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Supplementary Material

This document provides the following supplementary contributions:

• Additional details regarding the ImageNet experiment (see Section 1).

• Detailed derivations for the gradient term depending on the decision tree splits (see Section 2).

• The proof that our update rule for the leaf predictions π in Equ. (11) of our main ICCV paper monotonically decreases
the risk R until a fixed point is reached (see Section 3).

1. ImageNet experiment: GoogLeNet vs. dNDF.NET architectures
This section provides additional description for the ImageNet experiment [3]. In particular, we describe and illustrate

the changes we made to GoogLeNet [4] to obtain our proposed dNDF.NET architecture, using deep neural decision forests
(dNDFs) as classifiers. The GoogLeNet architecture we have used as basis for our experiments (see left illustration in Fig. 1,
taken from [4]) has a reported Top5-Error of 10.07%, when used in a single-model, single-crop setting (see first row in Tab. 3
of [4]).

Fig. 1 (right illustration) shows that we have introduced two different modifications with respect to the original GoogLeNet
architecture. First, we have connected the outputs of the Concat layers to the inputs of the AveragePool layers (as described
in the main paper), visualized by red arrows in the plot. The resulting, modified baseline network is dubbed GoogLeNet? and
achieves a Top5-Error of 10.02% when using conventional SoftMax layers as in the original network. The implementation
yielding this score was realized in the Distributed (Deep) Machine Learning Common (DMLC) library [2, 1]1, using resized
images with dimensionality 100x100 as described in [2]. The training used the standard settings for GoogLeNet, stochastic
gradient descent with 0.9 momentum, fixed learning rate schedule, decreasing the learning rate by 4% every 8 epochs. We
trained GoogLeNet? with mini-batches composed of 50 images.

In order to obtain a Deep Neural Decision Forest architecture coined dNDF.NET, we have replaced each Softmax layer
from GoogLeNet? with a forest consisting of 10 trees (each fixed to depth 15), resulting in a total number of 30 trees. For our
architecture, which we implemented in DMLC as well, we trained the network for 1000 epochs using mini-batches composed
of 100.000 images. This is feasible due to distribution of the computational load to a cluster of 52 CPUs and 12 hosts, where
each host is equipped with a NVIDIA Tesla K40 GPU.

We refer to the individual forests as dNDF0, dNDF1 and dNDF2, where dNDF0 is closest to the input layer and dNDF2 is
the final (last) layer in the architecture. Each tree is a balanced and fixed depth 15 tree, which means that the total number of
per-tree split nodes is 215 − 1 = 32.767 and the number of leaf nodes is 215 = 32.768.

1https://github.com/dmlc/cxxnet.git



Figure 1. Left: Original GoogLeNet architecture proposed in [4]. Right: The modifications we brought to the GoogLeNet architecture
resulting in dNDF.NET – our proposed model using dNDFs as final classifiers. Best viewed with digital zoom.

2. Split function gradient term derivations
Given the definitions for our split decision functions dn(x; Θ) and the log-loss L(Θ,π;x, y) (see Equ. (3) and Equ. (6) in

the main paper, respectively), we can derive the gradient term in Equ. (9) of the main paper as follows:
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By substituting the latter in the previous formula we get
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3. Proof of update rule for π
Theorem 1. Consider a tree with parameters Θ and π and let
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where Z` is the normalizing factor ensuring that π̂` = (π̂`y)y∈Y is a probability distribution. In other terms, we assume π̂`y
to be the result of an update step as per (11) of our ICCV contribution. The following holds:

R(Θ,π; T ) ≥ R(Θ, π̂; T )

with equality if and only if π̂ = π, where R is the risk defined in (5) of our ICCV contribution, and π = (π`)`∈L.

Proof. Consider the following auxiliary function:
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and PT [y|x,Θ,π] is defined as per (1) of our ICCV contribution. Note that φ(π,π) = R(Θ,π; T ) holds for any π, for
the logarithm term in φ nullifies. Moreover, φ(π,π) ≥ R(Θ,π; T ) holds for any π and π. This can be seen by applying



Jensen’s inequality and with few algebraic manipulations:
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We can now show that π̂ is a global minimizer of φ(·,π) for any value of π. We start rewriting π̂ in terms of ξ` as follows:
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where Z` is the normalizing factor. Then, we have that
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holds for all values of π, where DKL(·‖·) is the Kullback-Leibler divergence. Note that the last inequality yields equality
if and only if π̂ = π, for the Kullback-Leibler divergence yields zero if and only if the two distributions in input coincide.
Accordingly, π̂ is a strict global minimizer of φ(·,π) for any π.

As a consequence of the previous derivations we have

R(Θ,π; T ) = φ(π,π) > φ(π̂,π) ≥ R(Θ, π̂; T ) ,

where equality holds if and only if we have a fixed point of the update rule (12), i.e. if π̂ = π.
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