
High Performance State-Machine Replication

Parisa Jalili Marandi
University of Lugano (USI)

Switzerland

Marco Primi
University of Lugano (USI)

Switzerland

Fernando Pedone
University of Lugano (USI)

Switzerland

Abstract—State-machine replication is a well-established ap-
proach to fault tolerance. The idea is to replicate a service on
multiple servers so that it remains available despite the failure
of one or more servers. From a performance perspective, state-
machine replication has two limitations. First, it introduces
some overhead in service response time, due to the requirement
to totally order commands. Second, service throughput cannot
be augmented by adding replicas to the system. We address
the two issues in this paper. We use speculative execution to
reduce the response time and state partitioning to increase the
throughput of state-machine replication. We illustrate these
techniques with a highly available parallel B-tree service.

I. INTRODUCTION

Computer systems are usually made fault tolerant through
replication. By replicating a service on multiple servers,
clients have the guarantee that even if some replicas fail,
the service is still available. However, once a service is
replicated, consistency among the replicas must be ensured.
State-machine replication is a well-known approach to repli-
cation. It achieves strong consistency by regulating how
client commands must be propagated to and executed by the
replicas [1], [2]. Command propagation can be decomposed
into two requirements: (i) every nonfaulty replica must
receive every command and (ii) no two replicas can disagree
on the order of received and executed commands. Command
execution must be deterministic: if two replicas execute the
same sequence of commands in the same order, they must
reach the same state and produce the same output.

State-machine replication improves service availability.
From a performance perspective it has two limitations. First,
it introduces some overhead in service response time with
respect to a client-server implementation. Second, service
throughput is determined by the throughput of a single
replica—as discussed in the next section, replication can
provide limited throughout improvements under certain con-
ditions. Thus, if demand augments (e.g., more clients join
the system) it cannot be absorbed by adding replicas to
the compound. The increased response time stems from
the need to order client commands before they can be
executed: ordering commands is inherently more costly than
sending them directly to a server, as in a client-server setup.
The throughput limitation is a consequence of each replica
storing a full copy of the service state and handling every
command. In this paper we address each one of these issues.

To reduce the overhead in response time we rely on
speculative (or optimistic) execution, a technique that has
been used before in the context of replicated databases
(e.g., [3], [4]). The idea is to expose servers to a command
before its final order has been established. As a result, the
execution of the command by the server and the execution
of the protocol that orders the command can overlap in time,
reducing service response time. The technique is speculative
because it only works if the order in which commands are
executed is confirmed by the ordering protocol. If the order
is not comfirmed, the commands must be rolled back and
re-executed in the correct order (i.e., the order defined by the
ordering protocol). We exploit this technique in the context
of Ring Paxos, a high throughput consensus protocol used to
implement state-machine replication. As we explain in the
paper, speculative execution in Ring Paxos does not depend
on network conditions (e.g., spontaneous message order),
and therefore is more advantageous than previous proposals
(e.g., [3], [4]).

We address the throughput limitation of state-machine
replication with a state partitioning strategy. In brief, we
allow applications to decompose their state into sub-states
and replicate each sub-state individually. Commands are
directed to and executed by the relevant partitions only.
By partitioning the state of a service, we allow to pro-
cess commands in parallel. This is particularly effective
for services whose state partitioning is perfect, that is, all
commands access one sub-state or another, but no command
accesses two or more sub-states. Commands that access
more than one sub-state must be carefully ordered to avoid
inconsistencies. We discuss how to efficiently integrate the
technique into Ring Paxos.

To illustrate high performance state-machine replication,
we propose, implement, and fully evaluate a highly available
parallel B-tree service. Our service implements three B-
tree operations: inserts, deletes, and range queries. We show
that speculative execution can reduce response time by up
to 16.2%. State partitioning allows service throughput to
increase by adding replicas, in some cases resulting in
throughput near 4 times greater than classic state-machine
replication. In our largest configuration, up to three quarters
of a million B-tree commands can be executed per second
with a response time below 4 milliseconds.

978-1-4244-9233-6/11/$26.00 ©2011 IEEE 454



Summing up, the paper makes the following contributions:
(1) It shows how speculative execution can be integrated into
Ring Paxos to reduce the response time of state-machine
replication. (2) It presents the idea of state partitioning in
the context of state-machine replication. (3) It illustrates the
techniques with a B-tree service capable of executing com-
mands very efficiently. (4) It discusses the implementation
of these ideas and fully assesses them experimentally.

The remainder of the paper is structured as follows. Sec-
tion II describes our system model and state-machine repli-
cation. Section III presents speculative execution and state
partitioning in detail. Section IV illustrates the approach with
a highly available parallel B-tree service. Section V evaluates
the performance of the B-tree service. Section VI comments
on related work. Section VII concludes the paper. A proof
of correctness of our protocols can be found in [5].

II. BACKGROUND

A. System model

We assume a distributed system composed of intercon-
nected nodes within a single geographical location (e.g., a
data center). Nodes may fail by crashing and subsequently
recover, but do not experience arbitrary behavior (i.e., no
Byzantine failures). The network is mostly reliable and
subject to small latencies, although load unbalances (e.g.,
peak demand) imposed on both nodes and the network
may cause variations in processing and transmission delays.
Communication can be one-to-one, through the primitives
send(p,m) and receive(m), and one-to-many, through the
primitives ip-multicast(g,m) and ip-deliver(m), where m is
a message, p is a node, and g is a group of nodes. Messages
can be lost but not corrupted.

Our protocols ensure safety under both asynchronous
and synchronous execution periods. The FLP impossibil-
ity result [6] states that under asynchronous assumptions
consensus cannot be both safe and live. We thus assume
that the system is partially synchronous [7], that is, it is
initially asynchronous and eventually becomes synchronous.
The time when the system becomes synchronous is called
the Global Stabilization Time (GST) [7], and it is unknown
to the nodes. Before GST, there are no bounds on the time
it takes for messages to be transmitted and actions to be
executed. After GST, such bounds exist but are unknown.
After GST nodes are either correct or faulty. A correct node
is operational “forever” and can reliably exchange messages
with other correct nodes. This assumption is only needed
to prove liveness properties about the system. In practice,
“forever” means long enough for one instance of consensus
to terminate.

B. State-machine replication

State-machine replication is a fundamental approach to
implementing a fault-tolerant service by replicating servers
and coordinating client commands among server replicas [1],

[2]. The precise way in which the technique is implemented
depends on the targeted consistency criteria, which in this
paper we assume to be linearizability.

An execution is linearizable if there is a way to reorder its
commands in a sequence that (i) respects the semantics of
the commands, as defined in their sequential specifications,
and (ii) respects the order of non-overlapping commands
across all clients [8]. Linearizability can be contrasted with
sequential consistency, a weaker form of consistency: An
execution is sequentially consistent if there is a way to
reorder the commands in a sequence that (i) respects their
semantics, and (ii) respects the ordering of commands issued
by the same client [8].

In the execution on top of Figure 1, client C2 modifies
the state of a read-write object x and then client C1 reads
a state of x that precedes C2’s update (e.g., by accessing a
replica that has not seen C2’s changes yet). This execution
is not linearizable but it is sequentially consistent. The
execution on the bottom of Figure 1 is both linearizable and
sequentially consistent: C1 is allowed to see a value of x
that precedes C2’s update since the two commands overlap
in time.

Sequential consistent (see Proof) but not linearizable

Read(x) Reply(10)

Write(x,20) Reply(ok)

Client C1

Client C2

Read(x) Reply(20)

time

Reordered
Sequence

(Proof)

Read(x) Reply(10)

Write(x,20) Reply(ok)

Client C1

Client C2

Read(x) Reply(20)

Sequential consistent and linearizable (see Proof)

Reordered
Sequence

(Proof)

Figure 1. Linearizabiliy vs. sequential consistency.

State-machine replication can be implemented as a series
of consensus instances [9]. The i-th consensus instance
decides on the i-th command (or batch of commands) to
be executed by the servers. Consensus is defined by the
primitives propose(v) and decide(v), where v is an arbitrary
value, a command to be executed by the servers. Consensus
guarantees that (i) if a server decides v then some client
proposed v; (ii) no two servers decide different values; and
(iii) if one (or more) non-faulty client proposes a value then
eventually some value is decided by all non-faulty servers.

455



 0

 1

 2

 3

 4

 5

 6

 0  5  10  15  20  25  30  35  40

R
es

p
o

n
se

 t
im

e 
(m

se
c)

Number of clients

SMR
CS

0

2K

4K

6K

8K

10K

CS 1 2 4 8

T
h

ro
u

g
h

p
u

t 
(c

m
d

/s
ec

)

Number of replicas

Figure 2. Client-server (CS) versus state-machine replication with one replica (SMR) executing read-only commands.

With respect to performance, state-machine replication
suffers from two limitations: First, totally ordering com-
mands delays their execution and consequently the response
time experienced by the clients, when compared to a non-
replicated client-server setup. Second, since every replica
contains a full copy of the service state and must receive
every command, limited or no performance improvement
can be expected from adding replicas to the system. Notice
that some performance improvement can be obtained from
a few optimizations. Read commands need not be executed
by all replicas: upon deciding on a read command, only one
server (e.g., randomly assigned) must execute the command
and return the results to the client. Although all servers
must execute update commands, the response from only one
server is sufficient for the clients. Obviously, if the server
assigned to return the results to the client fails, the client
has to retransmit its request. Since fails are (hopefully) rare
events, this is the design we follow in this paper.

Figure 2 compares the performance of a replicated system
to a non-replicated client-server system with a workload
composed of read-only commands only—more details about
these experiments can be found in Sections IV and V. The
graph on the left of Figure 2 shows the response time of the
two systems as the number of clients increases. The differ-
ence between the two curves before saturation (28 clients)
indicates the overhead introduced by replication. The graph
on the right of Figure 2 shows the throughput of the system
as replicas are added. Since the workload is composed of
read operations only, replication can improve throughput
up to four replicas; with eight replicas, the overhead of
simply delivering and discarding read commands prevents
the system from scaling further.

We claim that these are fundamental performance limita-
tions, not implementation specific. State-machine replication
requires commands to be ordered, and ordering commands
is inherently more expensive than directly sending them to
a server. Moreover, the fact that all replicas must deliver all
commands—although not all commands must be executed
by all replicas—limits the attainable performance (see [10]

for a similar argument). In the next section we describe two
mechanisms that address these problems.

III. HIGH PERFORMANCE SMR

Our approach to improving the performance of state-
machine replication addresses its two fundamental limita-
tions: we show how to reduce the response time and how
to increase the throughput of a replicated system. This work
has been conducted in the context of Ring Paxos, a high
throughput total order broadcast protocol. In the following,
we first recall Ring Paxos (Section III-A), and then introduce
each one of our contributions (Sections III-B and III-C).

A. Ring Paxos outline

Ring Paxos is a variation of Paxos [9], optimized for clus-
tered systems. Paxos distinguishes three roles: proposers,
acceptors, and learners. A node can execute one or more
roles simultaneously. In a client-server setup, clients act as
proposers and servers as learners. A value is a command
proposed by a client to be executed by the servers; the
decided value is the next command to be executed. Each
instance of Paxos proceeds in two phases: During Phase
1, the coordinator selects a unique round number c-rnd
and asks a quorum Qa (i.e., any majority) of acceptors
to promise for it. By promising, an acceptor declares that,
for that instance, it will reject any request (Phase 1 or 2)
with round number less than c-rnd. Phase 1 is completed
when Qa confirms the promise to the coordinator. Notice
that Phase 1 is independent of the value, therefore it can
be pre-executed by the coordinator. If any acceptor already
accepted a value for the current instance, it will return this
value to the coordinator, together with the round number
received when the value was accepted (v-rnd).

Once a coordinator completes Phase 1 successfully, it can
proceed to Phase 2. Phase 2 messages contain a value and
the coordinator must select it with the following rule: if
no acceptor in Qa accepted a value, the coordinator can
select any value (i.e., the next client-submitted value). If
however any of the acceptors returned a value in Phase 1,
the coordinator is forced to execute Phase 2 with the value

456



that has the highest round number v-rnd associated to it.
In Phase 2 the coordinator sends a message containing a
round number (the same used in Phase 1). When receiving
such a request, the acceptors acknowledge it, unless they
have already acknowledged another message (Phase 1 or 2)
with a higher round number. Acceptors update their c-rnd
and v-rnd variables with the round number in the message.
When a quorum of acceptors accepts the same round number
(Phase 2 acknowledgement), consensus terminates: the value
is permanently bound to the instance, and nothing will
change this decision. Thus, it is safe for learners to deliver
the value. Learners learn this decision either by monitoring
the acceptors or by receiving a decision message from the
coordinator.

As long as a nonfaulty coordinator is eventually selected,
there is a majority quorum of nonfaulty acceptors, and
at least one nonfaulty proposer, every consensus instance
will eventually decide on a value. A failed coordinator is
detected by the other nodes, which select a new coordinator.
If the coordinator does not receive a response to its Phase
1 message it can re-send it, possibly with a bigger round
number. The same is true for Phase 2, as long as the same
round number is used. If the coordinator wants to execute
Phase 2 with a higher round number, it has to complete
Phase 1 with that round number beforehand. Eventually the
coordinator will receive a response or will suspect the failure
of an acceptor.

Ring Paxos [11] differs from Paxos in a few aspects that
make it more throughput efficient (see Figure 3):

• Acceptors are organized in a logical ring. The coordi-
nator is one of the acceptors. Phase 1 and 2 messages
are forwarded along the ring, each acceptor appends its
decision so that the coordinator, at the end of the ring,
can know the outcome (Step 3 in Figure 3).

• Ring Paxos executes consensus on value IDs: for each
client value, a unique identification number is selected
by the coordinator. Consensus is executed on IDs which
are usually significantly smaller than the real values.

• The coordinator makes use of ip-multicast. It triggers
Phase 2 by multicasting a packet containing the client
value, the associated ID, the round number and the
instance number to all acceptors and learners (Step 2
in Figure 3).

• The first acceptor in the ring creates a small message
containing the round number, the ID and its own
decision and forwards it along the logical ring.

• An additional acceptor check is required to guarantee
safety. To accept a Phase 2 message, the acceptor must
know the client value associated with the ID contained
in the packet.

• Once consensus is reached, the coordinator can inform
all the learners by just confirming that some value ID
has been chosen. The learner will deliver the corre-
sponding client value in the appropriate instance (Step

4 in Figure 3). This information can be piggybacked to
the next ip-multicast message.

Message losses may cause learners to receive the value
proposed without the notification that it was accepted, the
notification without the value, or none of them. Learners
recover lost messages by inquiring other nodes. Ring Paxos
assigns each learner to a preferential acceptor in the ring, to
which the learner can ask lost messages. Lost Phase 1 and
2 messages are handled like in Paxos. The failure of a node
(acceptor or coordinator) requires a new ring to be laid out.

Client
Proposer

Coordinator
Acceptor 1

Acceptor 2  

Acceptor n-f  

Learner 1
Server 1

Phase 2A

Phase 2B

DecisionPhase 2B

ip-multicast

➁

➂

➃

. . .

exec
Cmd

exec
Cmd

Ring
Paxos

➅

Learner m
Server m

. . .
Cmd( ) Reply( )

➀

➄

➀ Client sends command to coordinator
➁ Coordinator ip-multicasts Phase 2A message
➂ Acceptors exchange Phase 2B messages
➃ Coordinator ip-multicasts Decision message
➄ Servers execute command
➅ Servers send command result to client

Figure 3. Ring Paxos in a client-server setup (n acceptors, up to f of
which can fail, and m learners/servers)

B. Speculative execution

The response time experienced by a client of a replicated
service is the result of three activities: (a) proposing and
ordering a command, (b) executing the command at the
servers, and (c) transmitting the response to the client. A
reduction in the duration of any of these activities will
likely decrease response time. However, in the context of
Ring Paxos this is not easy to do since the protocol is
already highly optimized and it seems unlikely that it can
be significantly improved to accommodate high throughput
and lower response time. Moreover, the delay incurred by the
execution of a command and the transmission of its response
is mostly service specific.

We resort to a speculative (or optimistic) strategy which
consists in overlapping part of the ordering protocol (i.e.,
Ring Paxos) with the execution of commands. In Ring
Paxos, a command reaches the servers before its ordering
information (Steps 2 and 4 in Figure 3, respectively). When
a command arrives, it is buffered by the server and only
executed once its order is known. We propose to execute

457



the command immediately after it is received, avoiding
any buffering. In doing so, servers can start processing the
command before its order is confirmed, saving some time.

A server can only respond to a client after it has executed
the command and its order is confirmed. The mechanism is
speculative because it works as long as the order in which
commands arrive at the servers (and thus the order in which
they are executed) is confirmed. In rare occasions (discussed
below) commands may be executed out-of-order. If the order
in which one or more commands were executed is not
confirmed, the server must rollback them and re-execute the
commands in the proper order. Rolling back a command is
service-specific and can be done physically (e.g., by using
an undo log) or logically (e.g., by executing an action that
reverses the effects of the out-of-order command) [12]. We
illustrate logical rollback in Section IV.

Fortunately, in Ring Paxos the order assigned by the
coordinator when a command is ip-multicast is always
confirmed by the acceptors. The only situation in which
the execution order of a command may change is when the
coordinator is replaced by another process (e.g., due to a
crash), a rare event. Lost messages do not cause commands
to be executed out-of-order since each command (or batch
of commands) contains a consensus instance number, which
allows a server to detect missing commands.

We can estimate the improvements expected from specu-
lative execution. Let δ be the time it takes for a client to send
a command to the coordinator and for a server to respond to
the client with its results (Steps 1 and 6 in Figure 3). Assume
further that ∆o is the time needed to order the command
(i.e., the time difference between the first and the second ip-
multicast related to the command) and ∆e is the time needed
to execute the command. Without speculative execution,
the response time expected by a client in the absence of
contention is 2δ + ∆o + ∆e. With speculative execution,
it depends on the values of ∆o and ∆e: if ∆o < ∆e

then response time is 2δ + ∆e; otherwise response time is
2δ+ ∆o. Thus, we can expect an improvement of the order
of min(∆o,∆e).

C. State partitioning

As discussed in Section II-B, a service implemented
by means of state-machine replication has limited or no
scalability at all, as a consequence of server replicas storing
the full service state, and receiving and handling all client
commands. To make the system scalable, we must partition
the service’s state into “sub-states”. If the partitioning is
perfect, that is, all commands access one sub-state or an-
other, but no command accesses two or more sub-states,
then the technique can be trivially implemented: It suffices
to replicate each partition individually, using different and
independent instances of Ring Paxos, and submit client
commands to the appropriate partition.

Some services, however, may not allow perfect partition-
ing. This is the case when a service’s state is partitioned
into sub-states such that some of the commands access
more than one partition. We illustrate this case with an
example. Consider a B-tree service with insert and query
commands—Section IV contains a detailed description of
this service. We can partition the B-tree into sub-trees by
assigning to each sub-tree a non-overlapping key interval
and replicate each sub-tree using state-machine replication.
An insert command is directed to a single replicated sub-
tree. A query command that requests a set of keys within
a certain range may be addressed to a single sub-tree or
to multiple sub-trees, depending on the range and the key
intervals assigned to each sub-tree. If the query command
addresses multiple sub-trees, then it is divided into “sub-
commands”, one for each sub-tree; the client builds the final
response from the results received from each sub-tree. Such
a service, however, cannot be implemented by independent
instances of Ring Paxos, as we now explain.

To understand why, consider the execution on the left
of Figure 4. Under linearizability, this execution cannot
happen since client C3 sees C1’s insert before C2’s, and
C4 sees first C2’s insert before C1’s. If we partition
the B-tree into two independent sub-trees, however, as
in the execution on the right of Figure 4, then clients
may observe a non-linearizable behavior. In this execu-
tion, C3’s and C4’s Query(0, 100) command is composed
of two sub-commands, Query(0, 50) and Query(51, 100).
The problem is that while C3’s Query(0, 50) succeeds
C4’s Query(0, 50) in one partition, C3’s Query(51, 100)
precedes C4’s Query(51, 100) in the other partition, and
thus, C3’s Query(0, 100) neither precedes nor succeeds C4’s
Query(0, 100). To ensure linearizability we must establish a
total order on commands, not on sub-commands that access
a common partition.

We now define state partitioning ordering, a guarantee
needed to ensure that an execution with commands involving
multiple service partitions is linearizable. Let a service state
be decomposed into partitions P1, ..., Pk, each one replicated
and implemented as a series of consensus executions—the
i-th consensus instance decides on the i-th sub-command
of partition Pk. Let command Cx be composed of sub-
commands {cx,i | cx,i is a subcommand of Cx in Pi}. We
define directed graph G = (V,E) such that V contains all
commands Cx in the execution and E contains directed
edges Cx → Cy such that cx,i precedes cy,i in Pi. State
partitioning ordering requires that G be acyclic, that is,
for any two commands Cx and Cy , if cx,i precedes cy,i

in partition Pi, then in no partition Pj , cy,j precedes cx,j ,
where cx,i, cx,j ∈ Cx and cy,i, cy,j ∈ Cy . A consequence of
G being acyclic is that it can be topologically ordered.

We have integrated state partitioning order into Ring
Paxos as follows. First, there is one ip-multicast address
associated with each partition (corresponds to Step 2 in

458



Neither sequential consistent nor linearizable

Query(0,100) Reply({10})

Client C3

Client C4

Reordered
Sequence

(Proof)

Client C2

Client C1

Insert(10)

Insert(75)

Reply(ok)

Reply(ok)

Query(0,100) Reply({75})

Both sequential consistent and linearizable (see Proof)

Client C3

Client C4

Reordered
Sequence

(Proof)

Client C2

Client C1

Insert(10)

Insert(75)

Reply(ok)

Reply(ok)

Query(0,50)

Query(51,100) 

Query(0,50)

Query(51,100) Reply({75})

Reply({10})
Reply(∅)

Reply(∅)

Figure 4. (Left) An non-linearizable execution that cannot happen if a B-tree is replicated with state-machine replication. (Right) How the same execution
can happen if sub-trees of the B-tree are replicated independently.

Figure 3) and one ip-multicast address associated with de-
cisions (corresponds to Step 4 in Figure 3). Differently than
Ring Paxos, we do not piggyback decision messages with
commands. Learners (i.e., servers) listen on the partition
addresses they are interested in and on the decision address.
Acceptors listen on all addresses. A command contains in-
formation about the partitions it accesses. For each partition
accessed by the command, the coordinator ip-multicasts one
Phase 2A message (with the command) using the address
associated with the partition. If a process receives the same
message more than once, it simply discards the duplicates.
When order is established, the coordinator ip-multicasts
the decision message using the decision address. Learners
may receive decision messages for partitions they are not
interested in, in which case they discard the messages.

To conclude, the state partitioning technique improves
the scalability of state-machine replication but it may not
be applicable in some cases or it may impose restrictions
on how the state of a service can be partitioned. Consider
a service whose state contains variables x and y, and a
command that modifies x based on the value of y. In this
case, the service’s state can only be partitioned such that both
x and y belong to the same partition. While this constraint
limits the number of services that can benefit from state
partitioning, we show in the next section that the technique
is general enough to allow the implementation of a highly
available parallel B-tree service.

IV. REPLICATED PARALLEL B-TREES

In this section we illustrate high performance state-
machine replication with a B-tree service. We define the
service’s interface and how it was implemented and opti-
mized using speculative execution and state partitioning.

B-tree service: The B-tree stores (key, value) tuples,
where both key and value are 8-byte integers. Clients
can submit insert, delete and query commands. An insert
command insert(k, val) checks whether an entry with key k

already exists in the tree; if not, (k, val) is included in the
tree. In any case the command returns an acknowledgement.
A delete command delete(k) removes entry with key k, if
existent, and returns an acknowledgement. A query com-
mand query(min,max) returns all entries (k, val) such that
min ≤ k ≤ max.

Fully replicated B-tree: In order to tolerate server
failures we replicate the B-tree service using state-machine
replication. Client commands are linearizable and submitted
to the servers by means of Ring Paxos. Insert and delete
commands are received and executed by all operational
servers, but only one server (randomly chosen by the client)
responds. A query command is received by all operational
servers and executed by a single server, randomly chosen
by the client. If a client does not receive the response for a
command after some time it resubmits the command.

Speculative execution: To reduce the response time
experienced by clients we use speculative execution. Since
queries do not change the state of the tree, there is no state to
be rolled back in case of commands delivered out-of-order.
Inserts and deletes are executed against the B-tree as soon
as they are received. To roll back a successful insert(k, val),
the server executes a delete(k)—there is nothing to roll back
if the insert fails because the key already exists. A delete(k)
is rolled back by re-inserting the value removed.

State partitioning: We divide the state of the B-tree in
partitions such that each partition is responsible for a range
of keys (i.e., range partitioning). A command that accesses
more than one partition is broken into sub-commands by the
client (i.e., by a client replication library) and submitted to
each concerned partition. Responses received from multiple
partitions are merged at the client. Key ranges are of the
same size, but depending on the keys included in and deleted
from the B-tree, partitions may become unbalanced. We do
not currently address this problem, but it is part of our
ongoing work. We are considering techniques to repartition
the key space on-the-fly to keep partitions balanced.

459



0.8K
1.6K
2.4K
3.2K

4K

 0  50  100  150  200

Queries (single)

SMR
CS

10K
20K
30K
40K
50K

 0  50  100  150  200

T
h

ro
u

g
h

p
u

t 
(c

m
d

/s
ec

)

Ins/Del (single)

0.1K
1K

10K
100K

1M

 0  50  100  150  200

Number of clients

Ins/Del (batch)

 0
 1
 2
 3
 4
 5
 6

 0  50  100  150  200

Queries (single)

SMR
CS

 0
 1
 2
 3
 4
 5
 6

 0  50  100  150  200

R
es

p
o

n
se

 t
im

e 
(m

se
c)

Ins/Del (single)

 0
 1
 2
 3
 4
 5
 6

 0  50  100  150  200

Number of clients

Ins/Del (batch)

Figure 5. State-machine replication (SMR) versus client-server (CS) under three workloads. (Left) Throughput versus number of clients—notice the
different throughput scales, one of which is logarithmic. (Right) Response time versus number of clients.

1K

10K

100K

1M

CS 1 2 4 8

T
h

ro
u

g
h

p
u

t 
(c

m
d

/s
ec

)

Number of servers

 0

 1

 2

 3

 4

 5

 6

CS 1 2 4 8

R
es

p
o

n
se

 t
im

e 
(m

se
c)

Number of servers

Queries (single)
Ins/Del (single)
Ins/Del  (batch)

Figure 6. State-machine replication with increasing number of replicas versus client-server. (Left) Maximum throughput versus number of servers (y-axis
in log scale). (Right) Response time versus number of servers.

V. PERFORMANCE EVALUATION

In this section we assess the performance of our replicated
B-tree. We consider executions in the presence of message
losses and in the absence of process failures. Process failures
are hopefully rare events; message losses happen relatively
often because of high network traffic.

A. Experimental setup

We ran the experiments in a cluster of Dell SC1435
servers equipped with 2 dual-core AMD-Opteron 2.0 GHz
CPUs and 4GB of main memory. The servers are intercon-
nected through an HP ProCurve2900-48G Gigabit switch
(0.1 msec of round-trip time). Each experiment (i.e., point
in the graph) is obtained over a 60-second run out of which
the first and the last 10 seconds are discarded. Clients and
servers run in different nodes. Each client runs in a closed
loop with a random think time in the range of 0–10 msec.

In all experiments the B-tree is initialized with 12 million
entries. Client commands are messages with 256 bytes;
responses are 8 Kbytes for ranges and 256 bytes for inserts

and deletes. We consider three workloads: (a) each client
command is a query with range of 1000 keys; (b) each
client command is an insert or a delete—hereafter we refer
to inserts and deletes as updates; (c) each client command
is composed of seven batched updates (which is what fits
in a 256-byte message). Additionally, in workload (c) Ring
Paxos batches client messages in bigger packets (8 Kbytes)
to improve throughput.

B. The cost of replication

Our first set of experiments evaluate the costs of state-
machine replication (SMR) with respect to a non-replicated
client-server (CS) setup (see Figures 5 and 6). For queries
and batched updates, replication does not introduce a cost in
throughput. In these cases, the executions are CPU-bound.
For single updates, the replicated setting cannot reach the
same throughput as a client-server configuration because the
execution of the former is limited by the maximum number
of instances per second that can be run by Ring Paxos. In
all cases, however, replication imposes a cost in response

460



1K

2K

3K

4K

5K

6K

7K

8K

9K

 0  20  40  60  80  100  120  140  160

Queries (single)
T

h
ro

u
g

h
p

u
t 

(c
m

d
/s

ec
)

Speculative
SMR

50K

100K

150K

200K

250K

300K

 0  50  100  150  200  250  300  350  400

Number of clients

Ins/Del (batch)

Speculative
SMR

 0

 1

 2

 3

 4

 5

 6

 0  20  40  60  80  100  120  140  160

Queries (single)

R
es

p
o

n
se

 t
im

e 
(m

se
c)

 0

 1

 2

 3

 4

 5

 6

 0  50  100  150  200  250  300  350  400

Number of clients

Ins/Del (batch)

Figure 7. Speculative execution improvement on state-machine replication with 4 replicas. (Left) Throughput improvement versus number of servers.
(Right) Resp. time improvement versus number of servers.

2K

3K

4K

5K

6K

7K

8K

9K

 0  20  40  60  80  100  120  140  160  180  200

Queries (single)

T
h

ro
u

g
h

p
u

t 
(c

m
d

/s
ec

)

Speculative
SMR

50K

100K

150K

200K

250K

300K

 0  50  100  150  200  250  300  350  400

Number of clients

Ins/Del (batch)

Speculative
SMR

 0

 1

 2

 3

 4

 5

 6

 0  20  40  60  80  100  120  140  160  180  200

Queries (single)
R

es
p

o
n

se
 t

im
e 

(m
se

c)

 0

 1

 2

 3

 4

 5

 6

 0  50  100  150  200  250  300  350  400

Number of clients

Ins/Del (batch)

Figure 8. Speculative execution improvement on state-machine replication with 8 replicas. (Left) Throughput improvement versus number of servers.
(Right) Resp. time improvement versus number of servers.

time, as shown by the graphs in right column of Figure 5.
Response time for few clients with batched updates in the
replicated setting is high because with low load Ring Paxos
packets are sent due to timeouts; the effect disappears as
clients are added and messages are sent as soon as an 8-
Kbyte packet is full.

Adding replicas can help improve the throughput of read-
only commands, as shown by the left bar on the left graph
in Figure 6. For update commands, no improvement in
throughput is possible since all replicas must be involved
in the operations, even if only to receive the commands in
the right order, as discussed in Section II-B. Figure 6 also
shows the corresponding response times, with the highest
values for all replicated experiments.

C. Speculative execution

We report our assessment of speculative execution with
configurations with 4 and 8 servers using the queries work-
load and the batched updates workload (see Figures 7 and 8).
In all scenarios speculation reduces response time with
respect to state-machine replication, although the results are
more visible with batched updates. By reducing response
time, the technique also proportionally improves throughput,
a direct consequence of Little’s law [13]. We also conducted
experiments with 1 and 2 servers, with similar results [5].

D. State partitioning

To assess the state partitioning strategy, we consider
two configurations, one with the B-tree state divided into
two partitions and the other with the B-tree state divided
into four partitions (labels “2 P” and “4 P” in Figure 9,

461



1K

5K

10K

20K

100K

300K
500K
800K

Queries Ins/Del (batch)

T
h

ro
u

g
h

p
u

t 
(c

m
d

/s
ec

)

1X

2.1X

3.9X

1X

1.8X
2.6X

 0

 1

 2

 3

 4

 5

 6

Queries Ins/Del (batch)

R
es

p
o

n
se

 t
im

e 
(m

se
c)

SMR
2 P
4 P

Figure 9. State partitioning (2 and 4 partitions) versus state-machine replication for queries and batched updates with no cross-partition commands. (Left)
Throughput (y-axis in log scale) with improvement over SMR versus command type. (Right) Response time versus command type.

0

4K

8K

12K

16K

20K

 0  50  100  150  200  250

T
h

ro
u

g
h

p
u

t 
(c

m
d

/s
ec

)

Number of clients

0 %
25 %
50 %
75 %

100 %
 1

 2

 3

 4

 5

 6

 0  50  100  150  200  250

R
es

p
o

n
se

 t
im

e 
(m

se
c)

Number of clients

Figure 10. Effects of cross-partition queries in state partitioning. (Left) Throughput versus number of clients. (Right) Response time versus number of
clients.

respectively); in both configurations each partition has two
replicas. In executions with cross-partition query commands,
a cross-partition query accesses two partitions, regardless the
number of existing partitions.

The graph on the left of Figure 9 shows that for queries,
the throughput increases by a factor of 2.1 from SMR to
two partitions, and by a factor of nearly four from SMR
to four partitions. The improvement on batched updates
is not as remarkable as on queries, although the system
throughput increases by factors of 1.8 and 2.6 for two and
four partitions, respectively. The graph on the right of the
figure shows that such an increase in throughput does not
incur in significant changes in response time with respect to
SMR. Although these experiments were run using no cross-
partition queries, this is not the most favorable setup for
state partitioning, as we show next.

Figure 10 considers the effects of cross-partition queries
in the state partitioning technique with two partitions in an

execution with query commands. The graphs show that for
lower load (i.e., 100 clients) there is almost no difference
in throughput and response time between different configu-
rations. For higher loads, configurations with 50% and 75%
of cross-partition queries reach higher throughputs. In fact,
the lowest throughput and highest response time is obtained
with a configuration without cross-partition queries. To un-
derstand why, we must look at how servers are implemented
and how the CPU is used in a server.

Each server is implemented by three threads: one that
receives commands, one that executes them, and one that
responds to clients. Each thread is assigned a different pro-
cessor. Figure 11 shows the threads responsible for execution
and responses; the thread that receives commands has low
CPU load and therefore is not shown in the graph. While
in configurations with no cross-partition queries, 98% of the
processor for command execution is used, in configurations
with 25% and 100% of cross-partition queries, the processor

462



for command execution and response is 95% used. Finally,
in configurations with 50% and 75% of cross-partition
queries, the processors are used less than 90%. The 50%
configuration has slightly higher throughput than the 75%
configuration because it uses less bandwidth.

 0

 20

 40

 60

 80

 100

0 25 50 75 100

C
P

U
 (

%
)

% of cross-partition queries

Execution
Response

Figure 11. CPU utilization for the experiments in Figure 10.

The reason for the execution processor use to decrease
with the increase in the number of cross-partition queries is
that a cross-partition query is “cheaper” to execute than a
single-partition query since it processes fewer elements in
the B-tree. However, the response processor use increases
with the number of cross-partition queries because a cross-
partition query is split into two queries (and thus there are
more queries) and servers respond to queries with fixed-size
messages, regardless the amount of information contained
in the message.

E. Combining speculative execution and state partitioning

Our final set of experiments considers the combined
effects of speculative execution and state partitioning. Fig-
ure 12 shows the relative improvements of the specula-
tive execution technique over state-machine replication with
state partitioning for different percentages of cross-partition
queries. For example, without cross-partition queries (left-
most bar in both graphs), speculative execution reduces the
response time obtained with state partitioning by 16% and
increases the throughput by 5%. In all configurations the
technique is effective in that it decreases response time,
with minor improvements in throughput. The reason for the
improvement to decrease with the number of cross-parition
queries is that the execution time in a server of a cross-
partition query is smaller than the execution time of a single-
partition query, as explained above. Therefore, the window
of opportunity for speculative execution is narrower (cf. last
paragraph in Section III-B).

VI. RELATED WORK

State-machine replication is a well established replication
technique, which has been extensively discussed in the

literature. In the following we focus on work related to the
two optimizations we presented, speculative execution and
state partitioning, and to parallel B-trees.

Optimistic or speculative execution has been suggested
before as a mechanism to reduce the latency of agreement
problems. For example, in [14], [15] clients are included
in the execution of the protocol to reduce the latency of
Byzantine fault-tolerant agreement. In [3], [4] the authors
introduce atomic broadcast with optimistic delivery in the
context of replicated databases. The motivation is similar to
ours: overlapping the execution of transactions or commands
with the ordering protocol. Optimistic delivery relies on
spontaneous ordering of messages, typical in local-area
networks. The property holds in the absence of contention.
If too many commands are submitted simultaneously, then
out-of-order deliveries can happen more frequently and the
technique becomes less interesting. Ring Paxos can use
speculative execution under high contention as it does not
depend on spontaneous message ordering.

Partitioning the state of a replicated service is conceptu-
ally similar to partial replication of databases [16]. Partial
database replication addresses scalability issues identified
in fully replicated databases. Several partial database repli-
cation protocols have been proposed, some optimized for
local-area networks (e.g., [17], [18], [19], [20]) and some
topology-agnostic (e.g., [21], [22], [23], [24]). Partitioning
the state of a replicated service differs from partially replicat-
ing a database with respect to the granularity of the data and
the consistency criterion. Databases are usually organized
as collections of data items. Partitioning such a state is
simpler than partitioning the state of a service, which may
not have been designed with partitioning as a goal. With
respect to consistency, the two main consistency criteria
used in replicated databases are one-copy serializability [25]
and a generalized form of snapshot isolation [26], [27].
These criteria do not take real-time dependencies between
operations into account and therefore admit more efficient
implementations than linearizability. To a certain extent,
making a partially replicated database scale is “easier” than
scaling a linearizable replicated service.

Ring Paxos equipped to implement the state partitioning
technique resembles an atomic multicast protocol [28]. In
fact, our state partitioning ordering is inspired by the acyclic
order property of atomic multicast [16]. To the best of
our knowledge, however, no previous work has explored
multicast communication in the Paxos family of protocols,
and no speculative or optimistic multicast protocol has been
proposed so far.

The closest work to our B-tree service is [29], where
the authors implement and evaluate a distributed B+Tree
build on top of Sinfonia [30]. Sinfonia is a distributed,
fault-tolerant storage engine that offers a low-level address
space in which application processes can store their data.
Sinfonia offers a minitransaction interface to its clients.

463



 0

 5

 10

 15

 20

0 25 50 75 100

T
h

ro
u

g
h

p
u

t 
in

cr
ea

se
 (

%
)

Percentage of cross-partition queries

 0

 5

 10

 15

 20

0 25 50 75 100

R
es

p
o

n
se

 t
im

e 
d

ec
re

as
e 

(%
)

Percentage of cross-partition queries

Figure 12. Improvements of speculative execution on state partitioning. (Left) Throughput increase versus percentage of cross-partition queries. (Right)
Response time decrease versus percentage of cross-partition queries.

Minitransactions are short-lived operations similar to a gen-
eralized compare-and-swap operation. The authors exploit
the flexibility offered by Sinfonia to implement a scalable
B+Tree. As an optimization, inner nodes are replicated on all
Sinfonia client nodes. On the one hand this allows nodes to
traverse a tree locally, without contacting any other node; on
the other hand, all nodes must be involved in the update of
inner nodes. Sinfonia relies on stronger system assumptions
than the ones assumed in this paper. This is due to the use of
a two-phase commit protocol to terminate minitransactions.

VII. CONCLUSIONS

This paper revisits state-machine replication from a per-
formance perspective. State-machine replication is a well-
known approach to rendering services fault tolerant. The
idea is to fully replicate the service state on several servers
and execute every client command in every nonfaulty server
in the same order. Although some optimizations for per-
formance are possible, inherently the technique introduces
an overhead in service response time and is limited by the
throughput of a single server. To mitigate these drawbacks,
we have considered speculative execution and state parti-
tioning.

Our experiments with speculative execution show that
while the technique can reduce the response time of a
replicated service, the improvement is limited in that the
resulting service’s response time remains quite larger than
the response time of a client-server setup. One question
for further investigation is whether there are other ways
to exploit speculation to reduce response time further. For
example, currently, a server waits until the order in which
a command was executed is confirmed to reply to the
client. Servers could respond to a client immediately after
a command is executed, even if its order confirmation has
not been received, and notify the client later with a short
message once order is established. This mechanism would

overlap both the command execution and its response with
the ordering protocol.

State partitioning has shown remarkable results. In some
cases, the throughput of a service improved by a factor
or nearly four after partitioning its state. Experiments have
also shown that the two techniques can be combined with
improvements on both throughput and response time. Our
plans for the future are to investigate the generality of
the state partitioning technique and better characterize the
space in which it can be used. We also intend to investigate
mechanisms to guarantee (quasi)-balanced B-trees.

VIII. ACKNOWLEDGEMENTS

We wish to thank the anonymous reviewers for their
comments. This work was partially funded by the Swiss
National Science Foundation (#200021-121931) and by the
Hasler Foundation (#2316).

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, 1978.

[2] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: A tutorial,” ACM Computing
Surveys, vol. 22, no. 4, pp. 299–319, 1990.

[3] R. Jiménez-Peris, M. Patiño Martı́nez, B. Kemme, and
G. Alonso, “Improving the scalability of fault-tolerant
database clusters,” in Proceedings of the 22 nd International
Conference on Distributed Computing Systems (ICDCS’02),
2002.

[4] B. Kemme, F. Pedone, G. Alonso, and A. Schiper, “Pro-
cessing transactions over optimistic atomic broadcast proto-
cols,” in Proceedings of the 19th International Conference on
Distributed Computing Systems (ICDCS’99), Austin (USA),
1999.

464



[5] P. J. Marandi, M. Primi, and F. Pedone, “High performance
state-machine replication,” University of Lugano, Tech. Rep.
2010/08, December 2010.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty processor,” Journal
of the ACM, vol. 32, no. 2, pp. 374–382, 1985.

[7] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,” Journal of the ACM, vol. 35,
no. 2, pp. 288–323, 1988.

[8] H. Attiya and J. Welch, Distributed Computing: Fundamen-
tals, Simulations, and Advanced Topics. Wiley-Interscience,
2004.

[9] L. Lamport, “The part-time parliament,” ACM Transactions
on Computer Systems, vol. 16, no. 2, pp. 133–169, May 1998.

[10] R. Jimenez-Peris, M. Patino-Martinez, G. Alonso, and
B. Kemme, “Are quorums an alternative for data replication?”
ACM Transactions on Database Systems, vol. 28, no. 3, pp.
257–294, 2003.

[11] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring
Paxos: A high-throughput atomic broadcast protocol,” in
Dependable Systems and Networks (DSN), 2010 IEEE/IFIP
International Conference on, 2010, pp. 527 –536.

[12] G. Weikum and G. Vossen, Transactional Information Sys-
tems: Theory, Algorithms, and the Practice of Concurrency
Control and Recovery. Morgan Kaufmann, 2002.

[13] R. Jain, The art of computer systems performance analysis :
techniques for experimental design, measurement, simulation,
and modeling. New York: John Wiley and Sons, Inc., 1991.

[14] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative byzantine fault tolerance,” in Proceed-
ings of twenty-first ACM SIGOPS symposium on Operating
systems principles, ser. SOSP ’07. New York, NY, USA:
ACM, 2007, pp. 45–58.

[15] B. Wester, J. Cowling, E. B. Nightingale, P. M. Chen, J. Flinn,
and B. Liskov, “Tolerating latency in replicated state machines
through client speculation,” in Proceedings of the 6th USENIX
symposium on Networked systems design and implementation,
2009, pp. 245–260.

[16] N. Schiper, “On multicast primitives in large networks and
partial replication protocols,” Ph.D. dissertation, University
of Lugano, 2009.

[17] C. Coulon, E. Pacitti, and P. Valduriez, “Consistency manage-
ment for partial replication in a high performance database
cluster,” in Proceedings of the 11th International Conference
on Parallel and Distributed Systems (11th ICPADS’05), vol. 1,
Jul. 2005, pp. 809–815.

[18] A. de Sousa, R. C. Oliveira, F. Moura, and F. Pedone, “Partial
replication in the database state machine,” in NCA. IEEE
Computer Society, 2001, pp. 298–309.

[19] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-JDBC:
Flexible database clustering middleware,” in Proc. of USENIX
Annual Technical Conference, Freenix track, 2004.

[20] N. Schiper, R. Schmidt, and F. Pedone, “Optimistic al-
gorithms for partial database replication,” in Principles of
Distributed Systems, 10th International Conference OPODIS,
vol. 4305. Springer, 2006, pp. 81–93.

[21] U. Fritzke and P. Ingels, “Transactions on partially replicated
data based on reliable and atomic multicasts,” in Proceedings
of the The 21st International Conference on Distributed
Computing Systems, 2001, pp. 284–.

[22] N. Schiper, P. Sutra, and F. Pedone, “P-store: Genuine partial
replication in wide area networks,” in Symposium on Reliable
Distributed Systems (SRDS), 2010.

[23] D. Serrano, M. Patiño-Martı́nez, R. Jiménez-Peris, and
B. Kemme, “Boosting database replication scalability through
partial replication and 1-copy-snapshot-isolation,” in PRDC.
IEEE Computer Society, 2007, pp. 290–297.

[24] ——, “An autonomic approach for replication of internet-
based services,” in Symposium on Reliable Distributed Sys-
tems (SRDS’2008). IEEE, 2008, pp. 127–136.

[25] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
1987.

[26] S. Elnikety, F. Pedone, and W. Zwaenepoel, “Database repli-
cation using generalized snapshot isolation,” in Symposium
on Reliable Distributed Systems (SRDS’2005), Orlando, USA,
2005.

[27] Y. Lin, B. Kemme, R. Jiménez-Peris, M. Patiño-Martı́nez,
and J. E. Armendáriz-Iñigo, “Snapshot isolation and integrity
constraints in replicated databases,” ACM Trans. Database
Syst., vol. 34, no. 2, 2009.

[28] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast
and multicast algorithms: Taxonomy and survey,” ACM Com-
put. Surv., vol. 36, no. 4, pp. 372–421, 2004.

[29] M. K. Aguilera, W. M. Golab, and M. A. Shah, “A practical
scalable distributed B-tree,” PVLDB, vol. 1, no. 1, pp. 598–
609, 2008.

[30] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis, “Sinfonia: a new paradigm for building
scalable distributed systems,” in SOSP ’07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems
principles, 2007, pp. 159–174.

465


