

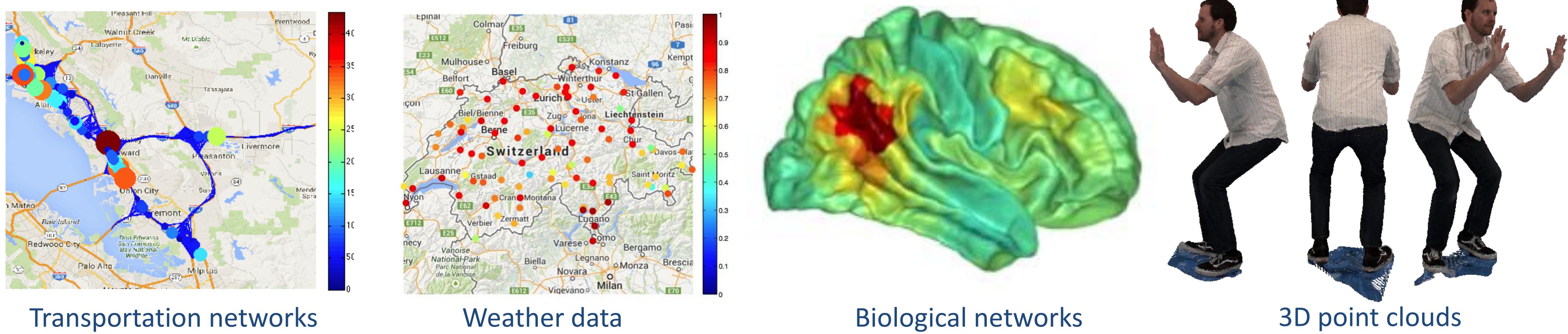
Modeling Signals Embedded in a Euclidean Domain

Philip A. Chou¹ and Ricardo L. De Queiroz²

¹Microsoft Research and ²Universidade de Brasilia

Introduction

Many signals are defined on irregular domains embedded in Euclidean space. Often, they are modeled with GSP. But should they be?



Modeling signals on a sparse graph

Graph Signal Processing Framework

Signal $x(v)$ defined on discrete domain \mathcal{V}
 Undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $\mathcal{E} = \{(v_i, v_j)\}$
 Weights $W = [w_{ij}]$, $w_{ij} > 0$ if $(v_i, v_j) \in \mathcal{E}$ else 0
 Diagonal $D = [d_{ij}]$, $d_{ii} = w_{ii} + \sum_j w_{ij}$
 Laplacian $L = D - W = \chi \Lambda \chi^T$
 Graph Fourier Transform (GFT) of x : $\hat{x} = \chi^T x$

Modeling signal as GMRF(L)

Vector $x = (x(v_1), \dots, x(v_n))^T$ is a GMRF wrt \mathcal{G} with mean μ and precision $Q = [q_{ij}]$ iff $q_{ij} \neq 0 \Leftrightarrow (v_i, v_j) \in \mathcal{E} \forall i \neq j$ and
 $p(x) = (2\pi)^{-\frac{n}{2}} |R|^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (x - \mu)^T R^{-1} (x - \mu)\right)$
 where covariance matrix $R = Q^{-1}$.
 If $w_{ij} = -q_{ij} \forall i \neq j$ and $w_{ii} = \sum_j q_{ij} \forall i$, then $L = Q = R^{-1}$. Thus $R = L^{-1} = \chi \Lambda^{-1} \chi^T$. **KLT is GFT**

Modeling signals as samples of a stationary Gaussian Process

Gaussian Process Definition

Stationary Gaussian Process (GP) $x(\mathbf{v})$, $\mathbf{v} \in \mathbb{R}^N$, with mean μ and covariance function $R_{xx}(\mathbf{d}) = E(x(\mathbf{v}) - \mu)(x(\mathbf{v} + \mathbf{d}) - \mu)$ is a random process s.t. any sample vector $x = (x(v_1), \dots, x(v_n))^T$ has density
 $p(x) = (2\pi)^{-\frac{n}{2}} |R|^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (x - \mu)^T R^{-1} (x - \mu)\right)$
 where $\mu = (\mu, \dots, \mu)^T$ and $R = [r_{ij}]$, $r_{ij} = R_{xx}(\mathbf{v}_i - \mathbf{v}_j)$.

Model mean-removed signal $x(v_1), \dots, x(v_n)$ as samples of a GP with mean 0 and covariance function $R_{xx}(\mathbf{d})$ either

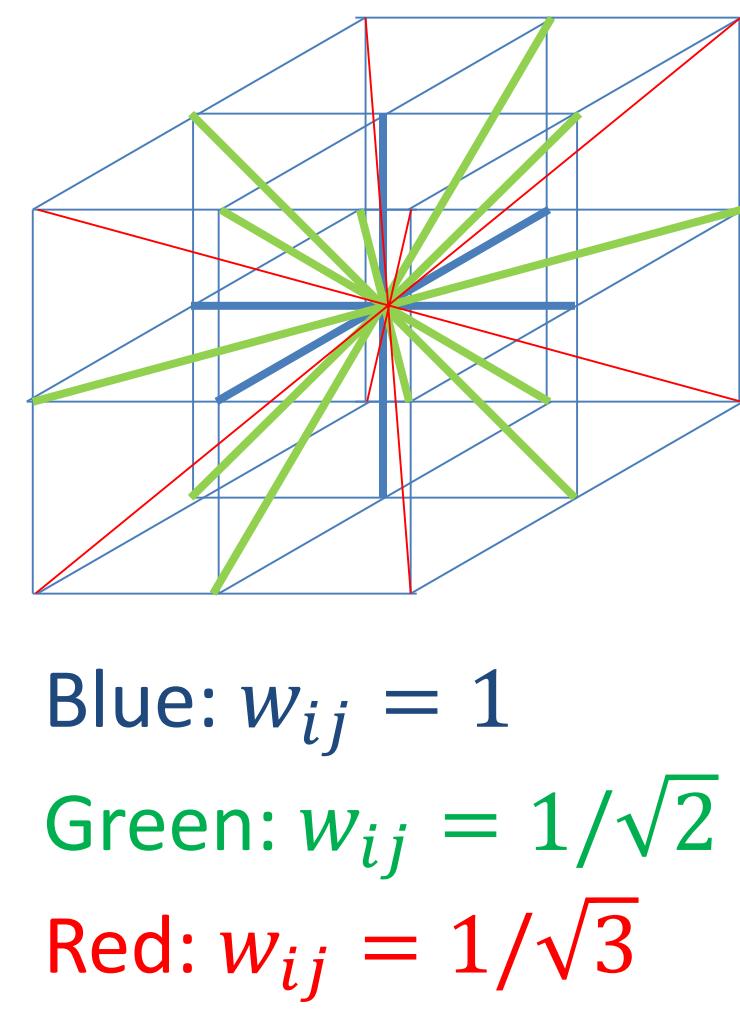
- Modeled, e.g., as $R_{xx}(\mathbf{d}) = \sigma^2 \rho^{-|\mathbf{d}|}$ or
- Estimated, e.g., as $R_{xx}(\mathbf{d}) = \frac{1}{|\Phi_d|} \sum_{(\mathbf{u}, \mathbf{v}) \in \Phi_d} x(\mathbf{u})x(\mathbf{v})$

"GPT" is KLT

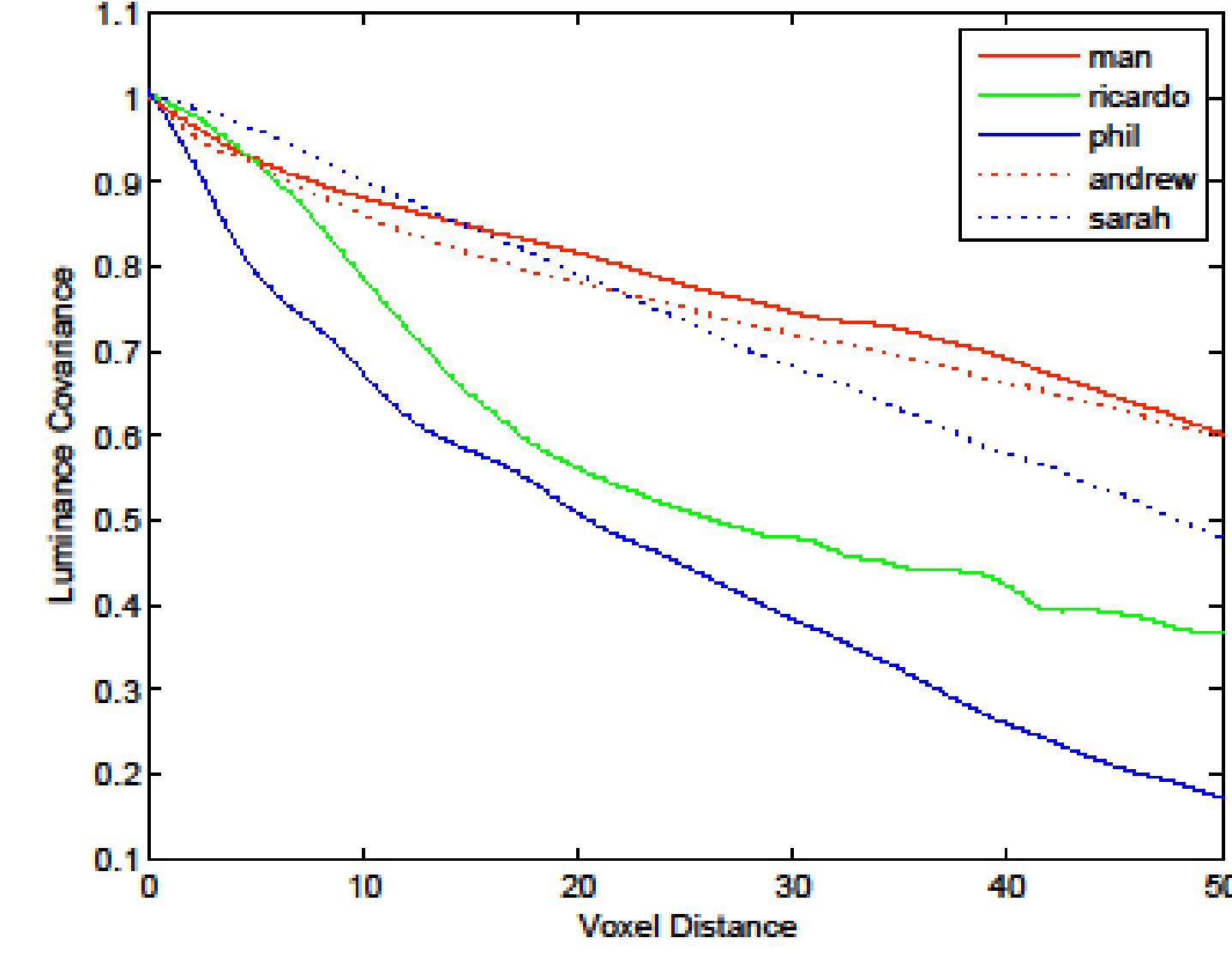
Comparison

Data sets

GMRF model



Covariance function

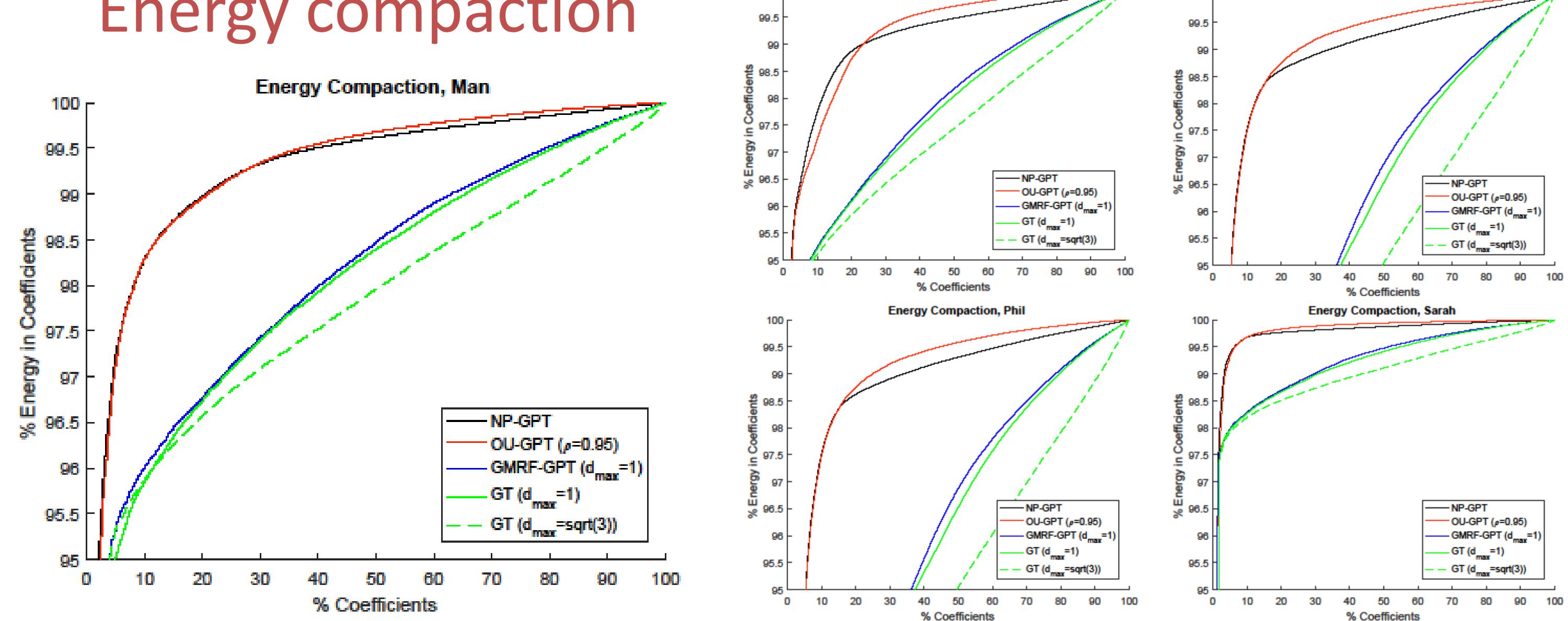


Transform coding gain (dB)

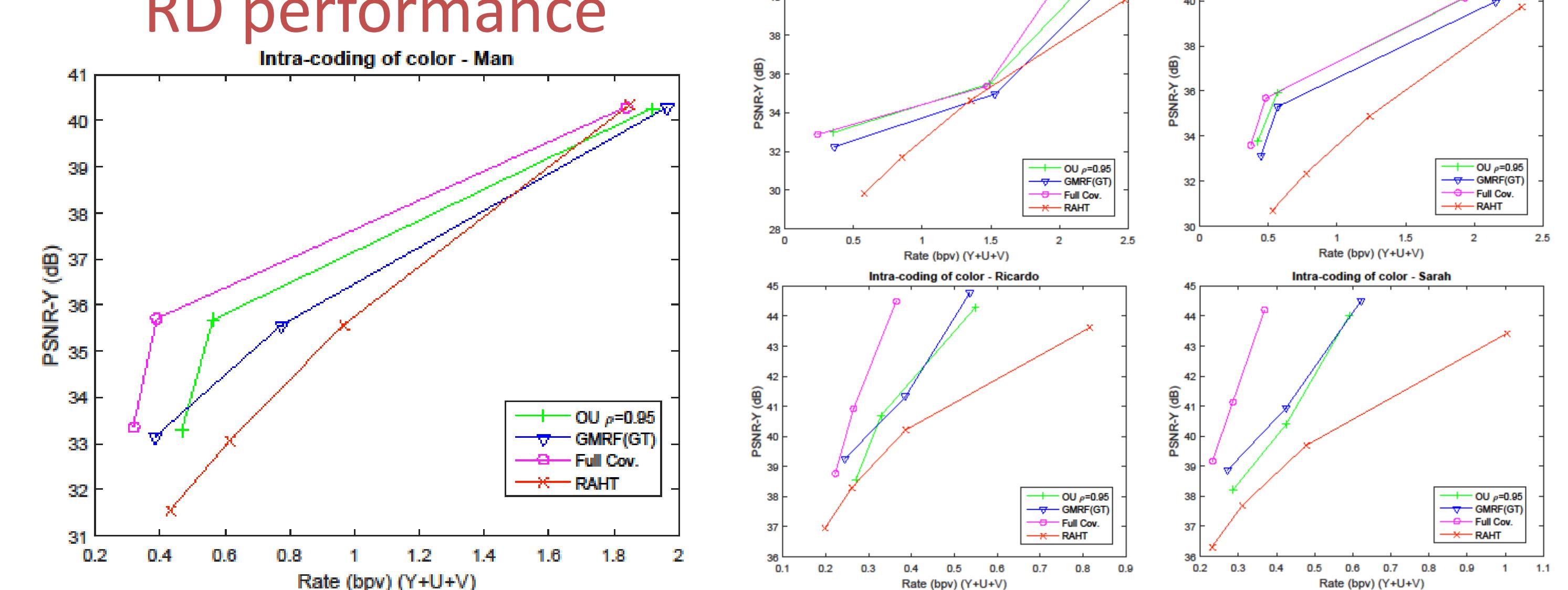
Data set	GFT	GPT
Man	14.9	18.9
Andrew	13.2	17.6
Ricardo	9.8	16.4
Phil	17.9	24.8
Sarah	20.0	28.3
Average	15.1	21.2

6 dB difference

Energy compaction



RD performance



Conclusion

For signals defined on an irregular domain embedded in Euclidean space, consider modeling them as Gaussian Processes.

References

P.A. Chou and R.L. de Queiroz, *Gaussian Process Transforms*, ICIP 2016, to appear.

R.L. de Queiroz and P.A. Chou, *Transform Coding for Point Clouds using a Gaussian Process Model*, TIP, submitted.