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Abstract — We consider a team selection problem that requires to hieara of individuals that
maximizes a profit function defined as difference of thetytidf production and the cost of hiring. We
show that for any monotone submodular utility of productasnd any increasing cost function of the
team size with increasing marginal costs, a natural grelegyithm guarantees — log(a)/(a — 1)—
approximation whem < e and al — a/e(a — 1)—approximation when > e, whereq is the ratio of
the utility of production and the hiring cost of a profit-manzing team selection. We also consider the
class of test-score algorithms for maximizing a utility ebguction subject to a cardinality constraint,
where the goal is to hire a team of given size based on greamgashusing individual test scores. We
show that the existence of test scores that guarantee aaobifisttor approximation is equivalent to
the existence of special type of test scores — so calledcegjan test scores. A set of sufficient con-
ditions is identified that implies the existence of repiicattest scores that guarantee a constant-factor
approximation. These sufficient conditions are shown tal il a large number of classic models of
team production, including a monotone concave functiorot#l tproduction, best-shot, and constant
elasticity of substitution production function. We als@gent some results on the performance of dif-
ferent kinds of test scores for different models of team pobidn, and report empirical results using
data from a popular online labour platform for software depment.

Keywords: Online Services, Online Marketplaces, Social Sciencedustrial Organization, Team
Performance, Submodular Functions

1 Introduction

The performance of teams has been one the most central tfgtsdy in areas such as organization
science, industrial organization, theory of firms, managetinsciences, social psychology, and has
recently received much attention in the context of onlim®la platforms; for example, in the context of
competition-based crowdsourcing platforms where sahstio tasks are derived by aggregating inputs
from multiple online workers, or in the context of paid-laiv@nline marketplaces for matchmaking
between tasks and independent contractors.

A standard model of team performance defines actual pradlyati a team of individuals as differ-
ence of gotential productivityand aprocess los§Ste72]. Here, the potential productivity is the highest
level of performance attainable by a team and the procesedaxise due to various factors including
motivational lossandcoordination loss Motivational losses can arise if individual objectives aot
aligned with that of the team objective. Coordination lossesur when individuals fail to organize
their efforts optimally as a team. The decrease in indiMigéifart that occurs when an individual works
within a group is often referred to a®cial loafingin psychology, e.g., [KM86], [LWH79], [Muel2]
and [SMF12]. One key question studied in literature is aloptimal team size [LN81]. A review
of the literature on team performance in organizations avipied in [GS92]. Several books provide
valuable insights on the team performance, e.g., [Pag@/[M15].

A key issue is the problem of team selection for solving a mitesk. In this paper, we study a
formulation of ateam selection problemefined as follows. Suppose that given a set of individuals
N = {1,2,...,n}, the actual productivity of a team of individuats C N is given by a function
p(S) = u(S) — ¢(9), whereu(S) denotes the utility of production andS) denotes a cost function.
We may interprep(S) as a profit to a principal realized by hiring a tedin defined as difference
of the utility of production and the team hiring cost. Thenteaelection problem asks to select a
set of individualsS* that maximizes the profit function, i.e. finding a set of indials S* such that



p(S*) > p(9), for everyS C N. We will sometimes also refer to this problem gsrafit maximization
problem We shall consider instances where the cost function isa@easing function of the team size;
this accommodates many interesting cases, e.g., the casknefar costwhere a constant marginal
cost is incurred per each team member, or the casecafdinality constraintwhere the cost of hiring
any given team is equal to zero as long as the team size isegritadin or equal to given cardinality
constraint, and is infinite otherwise.

We shall consider the class of utility functions that are -negative, monotone submodular set
functions, and the class of cost functions that are funstwfithe team size with increasing marginal
costs. The class of non-negative, monotone submoduldy dtihctions accommodates diminishing-
returns production systems, where the marginal gain oéasing a team size diminishes with the team
size. For some of our results, we shall consider a utilityrofipiction according to stochastic model of
team productiondefined as the expected value of a given mapping of indiVjglerdormances to a team
performance output, where the individual performancesratependent random variables with given
cumulative distribution functions; this model of team puotion was originally introduced by [KR15]
and is in the spirit of team performance according to a gdézech Thurstone model [Thu27], e.g.,
used by popular rating systems such as TrueSkill [GMHO7]d&srthe given assumptions, the team
selection problem asks to maximize a submodular functiat) th general, is an NP-hard problem.

In this paper, we consider two types of approximation atpans for the team selection problem.
We consider a natural greedy algorithm that sequentiatgshndividuals based on greedy choices with
largest marginal profit as long as this is beneficial. For daart selection problem with a cardinality
constraint, we consider test-score algorithms that saltzam of a given size that consist of individuals
with largest individual test scores. The individual tesbres are computed for each individual by
performing a test of some kind, e.g., this could be an ingewfor a job applicant, a screening survey
in an online labour platform such as Upwork or TopCoder, or@miasion test such as SAT or GRE
used for college or graduate school admissions.

Summary of Main Contributions We characterize the approximation ratio of the greedy &lgor
for the team selection problem for arbitrary cost functidrire team size with increasing marginal
costs. This approximation ratio is parametrized with thepeeters > 1, which is equal to the ratio of
the utility of production and the cost of a profit-maximizisglution, and is as given here

log(a) a

when a<e and 1— —— when a>e.

1
a—1 e(a—1)

The special case of the team selection problem with a cdityimanstraint is a limit case as the
value of parametet goes to infinity: in this limit case, our approximation ratioincides with known
approximation ratio of valu¢ — 1 /e for the problem of maximizing a non-negative monotone suthmo
ular set function. Our result extends the previously bestkn approximation guarantee of the greedy
algorithm by [FIMN213], which is restricted to the speciakeaof linear cost functions. The result is
obtained using a novel proof, which allows to study the cdselmtrary increasing cost functions with
increasing marginal costs.

For the team selection problem with a cardinality constraire show several new results on the
approximation guarantees of team-score algorithms. Wk gshat the existence of test scores that
guarantee a constant-factor approximation is equivatetiitet existence of special type of test scores —
we refer to ageplication test scoresFor a given team production function, the replication tesire
of an individual is defined as the expected team productiopudwf a team consisting of independent



replicas of the given individual. The result implies thatemhsearching for good test scores that guar-
antee a constant-factor approximation for the team selegtioblem, it suffices to restrict attention to
replication test scores. We identify a set of sufficient ¢oods for replication test scores to guarantee
a constant-factor approximation for a given team selegtiablem; specifically, we show that these
sufficient conditions guaranteel@9 approximation. These sufficient conditions are shown todse v
fied for a large set of special instances of stochastic madééam production, including best-shot and
constant elasticity of substitution production functipdsfined in Section 3. We evaluate performance
of team-score algorithms using data about individual perémnces as observed in a popular platform
for software development.

The paper is structured as follows. Section 2 provides audsgon of related work. Section 3
introduces notation, problem definition, and a cataloguexainples of production functions used as
running examples throughout the paper. Section 4 predemtsaproximation guarantee of the greedy
algorithm. Section 5 introduces test-score algorithmspaedents results on their approximation guar-
antees. Section 6 contains our experimental results. li#zima¢ conclude in Section 7.

2 Related Work

The celebrated result by [NWF78] established that for mazimgi a hon-negative monotone sub-
modular set function subject to a cardinality constraing greedy algorithm guaranteed a 1/e-
approximation of the optimal solution. This factor has bekown to be optimal for the value oracle
model where an algorithm only has access to the value of thetiin for each given subset of the
ground set and if only a polynomial number of queries is aldyNW78], [Fei98] and [KLMMO8].

The problem of maximizing a non-negative monotone subnavdset function has been subse-
guently studied for different types of constraints. [Voh&Bowed that for a submodular welfare prob-
lem, defined as maximizing a sum of monotone submodulatyufilnctions subject to a matroid con-
straint, a greedy algorithm guaranteels-al/e — o(1)-approximation of the optimal solution. [AG12]
showed that for linear packing constraims:(S) < b, whereA € [0,1]™*", b € [1,00)™, and
r(S) = 1if i € S andz;(S) = 0 otherwise, there exists @(1/m!/")-approximation algorithm,
whereWW = min{b;/A;; : A;; > 0} is the width of the packing constraints; this implies a canst
factor approximation when the number of constraints is t@rsor when the width of the constraints
is sufficiently large.

More recent work studied efficient algorithms for maximgenon-negative monotone submodular
set function subject to different types of constraints. [BYfound fast algorithms for maximizing a
non-negative monotone submodular set funcfior2” — R subject to different types of constraints.
In particular, for the problem with a cardinality constraithey found anl — 1/e — e-approximation
algorithm that use®)(* log “) queries; note that standard greedy algorithm requiresaads®?(nk)
queries, for the cardinality of value Further results in this direction were established by [B5S1
[BMKK14] have found a one-pass streaming algorithm for mazing a monotone submodular set
function subject to a cardinality constraint that guarestal /2 — e-approximation using a memory of
sizeO(klog(k)/e) and a running time of valu@(n log(k)/¢), for an arbitrary constant> 0.

The problem of maximizing a non-negativen-monotonesubmodular set function subject to
a cardinality constraint has been studied by several asitfpiNS11] have found am/e — o(1)-
approximation algorithm when the number of items in the Botuis within given cardinality con-
straint. [Mon09] have found &/4 — o(1)-approximation algorithm for the case when the number of
items in the solution is required to be exactly equal to themicardinality constraint. [BFNS14]



Table 1: Approximation results for the profit maximizatiamplem.

| Utility function |  Cost function | Algorithm | Approximation ratio |
monotone submodularcardinality constraint greedy — é [NW78]
monotone submodular linear greedy 1— % [FIMN13]
monotone submodular convex greedy | 1-— % ifa<e 1-— ﬁ if a>e
linear convex greedy* % [BUCM12]
top-m cardinality constraint test score % [KR15]
a class of submodular cardinality constraint test score %

derived several improved approximation guarantees. [FKJ\é&hd [LMNSO09] studied the problem
subject to matroid or knapsack constraints; in particuteey have found an/5 — e-approximation
algorithm for any number of knapsack constraints, where 0 is any constant. These results do not
apply to our problem as our objective function is not necelysaon-negative.

The problem of maximizing a profit function defined as diffeze of a non-negative monotone
submodular set function and a non-negative monotone costifun have also been studied. [FIMN13]
studied the special case of a linear cost function, and sthtiwa in a worst-case, the value of the solu-
tion of the greedy algorithm can be an arbitrarily small fiae of the optimum solution. As a way to
circumvent the negative results of the worst-case analysey introduced a framework for designing
and analysing algorithms that is suited to problems thatrexgproximable according to the standard
worst-case analysis. This amounts to designing guarafieetasses of instances, parametrized ac-
cording to the properties of the optimal solution. In partae, for the problem of maximizing a profit
function with a non-negative monotone submodular set fan@nd a linear cost function, they showed
that the greedy algorithm guaranteels-alog(a)/(a — 1)-approximation of the optimal solution, where
a is the ratio of the utility and the cost of the optimal solatiand they showed that this is optimal. We
extend this result for a more general class of convex costifum which includes linear cost functions
as a special case.

Constant-factor approximation algorithms are known forcsgdeclasses of utility and cost func-
tions; for example, for the problem with the utility funatiolefined as a sum of the values of items and
a cost function that is a convex function of the sum of weigliigems, taking the best of the following
two outputs yields a /3-approximation: (i) the output of a greedy algorithm anyigisingle item that
maximizes the profit [BUCM12]; referred to as greedy* in Table

The problem of maximizing a set function subject to a caldinhaonstraint using a test-score
algorithm was first introduced by [KR15]. They showed thatrf@ximizing a particular submodular
set function (tops function) subject to a cardinality constraint, there exigttest-score algorithm
that guarantees a constant-factor approximation. We rddaseveral new results for the test-score
algorithms. We found that the existence of test scores thatagtee a constant-factor approximation
is equivalent to the existence of special type of test sceremplication test scores. We identified a
set of sufficient conditions for the existence of replicatiest scores that guarantee a constant-factor
approximation; this conditions are shown to hold for mogprafduction functions from our catalogue.
We obtained new results for the performance of differenesypf test scores for the family of CES
production functions.

The approximation results for the profit maximization peoshlare summarized in Table 1.



3 Team Selection Problem, Production and Cost Functions

In this section, we first provide a formal definition of therteaelection problem and then introduce a
number of classic models of team production.

Team Selection Problem Suppose given is a set of individuals = {1,2,...,n}, autility of pro-
duction functionu : 2% — R that returns a positive real-value for any subSe€ N, and acost
functionc : {0,1,...,n} — R, that returns a positive real-value for any team s$&e We define the

profit functionp : 2V — R to be quasi-linear in the utility of production and the castdtion, i.e. for
everyS C N itis defined byp(S) = u(S) — ¢(]S|). The goal is to find a set of individuals® C N
that maximizes the profit function, i.e.

S* C argmaxc yp(S).

We will use the abbreviating notatigit = p(S*), u* = w(S*), andc* = ¢(]S*|). We also define
a = u*/c*, which we will show to play an important role in charactengithe performance of the
greedy algorithm.

The utility of production function: is assumed to be non-negative, monotonically increasimg), a
submodular set function, and the cost function is assumée twon-negative and with monotonically
increasing increments. Under these assumptions, the gdalsolve a combinatorial optimization
problem of maximizing a submodular function, which is knotenbe NP-hard. Hence, we have to
settle to consider approximation algorithms for the giveobgem. An algorithmA is said to be a
c-approximation algorithm if it outputs a sét' with a profit of valuep” = p(S4) such thap* > cp*.

Stochastic Model of Team Production A stochastic model of team production assumes additional
structure that is used to define the utility of productiondtimn . Suppose that the individuals are
associated with respective performancés Xs, ..., X,, that are assumed to be independent random
variables with cumulative distribution functiorfg, F5, ..., F,,. Suppose that for every given set of
individuals S C N, a functionf : RISl — R is given, which returns a positive real-value for every
given vector of individual performancess = (X;,i € S). We assume that functighis permutation-
invariant, meaning that it assumes the same value for amyuydation of its arguments. For every given
S C N, the utility of production is defined as

u(S) = E[f(Xs)]. (1)

We shall refer tq f, F) as astochastic model of team productiomhereF = (Fy, Fy, ..., F,).

A Catalogue of Production Functions We introduce some classic models of production functions
that are defined for every given non-empty set of individgais NV and values of individual production
inputsz = (z;,7 € S) as follows:

1. Total production
flzs) =g (Z :c) 2)
i€S
whereg : R — R, is a non-negative monotone increasing function.



2. Best-shat
flzs) = max ;. (3)
1€

3. Top+n: given an integefn such thatt < m < |S

m

flzg) = Z (s, (4)

=1
wherexs1), (s.2), - - - » (s,5)) are the values of s rearranged in decreasing order.

4. Constant Elasticity of Substitution (CE)r given parametep > 0,

1/p
flws) = (Z :r) . (5)

i€S

5. Success-Probability
fls) =1=T]00 = gla2), (6)
€S

whereg : R — [0, 1] is an increasing function.

A production function defined as an increasing function & tbtal individual investment in a
production activity, as given in (2), is a natural model obguction. For a concave functigy this
production function exhibits a diminishing returns ingearoperty, where the marginal increase of
the production output becomes smaller or remains condtantarger the total investment in the pro-
duction.

The best-shot production function in (3) defines the pradaabutput to be the largest production
input invested in the production activity. This type of puation is common in online crowdsourcing
systems where often multiple solutions are solicited fasktand eventually only the best solution is
selected.

The topsm production function in (4) is a natural generalization of thest-shot production func-
tion, where instead of restricting to selecting only thetlsedution for a task, a given number of best
solutions is selected.

The constant elasticity of substitution or CES productiamction, defined in (5), was considered
in [Sol56] and has been much popularized following [ACMS6The CES production function is a
textbook example of a production function, e.g., see Chabter[Var92]. [ACMS61] used a CES
production function to describe how capital and labour n@ap value of production. [Arm69] used
a CES production function as a model of demand for productsdisshed by place of production.
[DS77] used a CES production function as a model of demanddomuoodities that are substitutes
among themselves in a monopolistic market to study optimrodysct diversity. Several properties of
the CES production functions were studied by [Uza62] and [68}F The CES production function
exhibits constant returns to scale, meaning that scaliegptbduction inputs by a factor results in
scaling the production output by the same factor. This iSvedgnt to saying that the production
function is homogenous of degréei.e. f(txy,txs, ... tx,) = tf(xy, 29, ...,z,) forallt > 0. The
CES production function corresponds to a weighted mean deimgHLP52] as follows: for given
valuesr = (x1,o,...,z,) € R", and fixed parametegg > 0 for: = 1,2,...,n, a weighted mean
of z is given by M, (z) = (321, qsat/ ", @:)Y/P, wherep is any real value except for (}) = 0
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and (i) p < 0 andz; = 0 for somei € {1,2,...,n}. The family of CES production functions
accommodates different types of productions by a suitaidéce of parameter. The CES production
function models a production that is linear in the total prettbn input for the value of parameter= 1,
and it corresponds to the best-shot production in the lisithe value of parametergoes to infinity.
The success-probability production function, defined i i&often used as a model of tasks for which
each individual solution is either good or bad, and it suffitkehave at least one good solution for the
task to be successfully solved.

The utility of production function is a submodular set fuantunder the following conditions on
the production functiorf for our given examples. For the total production model, ftises to assume
in addition that functiory is a concave function, i.e. it exhibits a diminishing in@eavith the value
of the total production. The utility of production underhat the best-shot, the top-or the success-
probability production function is a submodular functioithut making any additional assumptions.
The utility of production under the CES production functienai submodular function if and only if
p=>1

Cost Functions The class of cost functions with increasing marginal cosobaunodates several
special cases of interest. For example, it accommodataear Icost function(z) = az, for a constant
marginal cost > 0, or a quadratic cost functior(z) = (3) that can be interpreted as the number of
potential ties between individual team members. Anothan®ie of interest is that of @ardinality
constraint given an integek > 1, the cost function is defined as follows

c<x>:{0 T ask @)

oo if x>k

4 Greedy Algorithm and its Approximation Guarantee

We consider a naturgreedy algorithnfor the team selection problem that selects team members se-
guentially with each hiring decision being a greedy cholt maximizes marginal profit gain, until
either a hiring decision yields a non-positive marginalfprar all the team members are hired. For-
mally, the greedy algorithm initializeS, «+ () at stept = 0, and then performs the following steps:

At each steq, do:
Findi* = argmax. y\ 5,p(S: U {i}) — p(Si)
It p(Sy U{i"}) — p(Se) >0
StJrl <— St U {Z*}
Elseterminate.

The greedy algorithm is known to be optimal for some paréicmhodels of stochastic team pro-
duction. For example, from the work [KR15], for the best-spatduction function and individual
production inputs according to weighted Bernoulli randomalaes, for any cost function with in-
creasing marginal cost, the greedy algorithm is optimal.

From the classic work of [NW78], the greedy algorithm is knawrhave the following approxi-
mation guarantee for the special case of the budget comsty&i > (1 — 1/e)p*. A more detailed
statement is asserted in the following proposition:
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Figure 1: Constant, of the greedy algorithm approximation versus

Proposition 1 ([NW78]) For every giverk, and every step ajreedy algorithmit holds

u(Sy) > <1 - <1 — %) ) max u(S) > (1 — e’t/k) max u(.S).

S:|S|=k S:|S|=k

For the special case of the cost function restricted to malinfrom the work by [KPR98], it is
known that the greedy algorithm can guarantee a constatarfapproximation whea*/u* is bounded
away from1, and [FIMN13] have established the following approximatguarantee:

pY > (1 — M) P (8)

a—1

In the following theorem, we establish an approximationrgngee of the greedy algorithm for the
team selection problem with an arbitrary increasing casttion with increasing marginal cost.

Theorem 1 For the profit maximization problem with a non-negative monet submodular utility
function and a cost function with increasing marginal casg gjreedy algorithm guarantees a solution
that is ac,-approximation of the optimum solution, i > c,p* where

1
1—19a  ifag>e.

ea—1"

. _{ 1—12‘%#, ifa<e

See Figure 1 for a graph of, versusa.

Proof Let k* = |.S*|. From Proposition 1, for everye {0,1,...,k*},

W(S) = e(t) > (1 _ (1 _ ki)t> = c(t)
(1 _ (1 _ ki)t> - kic )

where the last inequality holds by the assumption ¢hata function with increasing increments.

A\
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Let g be a decreasing piecewise linear function defined as follows
(1-%)", for z€{0,1,...}
g(x) = 1\ L) 1y o] -
([z] —2) (1= %) + (@ —z]) (1 - %), otherwise
Combining with (9), we have

v > max {(1—g()u — ') (10)
We now establish the following inequality:
g(z) < e ¥ foreveryz € R.. (11)
It suffices to show that for every positive integewe have
Ay o) < 42

Suppose thag(t) = e~*/*" for somez € [t,t + 1]. Otherwise, the condition(t) # e~*/*" for all
x € [t,t + 1] and the facy(t) = (1 — 1/k*)! < e ¥/* imply thatg(t) < e=*/¥" forall z € [t,t + 1],
which is because is a decreasing function implies (12).

Note thatg(z) — e~*/¥" is a concave function oft, t + 1], which is maximized at a unique point

since-Lg(z) = — L g(t) andg(t) = e~*/*". Itis readily checked that

 nax {g(z) — ™"} = (3 1) ((1 — %)M — (1 - ki)t> <0

which establishes inequality (11).
Combining (10) and (11), we obtain

g > {1_ —z/k* *_ﬁ*}
vz e e

Therefore, ifc* /u* > 1/e, we have
G (1 -1 <)) o*
P’ u ( og (%)) e . log(a)

Y

p* T u* — c* a—1
and, otherwise, we have o
_ 1 * ok
P (I—eHu*—c _q_ ale .
p* u* —c* a—1

[

The approximation ratie, in Theorem 1 increases with parameiefrom zero value at = 1 to
valuel — 1/e asa goes to infinity. The limit value of the approximation ratipasa goes to infinity
coincides to that for the team selection problem with a ecaidly constraint. This is intuitive as for
the team selection with a cardinality constraint, the valie utility of production is strictly positive
and the value of the cost in any optimal solution is equal t@,zeence the value of parameteris
infinite. The approximation ratio, is indeed smaller than or equal to the value in (8), which is an
approximation ratio for the restricted case of the teamcsiele problem with a linear cost function.
More specificallyc, coincides to that in (8) for the cage< e, and is strictly smaller, otherwise.

The resultin Theorem 1 is established using a proof thatthgdshown approximation guarantee of
the greedy algorithm for the problem of maximizing a nonateg@ monotone submodular set function
subject to a cardinality constraint and the increasing matgost property. The proof is different from
that in [FIMN13], which is for the special case of a linear chction; we provide a more detailed
discussion in Appendix A.



5 Test-Score Algorithms and Their Approximation Guarantees

In this section, we consider approximation guaranteesstfdeore algorithms for the team selection
problem with a cardinality constraint. #st-score algorithnis defined for given values of individual
test scoresy, so, ..., s, and a cardinality constrairit > 1 by hiring a set oft individuals with the
largest values of test scores. We consider the utility ofipation according to &f, F) stochastic
model of team production, which is introduced in Section Be Test scores can be defined in different
ways for a given choice of the production functipand cumulative distribution functions of individual
performances = (Fy, Fy, ..., F,).

Several examples of test scores are given in the followstgfiexamples:

1. Mean test scoress; = E[X|], fori € N.
2. Quantile testscoress; = E [X; | F;(X;) > ¢, fori € N, whereg is a positive-valued parameter.

3. Replication test scores;; = E[f(X", x® ... X" fori € N, wherex", ..., X" are
independent and identically distributed random variablils cumulative distributior¥;.

The mean test scores represent a natural definition of testssadefining a score of an individual
to be equal to his or her expected performance. The quaastestore of an individual is defined as
the conditional expected value of his or her individual perfance, conditional on that it is at least of
value as large as thgquantile of his or her distribution of performance. The mfila test scores have
been considered by [KR15] for the stochastic model of pradnatith top-+n production function. In
particular, for the best-shot production functign= 1 — 6/k for a positive constartt. The replication
test score for an individual is defined for given choice of phmeduction functionf as the expected
value of production of a team of siZethat consists of independent replicas of the given ind&idu

5.1 Good Test Scores

We introduce a condition that defines a subset of test scaresefer to agood test scoresand then
show that any test-score algorithm that uses good testsgasgantees a constant-factor approximation
for the team selection problem.

Definition 1 (good test scores)For given utility of production function, any given test scores, ss, . . ., S,
are said to begood test score# there exists a monotone increasing functioand constants;, ¢, > 0
such that

comin h(s;) < u(S) < ¢; max h(s;), for everyS C N (13)

€S €S
where N denotes a multi-set that consists of all element&/irand each of these elements having at
leastn — 1 duplicates.
The good test scores are shown to imply the following guasant

Theorem 2 Whenever for a given utility of production there exist goest scores, then the test-score
algorithm that uses good test scores yields a solution weHfaHowing approximation guarantee:

Ca

*

S
>
P _C1+CQ
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Proof Let S be the set output by the test-score algorithm. By the monadtameasing property of the
utility of production functionu, we have

w(S*) < w(S*TUS) < u(S)+u(S*\S)
< w(S) +erminh(s) < u(S) + Lu(s)
i€S Co
which establishes the theorem. [ |

The result in Theorem 2 tells us that if for a given utility @bduction function there exist good test
scores, then the test-score algorithm using good testsgogantees a constant-factor approximation
for the team selection problem. It remains to understandnwbe particular choice of a utility of
production there exist good test scores, and given tha¢ tast good test scores, how in particular
one would define them, and what exactly is the approximatioargee of a given choice of good test
scores.

5.2 A Necessary and Sufficient Condition for the Existence of Good Test &es

The following theorem shows that the existence of good tm3tes is equivalent to the existence of a
special type of test scores — replication test scores.

Theorem 3 If for a given utility of production function there exist gbtest scores, then replication
test scores are good test scores.

Proof Suppose that for a utility of production functianthere exist good test scores. . ., 5,,, So that
we have

Co misn 5 <u(S) < max s;, foreveryS C N. (14)
1€ 1€
Consider an arbitrary € N. Let i ... i*) be a sequence of individuals with performances

Xi(l), o ,Xi(k), which are independent and identically distributed rand@mables with cumulative
distribution functionF;. Let s; denote the replication test score defined by

si=EBf(XY X)) =w({i, i), (15)
Sincesy, . .., s, are good test scores, we have

C9S; S U({’l(l), ce ,’l(k)}) S C15;. (16)

From (14), (15), and (16), we have

Co . _ C1
—mins; < cemins; < u(S) < ¢pmaxs; < —maxs;
c1 €S €S €S Co €S
which implies that replication test scores are good tesesco [ |

From Theorem 3, we observe that for every given productioetian, we can check whether there
exist good test scores by just checking whether replicaish scores are good test scores. If for a
given production function, replication test scores areguoatd test scores, then there exist no good test
scores.
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5.3 A Sufficient Condition for Replication Test Scores to be Good

We present a set of sufficient conditions for replication $esres to be good test scores. This set of
conditions holds for all production functions from our dague of examples except top-function;
see Appendix B. Note that for top- function there exist good test scores by the result in [KR15],
which implies that replication test scores are good tesescior topm function from Theorem 3.

We introduce the following conditions:

(S) u(S) = E[f(Xs)] is a non-negative, monotone submodular set function;
(M) f(x,y) — f(x) is decreasing in: for everyy € R;

(B) f(f T (f(xr, 22, 2-1)),21) < flan, 2o, 20)

wheref~!(z) = max{y € Ry | f(y) < z}.
The next theorem tells us when replication test scores ard tgst scores, and identifies the values
of constants in the definition of good test scores.

Theorem 4 The following two claims hold:
1. If condition (S) holds, then replication test scoressfgtthe lower bound in (14) witky, = 1/2.
2. If conditions (S), (M), and (B) hold, then replicationttesores satisfy the upper bound in (14)
with c = 4.

Proof We prove the two asserted claims as follows.

Proof of Claim 1 Without loss of generality, consider the set= {1,2,...,k} and assume that
s = min;eg s;. We show that for every € {1,2,... k}, u({1,2,...,5}) > ﬁsl. From this, it then
follows thatu(S) > s1/2. The proof is by mathematical induction. Base case 1: sinceu is a
non-negative, monotone submodular set function, we have

o) = g Sty

Induction step: suppose that{1,...,;5}) > ﬁsl holds for1l < j < k and we need to show that it
holds thatu({1,...,j + 1}) > Z-1s;. Note that
u({1,. J+1}>—U({ o gh) e+ 1)) — (L 5]

a({L, o G+ G+ DO, G+ D) = ({3

w({1,. 1)) == (17)

?’vlH

—
Ve

S

1
> (1= 1) utftgp + 2
)+ 1
> Lo, (18)

where(a) and(b) hold by the assumption thatis a non-negative, montonically increasing, and sub-
modular function, and the last inequality follows by theuotion hypothesis.

12



Proof of Claim 2  Without loss of generality, assume thtat= {1,2, ..., k} ands; < sy < -+ < 4.
Let i* be an individual such thaX;. = z* with probability 1, for z* such thatf(z*) = cs;, for a
constant > 1. Sinceu is a non-negative, monotone increasing, and submodulatifum we have

u({i"} U S)

k

u({i'}) + Y (u({i} u{i}) —u({i})

=1

= Csk+z {"y U{i}) —u({i"})- (19)

u(S)

IN

IN

Now, note that
(a)
<

(®)
< E [f(Xﬁl),...,XF’f>) —f(Xf”,... X“*”)\f(X}”,...,X.““*”) < csk]

()

<

~oPrf(xY, . XxPYY < syl

(d) -t

< (1 _ 1> S (20)
c k

where(a), (b), and(c) hold by conditions (M), (B), and (S), respectively, afiy holds because by
Markov’s inequality and condition (S)

o xT) B X))

CSp CSp

Prif(xV, . XFDy > es) <
From (19) and (20), we obtain(.S) < --s;, which implies Claim 2 when = 2. |
The result of Theorem 4 has the following corollary.
Corollary 1 Under conditions (S), (M), and (B), the test-score algantthat uses the replication test

scores yields a solution that guarantee$/& approximation of the optimum solution.

5.4 CES Production Function

In this section we characterize the approximation guaesnté the team selection by using either the
mean test scores or the quantile test scores for a stochaatiel of production according to a CES
production function with parameter> 1.

5.4.1 Mean Test Scores

The following theorem characterizes the approximatiorrgoize of the team selection using the mean
test scores.

13



Theorem 5 Suppose that the utility of production is according to a kastic model of production with
a CES production function with parameter> 1. For every given team siZze > 1, let M be a team
of sizek that consists of individuals of highest mean test scored,lenS* be a team of sizé that
maximizes the expected utility of production. Then, we have

1
u(M) > mu(

S*).
Moreover, this bound is tight.

Proof of the theorem is provided in Appendix C.

Note that for the value of parameter= 1, selecting a team of individuals with the largest mean
test scores is optimal. Intuitively, one would expect tluatdmall enough values of parameter- 1,
the mean test scores would be good test scores. The resuteofdm 5 tells us that this is so if and
only if p = 14 O(1/log(k)). In the limit asp goes to infinity, in which the CES production function
corresponds to the best-shot production function, we haakethe expected utility of a team with the
largest mean test scores is guaranteed to be atl@asif the optimum expected utility, and this is a
tight bound; this conforms to the result in [KR15].

5.4.2 Quantile Test Scores

Since the CES production function corresponds to the bedtfahction in the limit of large values

of parametep, and we know from the result in [KR15] that quantile test seaee good test scores
for the best-shot function, one would expect that quantist $cores are good test scores for the CES
production function provided that the value of parametés large enough. In the next theorem, we
characterize a tight threshold for the paramegtbelow which the quantile test scores are not good test
scores for the CES production function.

Theorem 6 The following claims hold for quantile test scores wjte- 1 — 0 /k:

1. If p = o(log(k)) andp > 1, the quantile test scores are not good test scores for anyevel
parameterd > 0;

2. Ifp = Q(log(k)), the test-score algorithm with quantile test scores Witk 1 yields a solution
that is a constant-factor approximation of the optimum sohu

Proof of the theorem is given in Appendix D.

6 Experimental Results

In this section, we present results of empirical study uslata crawled from TopCoder, a popular
online platform for software development. Our goal is toleate performance of different test-score
algorithms for the team selection problem and compare pregformance with optimum team selection.
Overall, the empirical results show that the average perdoice of a team selected using replication
test scores is typically near optimal, and that for somelgtstic models of team production, they have
significantly better worst-case performance than some ¢élseéscores.
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Figure 2: (Left) Number of tasks per worker versus the wor&ak with respect to the number of tasks;
(Middle) Mean score per worker versus the worker rank wipeet to the mean scores; (Right) Mean
score per worker conditional on the number of tasks per worke

6.1 Dataset and Basic Statistics

Our dataset contains information about solutions to welbwswé development tasks submitted by
coders (we interchangeably refer to as workers) over a géraon November 2003 to January 2013.
In our dataset, each solution is associated with the ideatithe coder, identity of the task, and the
value of the score associated to the solution. Each suck &areal number in the interval from value
0 to value 100. These scores are assigned to solutions byng pabcedure that is part of TopCoder
online platform. We use these scores as indicators of iddaliperformances. Table 2 presents some
basic statistics.

Table 2: TopCoder dataset summary statistics.
# of workers| # of tasks| # of solutions| Tasks per worker Workers per task Mean score
658 2,924 7,127 10.83 2.44 87.54

Some additional statistics is shown in Figure 2. The numibéasks per worker covers a range
from 1 to about500 tasks. Out of total of 658 workers, 75 of them have submittddt®ns to 20 or
more tasks and 124 of them have submitted solutions to 10 or tasks. The mean scores of solutions
submitted by workers cover a wide range from around 40 to T gcores. According to intuition,
the workers seem to improve upon their performance as tHayisunore solutions to tasks.

Figure 3 shows statistics for the scores of submitted swisti The values of scores cover a wide
range of values from around 25 to 100. Conditioning on theexcof solutions submitted by workers
who submitted at least solutions skews the distribution towards larger valuese bmulative dis-
tribution functions of scores of solutions submitted byiwdlal workers in general differ from one
worker to another as shown in Figure 3-right, for a set of woskwho made the largest number of
solutions.

6.2 Performance of Test-Score Algorithms

We evaluate performance of test-score algorithms for thentselection problem by the following
method. We consider the set of workers who submitted at teastutions. We report the results for
0 = 20; we have also experimented with other values and obsenadajively the same results. We fix
a stochastic model of team production, the team Bjzetest-score algorithm, and the distributions of
individual performances to the empirical distributiongloé scores observed in the data. Specifically,
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Figure 3. Cumulative distribution function of individual fhermance score: (left) aggregate over all
submissions conditional on workers with at leAstubmissions, (right) top 6 workers with respect to
the number of submissions.

for a given workeri, we denote withZ; the empirical cumulative distribution function of his orrhe
performance scores. For a workewith n; observed performance scores of valmﬁé, xl@), . ,xgnﬂ,
we definefi(z) = L 327 1(af < 2).

We estimate the expected utility of production by samplingetiofn workers uniformly at ran-
dom without replacement from the input set of workers, arehthpply given algorithm for the team
selection problem for each sample of the set of workers. llaualexperiments, we draw 10,000 such
samples. We conducted experiments for different valuesacdrpetem, including the value$, 10,
and15. For space reasons, we report the results only for thercasd0; the results for other values
of this parameter were observed to be qualitatively simiar every given team size, we compute the
optimum value of the expected utility by a brute force seaestamining all possible teams of given

size.

6.2.1 Best-Shot Production Function

We compare the performance of the replication test scoréstenmean test scores for the best-shot
production function. The replication test scores are estihbys; = fR+ (1— Fy(z)*)dz and the mean
test scores are computed by using the same formula butwith .

Figure 4 shows results of our experiments. We observe teagxtpected utility indeed exhibits a
diminishing returns increase with the team size. We obstratthe replication test scores provide
nearly optimal performance. The mean test scores provideemeerformance, which on average is
still near to the optimum performance, but has worst-cas®peance that can be significantly worse
than the optimal performance.

6.2.2 Success-Probability Production Function

We conducted a similar analysis for the success-probglpit@duction function that is defined as fol-
lows. We assume that a solution submitted by a worker is sstgif it achieves a point score larger
than or equal to a threshold valde We have experimented with different values of this paramet
but for space reasons report the results onlysfer 90. The replication test scores are estimated by
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Figure 4: Team selection using test scores for the stochastilel of team production according to the
best-shot function: (left) expected utility versus teamesiright-top) approximation ratio for replica-
tion test scores; (right-bottom) approximation ratio fagan test scores.

8§ = - > l(xz(j) > 0). Figure 5 show the results of our experiments. We observetliea¢ exist

cases when the mean test scores provide significantly werfermance than using the replication test
scores.

7 Conclusion

In this paper, we established the approximation guararitée greedy algorithm for the team selection
problem with arbitrary increasing cost functions in thetesze that has increasing marginal costs. For
the team selection problem with a cardinality constrairg,smowed that the existence of a test-score
algorithm that guarantees a constant-factor approximatidghe optimum solution is equivalent to the
existence of good replication test scores. Sufficient domndh are identified for the existence of good
replication test scores, which are shown to hold for sev@ratial instances of stochastic models of
team production, and are shown to guarante®@aapproximation guarantee. For the constant elasticity
of substitution production functions, we characterizedapproximation guarantees of mean test scores
and quantile test scores.

An open problem for future work is to further study the tigkdéa of approximation guarantees of
test-score algorithms.
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A Discussion of the Proof of Theorem 1

We now discuss the approximation guarantee establishetienrém 1 and that in (8) that was estab-
lished by [FIMN13] for the special case of linear cost fuons. For the case of linear cost functions,
it was shown in [FIMN13] that for every > 0, it is NP-hard to find a se¥ C N such that

p(S) > (1 - M‘FE) p*.

a—1

and that the greedy algorithm guarantees

a—1
Their proof exploits a property of the linearity of the castétion, which we discuss as follows. When

the greedy algorithm has utility of valuefor setS; at roundt andz < p*, S*\ S; is non empty. From
the non-decreasing property @ofwe have

u(S; US*) —u(Sy) > u* — .
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Sincew is a submodular function ands a linear function, we have

P(Se+1) — p(St) > p(Se US™) — p(Sh)

w(Spr1) —u(Sy)  — w(SUS*) —u(Sh)

u(Sp U S*) —u(S;) — ¢*
u(S; U S*) —u(S)

ut—x—c*

—
Ve

v

w—x

where(a) uses the linearity of the cost functien

Note that when the cost function has strictly increasingaments, thewn(
much larger tham*.

It follows that for the case of linear cost functions, we have

G > - u* —u(Sy) — ¢ B
Pz Y mae {0, R S — )
u*—c* u — 1 —c*

> ——dr
-0 ut —x

We prove that the same bound holds for every cost functioh initreasing increments whenever
u*/c* < e, and, otherwise, establish that the following bound holds

po > (1— - 1)p*-
a—1le

Note that it is not possible to guarantee that for every aasttion with increasing increments,

p(S) > (1 - M+€) p*.

a—1

Sy U S*|) — ¢(t) can be

For instance, for the case of a budget constraint in (7), tkedy algorithm can guarantee at most
1 —1/e whereas
1
lim {1 _ M} 1
a—00 a—1

which is a contradiction.

B Checking Conditions for Some Production Functions

One can easily check that all production functions from catalogue examples are non-negative,
monotone submodular set function. In this section, theegfave show that conditions (M) and (B)
hold for all production functions in the catalogue of exaesgih Section 3.

Total production: f(zg) = g(>_,csxi) Condition (M) holds becausg(z,y) — f(z) = g(z +y) —
g(z) andg has decreasing increments being a concave function. CondRj) holds becausg!(z) =
g~'(z) whereg is the inverse function of, and hencef (f~!(f(z1,...,21-1)),71) = g(g ' (g(z1 +
"'+l’l_1)) +$1) :g(l’l ++I[) == f(xl,...,xl).
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Best-shot: f(zs) = maxesx; Note thatf~!(x) = x. Condition (M) holds becausg(z,y) —
x = max{z,y} — z, which is indeed decreasing in for every fixed valuey € R,. Condition
(B) holds becausg¢(f~(f(z1,...,71-1)), 7)) = max{max{z1,..., 71}, 1} = max{zy,..., x5} =
flx1, 29, ..., 19).

CES: f(zs) = (X ;c52%)"/?, for parameter p > 1 Note thatf~!(z) = z. Condition (M) holds
because (z,y) — z = (2P + y?)'/? — z, and hence,

P+ yP

Condition (B) holds becausg( f~*(f(x1, ..., 211)),m1) = (2] + ... + 2} )PP + 2))V/P = (2] +
+J} )1/p_f($17...,l‘l).

Success-Probability: f(zs) = 1 — [[,c4(1 — g(z;)) Condition (M) holds becausg(x,y) — f(z) =
g(y)(1—g(x)) andg is an increasing function. Condition (B) holds becafisg™ ! (f(z1, ..., x1-1)), 7)) =
=TT (1= g(a) = (o, a).

C Proof of Theorem 5

Without loss of generality, assume tH&tX,| > E[X,] >

> ... > E[X,]. LetS = {iy,is,...,ix} be an
arbitrary team. Then, we have

u(S) = E[f(Xs)]
= E[(f(Xs) = f(Xs\i})) + (f (Xs\finy — f(Xsvfir_rind)) + -+ (F(Xany) — £(0))]
E[f (X{zk}Hf(X{zk ) o+ (X))

:ZE

€S

k
< Y E[X]] (21)

IN

where the first inequality follows by the submodularity ohétion «(S), the second inequality is by
the assumption that individuals are enumerated in decrgasder of the mean test scores.
Now, observe that for everfyy, 2o, ..., ;) € RE,

1< 1< v
FL = L ”p<< ZQ’)
=1

]

Y E[X|] <kV'E
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Combining with (21), it follows that for every C N such thalS| = &,

(&) Joetn|(29) ]

The tightness can be established as follows. X.&onsists of two subsets of individual$ and R,
whereM consists of: individuals whose each individual performance is of value: with probability
1, for a parameter > 0, andR consists of: individuals whose each individual performance is of value
a with probability 1 /a and of value) otherwise, for parameter> 1. Then, we note that

u(M) = EYP(1 +¢)

and

u(S*) > u(R) = ! ZXP ]

i€ER
> aPr | X;> o]
i€R
k
> a (1 — e_k/“) )
Hence, it follows that o) )
u(M k/a
(s ST e

The tightness claim follows by takingsuch that = o(a), so that(k/a)/(1 — e7*/%) = 1 4 o(1).

D Proof of Theorem 6

D.1 Proof of Claim 1

If k& is a constant, there is nosatisfying both conditiong = o(1) andp > 1. Hence, it suffices
to considerk = w(1) and show that the following statement holds: for any gigen 0, there ex-
ists an instance for which the quantile test-score based tedection cannot give a constant-factor
approximation.

Consider the following distributions foX;:

1. Let eachX; be equal ta: with probability 1 for 1 < i < k. Then, each quantile test-score is
equal toa and each replication test-score is equatid’™.

2. Let eachX; be equal td) with probability1 — 1/», and equal téddn/k with probability 1 /» for
k+1 <1 < 2k. Then, in the limit as: grows large, each quantile test-score is equal daod
each replication test score is equabto
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3. Let eachX; be equal to0 with probability 1 — 6/k and equal ta: with probability 6/k for
2k +1 < i < 3k. Then, each quantile test-score is equat &md each replication test-score is
less than or equal t&@'/?.

4. LetX; be equal td) for 3k +1 < i < n.

If 6 is a constant (i.ef = O(1)), we can easily check that the quantile test-score algargannot
give a constant-factor approximation with= 6 = 1 andc = 2. Under this condition, the set of

individuals{2k + 1, ..., 3k} is selected by the quantile test-score algorithm. However,

1/p 1/p
E |:<Zz 2k+1 Xp) :| E [(Zz 2k+1 Xp) }

1/ - /p

B| (st )] ¢
1/p
(X BIXD))
<
- k1/p

1/p
- 2(}) = o
sincek = w(1), 0 = O(1), andp = o(log(k)).
If 9 goes to infinity as: goes to infinity (i.e.f = w(1)), we have

B| () _ (Ehmmn)”

1/p - 0
E |:<Zz k+1 Xp) :|
— 99-p)/p _— o(1),

because > 1. Therefore, the quantile test-score based team selec®a hegligible utility compared
to the optimal utility.

D.2 Proof of Claim 2

Let T(Xs) be a subset of such that € T'(X;) if, and only if, X; > F, (1 — h/k), fori € S. Let
Smax = MaX;cg S; ands,;, = min,es s;. In this proof, we will show that there exist constant@ndcs

such that
1/p
C1Smin S E (Z Xp) S C28max-

€S

Since(x + y)Y/? < xV/? 4 y'/P whenz,y > 0 andp > 1,

1/p 1/p
(o) | - e|( X o > w
ieS i€T(Xs) i€S\T(Xs)
i 1/p 1/p
< E|| D x| o+ > X!
iGT(Xs) lES\T XS
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(AN
=
]
s
+

1/p
> Xf)

€T (Xg) 1€S\T(Xs)

i 1/p
S E Z Xz + Z Sﬁlax

i€T(Xs) i€S\T(Xs)

< (BT + 577) smax = (14 E7P)s 0.
By the Minkowski inequality,(3",. , E[X.]")"”” < E [(ZieA Xf’)l/p} forall A C S. Thus, we

have
1/p 1/p
E[(ZX”) = E|[ Y x'+ Y Xp)
€S

€T XS ZES\T Xs)

v
&=

> Xp)

’LGT XS

) 1/p
= Z Pr{T(Xs) = A}E ZXip) T(Xs)=A

ACS icA
1/p
> Z Pr{T(Xs) = A} (Z E[X;|i € T(XS)]p>
ACS icA
> > Pr{T(Xs) = AHA[ s
ACS

> (1= (1=1/k)") smin > (1 —1/€)Smin.

Therefore, the quantile test-score team selection is a&onfactor approximation algorithm.
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