically or-
dered phases described by the Zk parafermionic Read-Rezayi
states [6–13], exemplifying an exotic SU(2)3 TQFT (in con-
trast to the 5/2 FQH state belonging to the SU(2)2 TQFT).
Since SU(2)3 TQFT supports a richer version of non-Abelian
anyons that can realize universal fault-tolerant quantum com-
putation [1], there is a great deal of interest in the 12/5 FQHE.
In this work, we focus on the enigmatic FQHE at ν = 12/5
that has attracted considerable recent experimental and theo-
retical attention.

Compared to the rather ubiquitous ν = 5/2 FQHE, the
experimental literature for ν = 12/5 (= 2 + 2/5 filling) is
sparse with only about five experimental reports of its obser-
vation. The 12/5 FQHE was observed in a 30 nm wide GaAs
quantum well with electron densities of n ∼ 3 × 1011cm−2

at magnetic field strengths of B ∼ 5 Tesla at temperatures
T ∼ 6-36 mK [14–18]. In addition to its fragility (the 12/5
FQHE is observed only in the highest quality samples with
little disorder), the real enigma is the corresponding particle-
hole conjugate FQHE at 13/5 (= 5 − 12/5) has never been
observed in spite of other FQHE in the second LL (e.g., 7/3
and 8/3, 11/5 and 14/5) showing both particle-hole conjugate
states with roughly equal strength. This discrepancy is puz-

zling because in the lowest LL the FQHE at ν = 2/5 and
3/5 are both routinely observed, are to good approximation
particle-hole conjugates of one another [19, 20], and are well-
described by the composite fermion (CF) theory [4, 21]. More
mysterious (and theoretically interesting) is that the 12/5 and
13/5 FQHE (with roughly equal strength) are observed in sys-
tems where two subbands are occupied (e.g., bilayers, thick
quantum wells) such that the chemical potential is in the low-
est LL (but in the higher subband so two LLs are still com-
pletely full) [22–24]. In this work we provide a possible ex-
planation for the absence (presence) of 13/5 (12/5) FQHE in
the second LL as arising from the LL mixing effect that ex-
plicitly breaks the particle-hole symmetry.

Several candidate wave functions for ν = 12/5 have been
proposed and studied [8–10] under idealized conditions, us-
ing the Coulomb interaction without particle-hole symmetry
breaking. Two recent numerical studies [9, 10] reinforced
initial results [6, 7] that the ground state at ν = 12/5 is in
the non-Abelian Z3 Read-Rezayi (RR) phase. Both studies
perturbed the interaction finding a finite region of stability
around the Coulomb point. All works considered particle-hole
symmetric two-body Hamiltonians so all conclusions made
therein regarding the ν = 12/5 state are equally valid for the
particle-hole conjugate state at ν = 13/5. Thus, existing the-
ories provide evidence that the experimentally observed 12/5
and (unobserved) 13/5 FQHE are both in the RR Z3 phase but
cannot explain at all why one (i.e., 12/5) exists experimentally
and the other (i.e., 13/5) does not. We provide a plausible ex-
planation for this puzzle.

LL mixing breaks particle-hole symmetry through emer-
gent three-body (and higher) terms in an effective realistic
Hamiltonian [25–27]. The importance of LL mixing can be
parameterized by the ratio κ of the Coulomb energy e2/εl0
to the bare cyclotron energy ~ω (i.e., the LL gap): κ =
(e2/εl0)/~ω where ε is the background lattice dielectric con-
stant, l0 =

√
~c/eB is the magnetic length, e is the elec-

tron charge, and ω = eB/mc is the cyclotron frequency. For
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GaAs, κ ≈ 2.5/
√
B[T]. For most experiments in the second

LL, κ is of order unity, making LL mixing an important cor-
rection. One attempt at incorporating LL mixing at ν = 12/5
used the approximation of including additional basis states
within exact diagonalization [28], but did not investigate 13/5.
In the present work, we numerically study a realistic model
of the FQHE in the second LL using exact diagonalization,
systematically including LL mixing effects due to (the infi-
nite number of) all other LLs. We find that the LL mixing-
induced particle-hole symmetry breaking strongly favors the
ν = 12/5 FQHE over the 13/5 in the second LL, qualitatively
in agreement with experimental observations. By contrast, in
the lowest LL we do not find significant particle-hole sym-
metry breaking between ν = 2/5 and 3/5 FQHE. Our work
explains the presence (absence) of 12/5 (13/5) in the second
LL while at the same time explaining the existence and equal
strength of 2/5 and 3/5 FQHE in the lowest LL. Our work
also strengthens the claim that at finite LL mixing 12/5 FQHE
arises from a RR parafermionic non-Abelian state (rather than
from Abelian composite fermion states as for the 2/5 and 3/5
FQHE).

Effective Hamiltonian – Our realistic effective Hamilto-
nian describes Ne interacting electrons confined to the N th

LL of a quasi-two-dimensional quantum well (modelled as
an infinitely deep square well) and incorporates LL and sub-
band mixing. Finite width reduces the Coulomb interaction at
short range and the Coulomb interaction causes virtual elec-
tron/hole excitations to higher/lower LLs and subbands in-
cluded perturbatively to lowest order in κ (note this involves
coupling all LLs [26]). The effective Hamiltonian is

H(w/`0, κ,N) =
∑
m

V
(N)
2body,m(w/`0, κ)

∑
i<j

P̂ij(m)

+
∑
m

V
(N)
3body,m(w/`0, κ)

∑
i<j<k

P̂ijk(m) (1)

where P̂ij(m) and P̂ijk(m) are two- and three-body pro-
jection operators onto pairs or triplets of electrons with
relative angular momentum m. V

(N)
2body,m(w/`0, κ) and

V
(N)
3body,m(w/`0, κ) are the two- and three-body effective

pseudopotentials [29, 30] in the N th LL–we use planar pseu-
dopotentials throughout this work. Beyond renormalizing
the two-body interactions, LL mixing produces particle-hole
symmetry breaking three-body terms (cf. Ref. 26). Eq. (1)
has a well-defined exact limit as κ → 0, hence, we can de-
termine the leading order effects of LL mixing on the FQHE.
Most experimental observations of the 12/5 FQHE occur at
fields of B ∼ 5.15 T (see Ref. 15) giving a quantum well
width (30 nm) of w/l0 ≈ 2.65 and κ ≈ 1.1. We esti-
mate (an exact self-consistent calculation is possible for a par-
ticular device [31]) that an infinitely deep quantum well of
w/l0 ≈ 3 provides approximately the same confinement as
the real quantum well, and we consider w/l0 ≤ 4 and κ 6= 0
to model realistic samples under realistic conditions. Theory
and experiment both suggest ν = 12/5 (13/5) to be fully spin-
polarized and we make that assumption throughout this work.
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FIG. 1. (Color online) (a) Wave function overlap between Z3 and
conj(Z3) and the exact ground state of Eq. (1) at ν = 13/5 and 12/5,
respectively, as a function of κ for Nφ = 37 (14 holes/electrons).
A finite well width increases the overlaps and κ breaks particle-
hole symmetry yielding higher overlaps with conj(Z3) for 12/5 com-
pared to Z3 for 13/5. The inset shows the overlaps in more detail.
(b) Expectation values of the three-body terms per particle Np of
Eq. (1) for κ = 0.1 and w/l0 = 0, evaluated for the ideal Coulomb
ground and first excited states at 12/5 and 13/5, respectively, as a
function of inverse LL degeneracy [1/(Nφ + 1)] extrapolated to
the thermodynamic limit. Nφ = 27 is aliased with ν = 1/3
and left out. (Inset) Expectation values for each three-body term
[H(3)

L = V
(N)
3body,L(w/`0, κ)

∑
i<j<k P̂ijk(L)] for Nφ = 37. Lines

are a guide to the eye except in the main plot of (b) where they rep-
resent linear extrapolations.

We consider V (3)
3body,m for 3 ≤ m ≤ 8–the psuedopotentials

become matrix-valued for some m above m > 9 and previous
work demonstrated that these terms are unlikely to produce
qualitative effects [31], especially for small κ.

We use the spherical geometry [4, 29] where the total mag-
netic flux Nφ = Ne/f − S where f is the filling factor, as
Ne → ∞, of the N th LL and S is the shift [32]. The ex-
perimentally filling factor ν = f + 2N where 2N arises
from completely filling the lower N spin-up and down LLs.
FQHE states are gapped uniform density ground states with
total angular momentum L = 0. The RR Z3 state describes
f = 3/5 with S = 3 while the particle-hole conjugate RR
state, conj(Z3), describes f = 2/5 with S = −2. The CF
states for ν = 2/5 and 3/5 have shifts of S = 4 and −1,
respectively.

Overlap, perturbation theory, and entanglement spectra–
We first investigate whether the system remains in the Z3 RR
phase under realistic conditions. The ground state of Eq. (1)
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FIG. 2. (Color online) (a) Entanglement spectrum for the exact
ground state of Eq. (1) for w/l0 = 3 and κ = 0.1 at ν = 13/5
(shift S = 3) and (b) at ν = 12/5 (shift S = −2) for Nφ = 37.
The counting for the low-lying levels is 1, 1, 3, 6 up to ∆LzA = 5
agreeing with Z3 and conj(Z3). The orbital cuts, using the nota-
tion of Ref. 33, are P [0|0] for S = 3 and P [1|1] for S = −2.
∆LaA = LzA − (LzA)root where (a) (LzA)root = 120 and (b)
(LzA)root = 60.5.

is uniform with L = 0 for the RR shifts for all system sizes
up to Nφ = 37 for κ 6= 0 and Nφ = 42 for κ = 0 (we have
not studied κ 6= 0 for Nφ = 42). The ground states have
L 6= 0 for the CF shifts for zero and non-zero κ, for most
system sizes. The Bonderson-Slingerland non-Abelian state
for ν = 12/5 [34] has L = 0 at κ = 0 but a smaller gap than
the RR state [8]–this behavior remains with κ 6= 0. Similar
qualitative results were recently found in the κ = 0 limit using
the density matrix renormalization group [9, 10].

Fig. 1(a) presents the overlap between the exact ground
state |ψ〉 of Eq. (1) with the model wave functions [Z3 and
conj(Z3)]. For small κ the overlap remains relatively un-
changed but the 12/5 overlap with conj(Z3) is larger than the
overlap with Z3 at 13/5 for κ . 0.5 for all system sizes–
the overlap at 13/5 decreases monotonically with κ and both
overlaps are found to collapse to zero near κ ≈ 1 though some
finite size effects are observed for larger κ.

Since the overlaps are relatively flat for small κ, we study
the eigenstates for κ = 0. We calculate 〈ψ|H(3)|ψ〉 where
H(3) =

∑
m V

(N)
3body,m(w/`0, κ)

∑
i<j<k P̂ijk(m) [shown

in Fig. 1(b)]–this represents the lowest-order perturbative
contribution to particle-hole symmetry breaking induced by
LL mixing. The thermodynamic limit extrapolation of〈
ψ|H(3)|ψ

〉
per particle for ν = 12/5 at κ = 0 is more

than ten times smaller than for 13/5, indicating that LL mixing
more severely affects the energetics of 13/5 compared to 12/5.
While the ground state energies are seemingly lowered by the
three-body terms, the excited states are lowered as well, re-
ducing the energy gap at 13/5 and increasing the gap at 12/5.
In the inset of Fig. 1(b) we show that V (3)

3 , V (3)
5 , and V (3)

6

are the three-body pseudopotentials that contribute most to
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FIG. 3. (Color online) Energy gap for Nφ=37 at ν = 12/5 and 13/5
for w/l0 = 0 (a) and 3 (b). Similar results are obtained for smaller
system sizes. (c) Width dependence of the gap for Ne =8, 12, 14,
and 16 for ν = 12/5 for w/l0 = 0, 2, and 3 and κ = 0. (Inset) The
gap as a function of w/l0 at κ = 0 for Ne = 16 (Nφ = 42). Finite
width reduces the gaps by approximately 25% at w/l0 = 3 relative
w/l0 = 0 for the largest system size. Note the similarities in (c) to
Fig. 1(b) in Ref. 9.

particle-hole symmetry breaking between ν = 12/5 and 13/5.
The Z3 state has a relative abundance of three-body cluster-
ing with low total angular momentum by construction [6] and
large expectation values of H(3)

L , similar to |ψ〉 for κ = 0 at
ν = 13/5. In contrast, the three-body terms have little effect
on 12/5.

Overlaps may depend on short-range physics, so we inves-
tigate orbital entanglement spectra [33, 35–39]. If the ground
state is in the RR phase, the counting of the low-lying lev-
els of the entanglement spectra will be related to the SU(2)3
TQFT describing the edge excitations [33]. The counting of
the low-lying levels for ν = 13/5 and 12/5 for w/l0 = 3 and
κ = 0.1 (Fig. 2) matches the counting for Z3 and conj(Z3),
respectively, (including κ = 0, see Ref. 9).

The results above confirm that the ground state of Eq. (1)
remains in the RR phase under LL mixing. Further, LL mix-
ing affects ν = 13/5 more than 12/5 and introduces strong
particle-hole asymmetry.

Energy gap–The neutral gap is related to the experimen-
tally measured activation gap and the physical robustness of
the FQHE. It is the difference between the two lowest ener-
gies at constant Nφ, if the ground state has L = 0, other-
wise it is taken to be zero. Fig. 3(a) and (b) show energy
gaps for our largest system (Nφ = 37) for w/l0 = 0 and
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3 (see Supplementary Materials for other w/l0). LL mixing
breaks particle-hole symmetry producing a larger energy gap
for ν = 12/5 compared to 13/5. The gap at w/l0 = 3 for 12/5
increases with κ while the 13/5 gap is suppressed (the sup-
pression is found for all non-aliased system sizes and values
of w/l0, however an increasing gap at ν = 12/5 for non-zero
width is only found for the two largest system sizes Nφ = 37
and 32). Hence, LL mixing strengthens the 12/5 FQHE for
finite w/l0 while weakening 13/5 (strengthening of the FQHE
gap with LL mixing does not happen for ν = 5/2 [31]).

The thermodynamic extrapolation suffers from finite-size
effects (Nφ = 12 and 17) and aliasing (Nφ = 27). The energy
gaps at the remaining Nφ are shown in Fig. 3(c). Without LL
mixing, finite width decreases the gap from 0.012e2/εl0 at
w/l0 = 0 to 0.009e2/εl0 at w/l0 = 3 [values given are for
Nφ = 42 shown in the inset of Fig. 3(c)]. In the limit of small
LL mixing, (i.e., high magnetic fields) it should be possible to
observe more robust 12/5 states in narrow quantum wells.

Fig. 4 shows the energy gap as a function of κ for Nφ =
32 and 37 (12 and 14 electrons (holes) for ν = 12/5 (13/5),
respectively) to the experimental value of κ ∼ 1.1 for w/l0 =
3. All the sharp features in the κ-dependence are associated
with the change ofL in the first excited states. The behavior of
the different system sizes is consistent up to κ = 0.6−0.7 and
demonstrates a larger energy gap at 12/5 than at 13/5. Finite-
size effects are observed for larger κwhich could be a result of
our perturbative (in κ) approach to LL mixing breaking down
or the smallness of the energy gap.

Second versus lowest Landau level–Finally we compare the
second with the lowest LL. In Fig. 5(a) we show the rela-
tive energy gap difference induced by LL mixing between
ν = 12/5 and 13/5 and between ν = 2/5 and 3/5 as a func-
tion of particle number. The LL mixing induced difference is
much larger in the second LL than in the lowest LL (the sign
is also different between the two with 12/5 strongly favored
in the second LL while 3/5 is slightly favored in the lowest
LL). The LL mixing induced gap difference between 12/5 and
13/5 grows with system size and is likely a robust feature in
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FIG. 5. (Color online) (a) Relative gap difference δ∆ν = (∆ν −
∆1−ν)/∆ν (induced by κ = 0.1) between particle-hole-conjugates
at 12/5 (13/5) and 2/5 (3/5). Np is the number of particles for ν =
12/5 and 2/5 or number of holes for ν = 13/5 and 3/5. (b) Particle-
hole symmetry breaking (quantified by 〈ψ|conj(ψ)〉) in the second
LL compared to the lowest LL for w/l0 = 0 and 3. The system sizes
are Nφ = 32 for ν = 12/5 (13/5) and Nφ = 31 for ν = 2/5 (3/5).

the thermodynamic limit.
We can further quantify the particle-hole symmetry break-

ing by calculating the overlap between the exact ground state
|ψ〉 at ν = 12/5 (2/5) and the particle-hole conjugate of the
exact ground state |conj(ψ)〉 at ν = 13/5 (3/5). At κ = 0,
this overlap is unity since the two states are particle-hole con-
jugates. In Fig. 5(b) particle-hole symmetry is much more
strongly broken for the ν = 12/5 (13/5) FQHE than for
the ν = 2/5 (3/5) FQHE. In fact, particle-hole symmetry
is hardly broken at all in the lowest LL (in the lowest LL
〈ψ|conj(ψ)〉 & 0.9 up to κ ∼ 2.4). This apparent particle-
hole symmetry could be a property of the lowest LL or of the
CF-like states in any LL.

Conclusion – LL mixing strongly breaks the particle-hole
symmetry between ν = 12/5 and 13/5 FQHE in the second
LL, but has little effect on ν = 2/5 and 3/5 FQHE in the low-
est LL. Our work implies that the absence of 13/5 FQHE in
the second LL is a direct consequence of LL mixing effects.
This is mainly due to the suppression of the energy gap at
ν = 13/5 – the FQHE might simply be too fragile (in terms
of energy gap) since LL mixing affects 13/5 more severely
than 12/5, and because in experimental measurements, at con-
stant density, κ is larger at 13/5 compared to 12/5. The 12/5
ground state at shift S = −2 remains in the non-Abelian
parafermionic (conjugate) RRZ3 phase when finite-width and
non-zero LL mixing are taken into account extending the va-
lidity of previous conclusions [6, 7, 9, 10, 28] obtained for ide-
alized conditions. We do not rule out the ν = 13/5 FQHE in
the Z3 RR phase, but establish that the 13/5 FQHE is always
much weaker than 12/5. Future experiments with smaller κ
could show a very weak FQHE at ν = 13/5 in extremely high
mobility samples at ultra-low temperatures with a very small
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activation energy.
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Supplementary Materials: The enigmatic 12/5 fractional quantum Hall effect

ENERGY GAPS FOR w = 1, 2, 4

In Fig. S1 we present the energy gaps calculated for w/l0 = 1, 2, and 4. Together with Fig. 3 they cover the range of possible
effective widths that could be realized in experiment. For all non-aliased system sizes and for all widths we observe that the gap
of the 13/5 state is suppressed relative to the 12/5 state gap.
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FIG. S1. (Color online) Energy gap (lowest two eigenvalues difference) for a system with Nφ=37 at 12/5 and 13/5.

We expect that the equivalence of various models of finite widths demonstrated for ν = 5/2 [31] also holds here. Thus,
to determine the effective width w corresponding to a certain experimental device one would first calculate (for instance using
a Schrodinger-Poisson solver) or measure [40] the square of the absolute value of the electron wave function in the direction
perpendicular to the 2DEG and determine its variance (as defined in Ref. [31]). Then w should be chosen such that the variance
in the ground state of an infinitely deep quantum well of width w is the same as in the given experimental sample.

As can be seen from the Fig. S1 finite width significantly reduces the gap and thus the strength of the 12/5 state. Therefore
an experiment in narrow quantum wells could obtain more robust 12/5 state provided that all the effects neglected in our model
(such as quantum well interface scattering, etc.) remain unchanged.

TOPOLOGICAL GAP AT 12/5 AND 13/5

We define the topological gap following Ref. 33 as the difference between the lowest lying and the next state in the entangle-
ment spectrum corresponding to ∆LzA = 1 (as defined in the caption of Fig. 2). It represents the “energy difference” between the
universal part of the entanglement spectrum, describing the [non-Abelian in case of RR and conj(RR)] modes and the generic
continuum of states.

From the data presented in Fig. S2 we identify two trends: first, the topological gap increases with increased finite width,
and second, Landau level mixing leads to the suppression of the topological gap at 13/5 relative to 12/5 in the same way it is
observed for the energy gap, giving support to the main conclusion of this work based on a different measure.

ROBUSTNESS OF THE 2/5 AND 3/5 FQH STATES TO THE LANDAU LEVEL MIXING

To characterize the evolution of the states in the lowest Landau level we approximate the composite fermion states at 2/5 and
3/5 with the exact ground state of a “hardcore” model Hamiltonian with V1 6= 0 and all other Vm = 0 at the at Nφ = 5Ne/2− 4
and Nφ = 5Ne/3 + 1, respectively. This Hamiltonian produces the 1/m Laughlin state exactly for Nφ = m(Ne − 1) and
produces ground states with extremely large overlap (> 0.99) with composite fermion states with filling factor ν = n/(2pn+ 1)
at the appropriate flux as checked via Monte Carlo. As shown in Fig. S3 the overlap remains quite stable under Landau level
mixing and only starts to significantly decrease around κ = 3− 4, well beyond the typical experimental values.
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FIG. S2. (Color online) Topological gap for 12/5 and 13/5 for Nφ = 37 and (top to bottom) w = 0, 1, 2, 3, 4.
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FIG. S3. (Color online) Overlap between the realistic ground state and the ground state of the hardcore (V1 6= 0 and Vm = 0 for all other m)
Hamiltonian for Nφ = 31. w=0 (left panel) and w=3 (right panel).

It is an open question whether the observed robustness of the FQH states at 2/5 and 3/5 is due to their CF-like nature or to the
specific form of the effective interaction in the lowest Landau level.
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