Combinatorial Learning for Combinatorial Optimization --- A Trilogy

Wei Chen 陈卫
Microsoft Research Asia
Combinatorial optimization

• Well studied
 – classics: shortest paths, min. spanning trees, max. matchings
 – modern applications: online advertising, viral marketing

• What if the inputs are stochastic, unknown, and has to be learned over time?
 – link delays
 – click-through probabilities
 – influence probabilities in social networks
Combinatorial learning for combinatorial optimizations

- Need new framework for learning and optimization:
- Learn inputs while doing optimization — combinatorial online learning
- Learning inputs first (and fast) for subsequent optimization — combinatorial pure exploration
Motivating application: Display ad placement

- Bipartite graph of pages and users who are interested in certain pages
 - Each edge has a click-through probability
- Find k pages to put ads to maximize total number of users clicking through the ad
- When click-through probabilities are known, can be solved by approximation
- Question: how to learn click-through prob. while doing optimization?
Main difficulties

• Combinatorial in nature
• Non-linear optimization objective, based on underlying random events
• Offline optimization may already be hard, need approximation
• Online learning: learn while doing repeated optimization
Multi-armed bandit: the canonical OL problem

• There are \(n \) arms (machines)
• Arm \(i \) has an unknown reward distribution with unknown mean \(\mu_i \)
 – best arm \(\mu^* = \max \mu_i \)
• In each round, the player selects one arm to play and observes the reward
Multi-armed bandit problem

– Regret after playing T rounds:
 - Regret $= T\mu^* - \mathbb{E}[\sum_{t=1}^{T} R_t(i_t^A)]$
 - Objective: minimize regret in T rounds
 - Balancing exploitation-exploration tradeoff

• Known results:
 – UCB1 (Upper Confidence Bound) [Auer, Cesa-Bianchi, Fischer 2002]
 • Gap-dependent bound $O(\log T \sum_{i: \Delta_i > 0} 1/\Delta_i)$, $\Delta_i = \mu^* - \mu_i$, match lower bound
 • Gap-free bound $O(\sqrt{nt \log T})$, tight up to a factor of $\sqrt{\log T}$
Naïve application of MAB

• every set of k webpages is treated as an arm
• reward of an arm is the total click-through counted by the number of people
• Issues
 – combinatorial explosion
 – ad-user click-through information is wasted
Issues when applying MAB to combinatorial setting

• The action space is exponential
 – Cannot even try each action once
• The offline optimization problem may already be hard
• The reward of a combinatorial action may not be linear on its components
• The reward may depend not only on the means of its component rewards
A COL Trilogy

• On stochastic setting: Only a few scattered work exist before
• ICML’13: Combinatorial multi-armed bandit framework
 – On cumulative rewards / regrets
 – Handling nonlinear reward functions and approximation oracles
• ICML’14: Combinatorial partial monitoring
 – Handling limited feedback with combinatorial action space
• NIPS’14: Combinatorial pure exploration
 – On best combinatorial arm identification
 – Handling combinatorial action space
The unifying theme

• Separate online learning from offline optimization
 – Assume offline optimization oracle

• General combinatorial online learning framework
 – Apply to many problem instances, linear, non-linear, exact solution or approximation
Chapter I: Combinatorial Multi-Armed Bandit: General Framework, Results and Applications

ICML’2013, joint work with Yajun Wang, Microsoft Yang Yuan, Cornell U.
Contribution of this work

• Stochastic combinatorial multi-armed bandit framework
 – handling non-linear reward functions
 – UCB based algorithm and tight regret analysis
 – new applications using CMAB framework

• Comparing with related work
 • CMAB is more general, and has much tighter regret analysis
 – online submodular optimizations (e.g. [Streeter & Golovin’08, Hazan & Kale’12])
 • for adversarial case, different approach
 • CMAB has no submodularity requirement
CMAB Framework
Combinatorial multi-armed bandit (CMAB) framework

- A super arm S is a set of (base) arms, $S \subseteq [n]$
- In round t, a super arm S_t^A is played according algo A
- When a super arm S is played, all based arms in S are played
- Outcomes of all played base arms are observed --- semi-bandit feedback
- Outcome of arm $i \in [n]$ has an unknown distribution with unknown mean μ_i
Rewards in CMAB

- Reward of super arm S_t^A played in round t, $R_t(S_t^A)$, is a function of the outcomes of all played arms.
- Expected reward of playing arm S, $\mathbb{E}[R_t(S)]$, only depends on S and the vector of mean outcomes of arms, $\mu = (\mu_1, \mu_2, ..., \mu_n)$, denoted $r_\mu(S)$
 - e.g. linear rewards, or independent Bernoulli random variables
- Optimal reward: $\text{opt}_\mu = \max_S r_\mu(S)$
Handling non-linear reward functions ---

two mild assumption on $r_\mu(S)$

- **Monotonicity**
 - if $\mu \leq \mu'$ (pairwise), $r_\mu(S) \leq r_{\mu'}(S)$, for all super arm S

- **Bounded smoothness**
 - there exists a strictly increasing function $f(\cdot)$, such that for any two expectation vectors μ and μ',
 \[|r_\mu(S) - r_{\mu'}(S)| \leq f(\Delta), \text{ where } \Delta = \max_{i \in S} |\mu_i - \mu_i'| \]
 - Small change in μ lead to small changes in $r_\mu(S)$
 - A general version of Lipschitz continuity condition

- Rewards may not be linear, a large class of functions satisfy these assumptions
Offline computation oracle ---
allow approximations and failure probabilities

• \((\alpha, \beta)\)-approximation oracle:
 – Input: vector of mean outcomes of all arms \(\mu = (\mu_1, \mu_2, \ldots, \mu_n)\),
 – Output: a super arm \(S\), such that with probability at least \(\beta\) the expected reward of \(S\) under \(\mu, r_\mu(S)\), is at least \(\alpha\) fraction of the optimal reward:
 \[
 \Pr [r_\mu(S) \geq \alpha \cdot \text{opt}_\mu] \geq \beta
 \]
(α, β)-Approximation regret

• Compare against the αβ fraction of the optimal

\[
\text{Regret} = T \cdot \alpha \beta \cdot \text{opt}_\mu - \mathbb{E}[\sum_{i=1}^{T} r_\mu(S_t^A)]
\]

• Difficulty: do not know
 – combinatorial structure
 – reward function
 – arm outcome distribution
 – how oracle computes the solution
Classical MAB as a special case

- Each super arm is a singleton
- Oracle is taking the max, $\alpha = \beta = 1$
- Bounded smoothness function $f(x) = x$
Our solution: CUCB algorithm

\[\bar{\mu} = (\bar{\mu}_1, \bar{\mu}_2, \ldots, \bar{\mu}_n) \]

Offline computation oracle

Superarm \(S \)

Estimation

\[\hat{\mu} = (\hat{\mu}_1, \hat{\mu}_2, \ldots, \hat{\mu}_n) \]

Adjustment

\[\tilde{\mu}_i = \hat{\mu}_i + \frac{3 \ln T}{2T_i} \]

\(T_i \): # of times arm \(i \) is played; key tradeoff between exploration and exploitation
Theorem 1: Gap-dependent bound

- The \((\alpha, \beta)\)-approximation regret of the CUCB algorithm in \(n\) rounds using an \((\alpha, \beta)\)-approximation oracle is at most

\[
\sum_{i \in [n], \Delta^i_{\text{min}} > 0} \left(\frac{6 \ln T \cdot \Delta^i_{\text{min}}}{(f^{-1}(\Delta^i_{\text{min}}))^2} + \int_{\Delta^i_{\text{min}}}^{\Delta^i_{\text{max}}} \frac{6 \ln T}{(f^{-1}(x))^2} \, dx \right) + \left(\frac{\pi^2}{3} + 1 \right) \cdot n \cdot \Delta_{\text{max}}
\]

- \(\Delta^i_{\text{min}} (\Delta^i_{\text{max}})\) are defined as the minimum (maximum) gap between \(\alpha \cdot \text{opt}_\mu\) and reward of a bad super arm containing \(i\).
 - \(\Delta_{\text{min}} = \min_i \Delta^i_{\text{min}}, \Delta_{\text{max}} = \max_i \Delta^i_{\text{max}}\)
 - Here, we define the set of bad super arms as

\[
S_B = \{ S \mid r_\mu(S) < \alpha \cdot \text{opt}_\mu \}\]

- Match UCB regret for classic MAB
Proof ideas (for a looser bound)

- Each base arm has a sampling threshold $\ell_t = \frac{6 \ln t}{\left(f^{-1}(\Delta_{\min}) \right)^2}$

 $- T_{i,t-1} > \ell_t$: base arm i is sufficiently sampled at time t
 $- T_{i,t-1} \leq \ell_t$: base arm i is under-sampled at time t

- At round t, with high probability $(1 - 2nt^{-2})$, the round is nice --- empirical means of all base arms are within their confidence radii:

 $- \forall i \in [n], |\hat{\mu}_{i,t_{i,t-1}} - \mu_i| \leq \Lambda_{i,t}, \Lambda_{i,t} = \sqrt{\frac{3 \ln t}{2T_{i,t-1}}} \text{ (by Hoeffding inequality)}$

- In a nice round t with selected super arm S_t, if all base arms of S_t are sufficiently sampled, then using their UCBs the oracle will not select a bad super arm S_t

 \quad • Continuity and monotonicity conditions
Why bad super arm cannot be selected in a nice round when its base arms are sufficiently sampled

• define $\Lambda = \sqrt{\frac{3 \ln t}{2 \ell_t}}$, $\Lambda_t = \max\{\Lambda_{i,t} | i \in S_t\}$, thus $\Lambda > \Lambda_t$ (by sufficient sampling condition)

• $\forall i \in [n], \bar{\mu}_{i,t} \geq \mu_i$, and $\forall i \in S_t, |\bar{\mu}_{i,t} - \mu_i| \leq 2\Lambda_t$ (since $\bar{\mu}_{i,t} = \hat{\mu}_{i,T_i,t-1} + \Lambda_{i,t}$)

• Then we have:

\[
\begin{align*}
\hat{r}_\mu(S_t) + f(2\Lambda) &> \hat{r}_\mu(S_t) + f(2\Lambda_t) & \{\text{strict monotonicity of } f\} \\
&\geq \hat{r}\bar{\mu}_t(S_t) & \{\text{bounded smoothness of } \hat{r}_\mu(S)\} \\
&\geq \alpha \cdot \text{opt}\hat{\mu}_t & \{\alpha\text{-approximation w.r.t. } \hat{\mu}_t\} \\
&\geq \alpha \cdot \hat{r}\bar{\mu}_t(S^*_\mu) & \{\text{definition of opt}\hat{\mu}_t\} \\
&\geq \alpha \cdot r\mu(S^*_\mu) = \alpha \cdot \text{opt}\mu & \{\text{monotonicity of } r\mu(S)\}
\end{align*}
\]

• Since $f(2\Lambda) = \Delta_{\min}$, by the def’n of Δ_{\min}, S_t is not a bad super arm with probability $1 - 2nt^{-2}$.

UBC, March 27, 2015

Counting the regret

• Sufficiently sampled part:
 \[\sum_{t=1}^{T} 2nt^{-2} \cdot \Delta_{\text{max}} \leq \frac{\pi^2}{3} \cdot n \cdot \Delta_{\text{max}} \]

• Under-sampled part: pay regret \(\Delta_{\text{max}} \) for each under-sampled round
 – If a round is under-sampled (meaning some of the base arms of the played super arm is under-sampled), the under-sampled base arms must be sampled once
 – Thus total number of under-sampled round is at most
 \[m (\ell_{T} + 1) = \left(\frac{6 \ln T}{(f^{-1}(\Delta_{\text{min}}))^2} + 1 \right) \cdot n \]
• Thus, getting a loose bound:
 \[\left(\frac{6 \ln T}{(f^{-1}(\Delta_{\text{min}}))^2} + \frac{\pi^2}{3} + 1 \right) \cdot n \cdot \Delta_{\text{max}} \]

• To tighten the bound, fine-tune sufficient sampling condition and under-sampled part regret computation.
Theorem 2: Gap-free bound

- Consider a CMAB problem with an \((\alpha, \beta)\)-approximation oracle. If the bounded smoothness function \(f(x) = \gamma \cdot x^\omega\) for some \(\gamma > 0\) and \(\omega \in (0,1]\), the regret of CUCB is at most:

\[
\frac{2\gamma}{2 - \omega} \cdot (6n \ln T)^{\frac{\omega}{2}} \cdot T^{1 - \frac{\omega}{2}} + \left(\frac{\pi^2}{3} + 1\right) \cdot n \cdot \Delta_{\text{max}}
\]

- When \(\omega = 1\), the gap-free bound is \(O(\gamma \sqrt{nT \ln T})\)
Applications of CMAB
Application to ad placement

- Bipartite graph \(G = (L, R, E) \)
- Each edge is a base arm
- Each set of edges linking \(k \) webpages is a super arm
- Bounded smoothness function \(f(\Delta) = |E| \cdot \Delta \)
- \((1 - \frac{1}{e}, 1)\)-approximation regret

\[
\sum_{i \in E, \Delta_{i_{\min}}^i > 0} \frac{12|E|^2 \ln T}{\Delta_{i_{\min}}} + \left(\frac{\pi^2}{3} + 1\right) \cdot |E| \cdot \Delta_{\text{max}}
\]

- improvement based on clustered arms is available
Application to linear bandit problems

- Linear bandits: matching, shortest path, spanning tree (in networking literature)
- Maximize weighted sum of rewards on all arms
- Our result significantly improves the previous regret bound on linear rewards [Gai et al. 2012]
 - Also provide gap-free bound
Application to social influence maximization

• Each edge is a base arm
• Require a new model extension to allow probabilistically triggered arms
 – Because a played base arm may trigger more base arms to be played -- the cascade effect
• Use the same CUCB algorithm
• See full report arXiv:1111.4279 for complete details
Summary and future work

• Summary
 – Avoid combinatorial explosion while utilizing low-level observed information
 – Modular approach: separation between online learning and offline optimization
 – Handles non-linear reward functions
 – New applications of the CMAB framework, even including probabilistically triggered arms

• Future work
 – Improving algorithm and/or regret analysis for probabilistically triggered arms
 – Combinatorial bandits in contextual bandit settings
 – Investigate CMABs where expected reward depends not only on expected outcomes of base arms
Chapter II: Combinatorial Partial Monitoring Game with Linear Feedback and Its Applications

New question to address: What if the feedback is limited?
Motivating example: Crowdsourcing

– In each timeslot, one user works on one task, and the performance is probabilistic
 • Matching workers with tasks in a bipartite graph $G = (V, E)$.
 • The total reward is based on the performance of the matching.
 • Want to find the matching yielding the best performance

The total number of possible matchings is exponentially large!
Motivating example: Crowdsourcing

• Feedback may be limited:
 • workers may not report their performance
 • Some edges may not be observed in a round.
 • Feedback may or may not equal to reward.

Question: Can we maximize rewards by learning the best matching?
Features of the problem

• Features of the problem:
 – Combinatorial learning
 • Possible choices are exponentially large
 – Stochastic model: e.g. human behaviors are stochastic
 – Limited feedback:
 • Users may not want to provide feedback (need extra work)

• Other examples in combinatorial recommendation
 – Learning best matching in online advertising, buyer-seller markets, etc.
 – Learning shortest path in traffic monitoring and planning, etc.
Related work

| Simple action space $|\mathcal{X}| = \text{poly}(n)$ | Sufficient Feedback (easier) | Limited Feedback (harder) |
|---|-----------------------------|---------------------------|
| Full information [Littlestone & Warnuth, 1989] | Finite partial monitoring [Piccolboni & Schindelhauer, 2001; Cesa et al., 06; Antos et al., 12] |
| MAB [Robbin, 1985; Auer et al. 2002] | Issue: algorithm and regret linearly depends on $|\mathcal{X}|$ |

| Combinatorial action space $|\mathcal{X}| = \text{exp}(n)$ | CMAB [Cesa-Bianchi et al., 2010; Gai et al., 2012; Chen et al., 2012] | ? |
|---|-----------------------------|---------------------------|
| Issue: require sufficient feedback | (CPM: The first step towards this problem) |
Our contributions

- Generalize FPM to Combinatorial Partial Monitoring Games (CPM):
 - Action set $|\mathcal{X}|$: $\text{poly}(n) \rightarrow \text{exp}(n)$
 - Environment outcomes: Finite set $\{1, 2, \cdots, M\} \rightarrow$ Continuous space $[0, 1]^n$ (n base arms)
 - Reward: linear \rightarrow non-linear (with Lipschitz continuity)
 - Algorithm only needs a weak feedback assumption
 - Use information from a set of actions jointly

- Achieve regret bounds: distribution-independent $O\left(T^{-\frac{2}{3}}(\log T + \log |\mathcal{X}|)\right)$
 and distribution-dependent $O(\log T + \log |\mathcal{X}|)$
 - Regret depends on $\log |\mathcal{X}|$ instead of $|\mathcal{X}|$
Our solution

- Ideas: consider actions jointly
 - Use a small set of actions to “observe” all actions
 - Borrowing linear regression idea
 - One action only provides limited feedback, but their combination may provide sufficient information.
Example application to crowdsourcing

- Model: Matching workers with tasks, bipartite $G = (V, E)$
 - Each edge e_{ij} is a base arm (the outcome v_{ij} is the utility of worker i on the task j)
 - each matching is a super arm, or an action x
 - Find a matching x to maximize total utilities
 $$\arg\max_x \mathbb{E}[\sum_{e_{ij} \in x} v_{ij}]$$
Example application to crowdsourcing

- Feedback: Only for certain observable actions, observe the a partial sum of three edge outcomes
 - Represented by a transformation matrix M_x
 - Outcome of edges in vector \mathbf{v}
 - $M_x \cdot \mathbf{v}$ is the feedback of action x
 - When stacking M_x together, it is full column rank
- Algorithm solution:
 - Use these observable actions to explore
 - Use linear regression to estimate and find best action and explore
 - Properly set switching condition between exploration and exploitation
Conclusion and future work

- Propose CPM model:
 - Exponential number of actions/Infinite outcomes/non-linear reward
 - Succinct representation by using transformation matrices
- Global observer set:
 - Use combination of action for limited feedbacks, and it is small
- Algorithm and results:
 - Use global confidence bound to raise the probability of finding the optimal action
 - Guarantee $\tilde{O}(T^{2/3})$ and $O(\log T)$ (assume unique optimum), only linearly depends on $\log |X|$
- Future work:
 - More flexible feedback model
 - More applications
Chapter III: Combinatorial Pure Exploration in Multi-Armed Bandits

NIPS’2014, joint work with Shouyuan Chen, Irwin King, Michael R. Lyu, CUHK Tian Lin, Tsinghua U.
Pure exploration

Multi-armed bandit

You go to Vegas trying to explore different slot machines while gaining as much as possible --- cumulative reward

Pure exploration bandit

You and your boss go to Vegas together trying to explore the slot machines and find the best machine for your boss to win --- best machine identification
Pure exploration bandit

• n arms

• Fixed budget model --- with a fixed time period T
 – Learn in first T rounds, and output one arm at the end
 – Maximize the probability of outputting the best arm

• Fixed confidence model --- with a fixed error confidence δ
 – Explore arms and output one arm in the end
 – Guarantee that the output arm is the best arm with probability of error at most δ
 – Minimize the number of rounds needed for exploration

• How to adaptively explore arms to be more effective
 – Arms less (more) likely to be the best one should be explored less (more)
<table>
<thead>
<tr>
<th>Online learning</th>
<th>Pure exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning while optimization</td>
<td>A dedicate learning period, with a learning output for subsequent optimization</td>
</tr>
<tr>
<td>Adaptive for both learning and optimization</td>
<td>Adaptive for more effective learning</td>
</tr>
<tr>
<td>Exploration vs. exploitation tradeoff</td>
<td>Focus on adaptive exploration in the learning period</td>
</tr>
<tr>
<td>Multi-armed bandit</td>
<td>Pure exploration bandit</td>
</tr>
</tbody>
</table>
Application of pure exploration

• A/B testing
• Others: clinical trials, wireless networking (e.g. finding the best route, best spanning tree)
Combinatorial pure exploration

• Play one arm at each round
• Find the optimal set of arms M_* satisfying certain constraint

$$M_* = \arg\max_{M \in \mathcal{M}} \sum_{e \in M} w(e)$$

– $\mathcal{M} \subseteq 2^{[n]}$ decision class with certain combinatorial constraint
 • E.g. k-sets, spanning trees, matchings, paths
– maximize the sum of expected rewards of arms in the set

• Prior work
 – Find top-k arms [KS10, GGL12, KTPS12, BWV13, KK13, ZCL14]
 – Find top arms in disjoint groups of arms (multi-bandit) [GGLB11, GGL12, BWV13]
 – Separated treatments, no unified framework
Applications of combinatorial pure exploration

• Wireless networking
 – Explore the links, and find the expected shortest paths or minimum spanning trees

• Crowd sourcing
 – Explore the worker-task pair performance, and find the best matching

Goal:
1) estimate the productivities from tests.
2) find the optimal 1-1 assignment.
CLUCB: fixed-confidence algo

input parameter: \(\delta \in (0,1) \)
(max. allowed probability of error)

maximization oracle:
Oracle() : \(R^n \rightarrow M \)
Oracle(\(v \)) = \arg \max_{M \in M} \sum_{i \in M} v(M) \) for
weights \(v \in R^n \)
CLUCB result

• With probability at least $1 - \delta$
 – Correctly find the optimal set
 – Uses at most $O\left(\text{width}^2(\mathcal{M})H \log \left(\frac{nH}{\delta}\right)\right)$ rounds
 • H: hardness, $\text{width}(\mathcal{M})$: width of the decision class

• Hardness:
 – Δ_e: Gap of arm e

$$\Delta_e = \begin{cases} w(M_*) - \max_{M \in \mathcal{M} : e \notin M} w(M) & \text{if } e \notin M_*, \\ w(M_*) - \max_{M \in \mathcal{M} : e \in M} w(M) & \text{if } e \in M_* \end{cases}$$

 – $H = \sum_{e \in [n]} \Delta_e^{-2}$
 – Recover previous definitions of H for the top-1, top-K and multi-bandit problems.
Exchange class and width --- arm interdependency measure

- **exchange class**: a unifying method for analyzing different decision classes
 - a “proxy” for the structure of decision class
 - An exchange class B is a collection of “patches”
 - (b_+, b_-) (where $b_+, b_- \subseteq [n]$) are used to interpolate between valid sets $M' = M \cup b_+ \setminus b_-$ ($M, M' \in \mathcal{M}$)

- **width** of exchange class B: size of largest patch
 - $\text{width}(B) = \max_{(b_+, b_-) \in B} (|b_+| + |b_-|)$

- **width** of decision class \mathcal{M}: width of the “thinnest” exchange class
 - $\text{width}(\mathcal{M}) = \min_{B \in \text{Exchange}(\mathcal{M})} \text{width}(B)$
Other results

• Lower bound: $\tilde{\Omega}(H)$

• Fixed budget algo: CSAR
 – successive accepting / rejecting arms
 – Correct with probability at least $1 - 2^{\tilde{o}\left(-\frac{T}{\text{width}^2(M)H}\right)}$

• Extend to PAC learning (allow ϵ off from optimal)
Future work

- Narrow down the gap (dependency on the width)
- Support approximation oracles
- Support nonlinear reward functions
Overall summary on combinatorial learning

• Central theme
 – deal with stochastic and unknown inputs for combinatorial optimization problems
 – modular approach: separate offline optimization with online learning
 • learning part does not need domain knowledge on optimization

• More wait to be done
 – Many other variants of combinatorial optimizations problems --- as long as it has unknown inputs need to be learned
 – E.g., nonlinear rewards, approximations, expected rewards depending not only on means of arm outcomes, adversarial unknown inputs, etc.
Thank you!