
Secure Data Exchange: A Marketplace in the Cloud

Ran Gilad-Bachrach1, Kim Laine1, Kristin Lauter1, Peter Rindal1,2, and Mike Rosulek1,2

1Microsoft Research, Redmond, USA
2Oregon State University, Oregon, USA

June 14, 2016

Abstract

A vast amount of data belonging to companies and individuals is currently stored in the cloud
in encrypted form by trustworthy service providers such as Microsoft, Amazon, and Google.
Unfortunately, the only way for the cloud to use the data in computations is to first decrypt
it, then compute on it, and finally re-encrypt it, resulting in a problematic trade-off between
value/utility and security. At a high level, our goal in this paper is to present a general and
practical cryptographic solution to this dilemma.

More precisely, we describe a scenario that we call Secure Data Exchange (SDE), where
several data owners are storing private encrypted data in a semi-honest non-colluding cloud,
and an evaluator (a third party) wishes to engage in a secure function evaluation on the data
belonging to some subset of the data owners. We require that none of the parties involved learns
anything beyond what they already know and what is revealed by the function, even when the
parties (except the cloud) are active malicious. We also recognize the ubiquity of scenarios
where the lack of an efficient SDE protocol prevents for example business transactions, research
collaborations, or mutually beneficial computations on aggregated private data from taking
place, and discuss several such scenarios in detail.

Our main result is an efficient and practical protocol for enabling SDE using Secure Multi-
Party Computation (MPC) in a novel adaptation of the server-aided setting. We also present
the details of an implementation along with performance numbers.

1 Introduction

1.1 Motivation

Cloud storage is becoming the de facto way for businesses to manage their growing stockpiles
of data, with an incredible amount of data already being stored in the cloud: Microsoft’s Azure
service alone has over 50 trillion objects.1 Basic security standards require data to be encrypted
both in transit to or from the cloud, and when it remains at rest in the cloud. Yet data at
rest has only limited value. Being able to compute on the encrypted data without having to
decrypt it first would massively increase its utility, and in some cases enable entirely new markets
for cloud technologies. Unfortunately computing on encrypted data is notoriously difficult, often
requiring highly sophisticated and costly cryptographic techniques such as homomorphic encryption.
Currently the standard approach is to perform the computations on unencrypted data, resulting in
an apparent trade-off between utility and privacy. Furthermore, users of cloud storage list security

1http://www.businessinsider.com/microsoft-azure-usage-doubled-2015-4

1



of their data as their biggest concern2, and that concern is significantly amplified when the data is
used for computations. Hence, at a high level, we will address the following question in this paper:

What is the best way to perform useful computations on the huge amounts of data already
stored in the cloud, while preserving privacy to the greatest possible extent?

A practical and adoptable solution should satisfy at least the following requirements:

• The system should leverage the existing cloud storage infrastructure. Cloud service
providers are already equipped to store the data of their customers, so data should either
remain stored in its existing form, or at least in some other “reasonable” form that causes
little or no extra overhead in the cloud storage costs. An example of an “unreasonable”
requirement would be an encoding/encryption that is 128 times larger than the plaintext
data. We would like to point out that this requirement immediately rules out most forms of
homomorphic encryption.

Whether encrypted or unencrypted, data in the cloud must be persistent in the sense that it
can be stored for an arbitrarily long period of time, and updatable so that the data owners
can easily append to it, or ask the cloud to delete parts of it.

• The system should align to the existing incentives for cloud services. Users store their
data in the cloud to avoid managing their own storage solutions on site and to benefit from
collective economies of scale.

In a system for computations in the cloud, often there is one party with the majority of
interest in the outcome of the computation. That party, along with the cloud provider, are the
only ones willing to expend significant effort to carry out computations with a cryptographic
security guarantee. Other parties, whose data might be involved in the computation, should
have only minimal involvement in the computation (e.g., only to authorize a computation).
As a corollary, data should not require expensive maintenance in order to maintain security
– the same data should be reusable for many computations with different parties.

• The system should use trust models that reflect the current reality of cloud services.
Users of cloud storage place some trust in the cloud service providers, but that trust is limited.
Sensitive data can be encrypted before being stored in the cloud, reflecting a threat model in
which the cloud provider is considered semi-honest3. Tools such as proofs of retrievability [13],
which protect against more severe active malicious behavior by the cloud provider, are rare in
practice. While protection against fully malicious cloud providers would be ideal, the reality
is that users with this perception of cloud providers are unlikely to be using the cloud for
storage anyway.

The system should leverage this limited trust in the cloud provider to reduce the cost of
computations as much as possible. Of course, some security requirements are non-negotiable:
the data owners should have absolute control over how their data is being used.

Some readers may immediately recognize Secure Multi-Party Computation (MPC) (see e.g.
[31, 20]) as the “textbook” solution to the scenario described above. Indeed, our solution is based

2http://searchcloudstorage.techtarget.com/feature/More-companies-turn-to-cloud-storage-service-providers
3Semi-honest adversaries follow the protocol but attempt to learn more than their intended share of information

from their view of the protocol execution. Malicious adversaries can deviate arbitrarily from the protocol. The cloud
is non-colluding if the messages it sends to the other parties reveal no information about the cloud’s input other than
what can be learned from the output of the function.

2



on MPC techniques, yet we believe that existing MPC research does not address many of the central
aspects of our setting. For example, MPC does not naturally provide reusable encryption of the
data of any of the parties involved, and as such is non-trivial to integrate with secure cloud storage.
In addition, in plain MPC all of the parties involved typically have to participate in an online phase
with a linear amount of work and communication, which is in practice often unacceptable.

In this paper we will describe a practical protocol that allows an arbitrary number of data
owners to store data in encrypted form to a cloud service in a persistent and updatable manner,
and allows a third party (an evaluator) to compute a function on the data. The result of the
function can be shared with any subset of the parties involved, and none of the parties will learn
anything about the data beyond what they already know and what will be revealed by the function
output. The cloud learns nothing. The data stored in the cloud can be used repeatedly for an
arbitrary number of such interactions. In section 4 we prove that our solution remains secure in
the presence of malicious data owners and/or evaluator, as long as the cloud remains semi-honest
and does not collude with the evaluator. We call this scenario Secure Data Exchange (SDE).

1.2 Secure Data Exchange

To further motivate our construction, consider the following realistic business scenarios that face
severe and perhaps insurmountable difficulties due to data privacy issues:

• A pharmaceutical company would like to purchase anonymized patient medical records from
several hospitals for research purposes. Since the price of such medical data is typically very
high, the pharmaceutical company would like to have a certain confidence in the quality and
usefulness of the data before agreeing to buy it. The sellers are not willing to share the data
with the buyer before a deal has been agreed upon. Even if the data would not be maximally
interesting, the buyer might agree to buy it at a lower cost, but such a negotiation is again
difficult without the seller sharing precise information about the data. One solution used in
practice is for the seller to agree to compute certain statistics on the data, but this typically
provides too low of a resolution for the buyer to make a truly informed decision.

• A medical center would like to compare the expected outcome of its treatment plan for
pneumonia with the expected outcomes of the treatment plans used at competing medical
centers. The problem is that no-one wants to publicly disclose such information for the fear
of being called out for providing less effective care.

• A company is developing machine learning models that try to assist primary care providers in
choosing the best treatment plans for their patients in a variety of situations. The company
would like to buy anonymized patient medical records from hospitals to further develop and
study their models, but only if their data does not already fit the model well enough. This
could in theory be tested by running simple statistical tests comparing the model parameters
with the data, but in practice not because the hospital is not willing to disclose its data before
a deal has been made.

• A big enterprise wants to outsource a part of its internal services to an external provider. The
legal and practical costs for realizing such a partnership might be so enormous, e.g. for making
sure that strategic data of the enterprise will not get disclosed by the external provider, that it
would end up being more efficient for the enterprise to acquire its own resources for providing
the service in house.

3



• A company producing chocolate bars would like to learn detailed information about the
chocolate bar market (e.g. market elasticity) by combining its own data with the data of
other companies in the same or related market. Its goal would be to reduce costs through
improved efficiency and better pricing, but unfortunately the other companies are not willing
to share their private financial data.

• In the near future when genomic sequencing is projected to become even more commonplace
than it is today, it is conceivable that individual people would like to have an opportunity
to sell access to a part of their genomic data to trustworthy companies (e.g. pharmaceutical
companies) or research groups, who are willing to pay an appropriate price. Such individuals
would like to upload their data in encrypted form to a special marketplace, which potential
buyers could then run aggregated and anonymized query at will. This is somewhat similar to
what Project Beacon4 provides, with the significant distinction that Project Beacon operates
on a distributed network of hospitals and as such is not easily accessible to individuals.

For the examples above, current solutions that are actually used in practice require substantial
and costly litigation to preserve the interests of each party, while still typically failing to preserve
full privacy. In some scenarios anonymization procedures end up causing the resolution of the data
to decrease so much that a significant part of its value is lost in the process. Instead, we observe
that each of these scenarios can be framed in terms of SDE, which in turn is enabled by our general
solution.

In some instances (see the examples above) the SDE framework can be viewed as a particular
type of a reverse auction with extra security and privacy measures, or a secure marketplace where
several sellers (data owners in Section 1.1) have valuable data they wish to sell, and have uploaded
it in the cloud in encrypted form to put it on the market, and a buyer (evaluator in Section 1.1)
wants to buy data from one or more of the sellers but only if it satisfies certain conditions. In
typical situations the price the buyer would offer depends on some particular qualities of the data,
and sellers might want to only agree if the price offered is above some threshold, so a negotiation on
the value of private data must take place. In some cases the buyer would prefer to keep the price it
is willing to offer secret, and the sellers would not want to reveal their conditions for accepting or
rejecting offers. In situations with more than one seller, the buyer might want to only engage in a
deal with a particular seller, or sellers, whose data they determine to be of most use to the buyer,
whose price is the lowest, whose data has been on the market for the shortest/longest time, or any
combination of properties of this type. In a slightly more general situation, the buyer who might
not be interested in buying the data itself, but only some limited number of bits of information
about it, e.g. the value of a particular function evaluated on it. In this case the price might depend
both on the function and on the bit width of the output.

As was briefly mentioned in Section 1.1, our solution for enabling SDE is based on Secure Multi-
Party Computation (MPC), which in its most basic form allows two or more parties to evaluate a
function on their private inputs in such a way that one or more of the parties obtains the output
of the function, but none of the parties learns anything about each other’s inputs, except what can
perhaps be inferred from the output of the function. While classic MPC can easily meet some of
the requirements of SDE (recall Section 1.1), it falls far from meeting all of them.

To overcome the limitations of classic MPC, and motivated by the scenarios described above, we
are naturally led to consider a different setting where a semi-honest and non-colluding cloud assists
in the MPC and does not contribute any input of its own, nor receive any output. Such a server-
aided setting has been extensively studied and shown to be efficient (see [15, 14, 10]). Our starting

4https://beacon-network.org

4



point is similar to that of e.g. [15], but we develop the server-aided approach in a new direction that
we find to be strongly motivated by practical applications. In particular, the security model that
we focus on maintains data privacy even if everyone except the cloud is arbitrarily malicious, but
is still flexible enough to allow for the powerful features described in Section 1.1. We implement
several applications and evaluate their performance to demonstrate the practicality of our solution
in section 5.

We are not aware of any earlier work that would focus on SDE as a fundamental tool for
solving a wide variety of data privacy issues in business transactions. In fact, we believe that an
efficient implementation of the SDE framework, such as the one that we present, can significantly
enhance existing and open up entirely new business opportunities in areas that have earlier been
unrewarding or impossible due to privacy concerns.

1.3 Overview of our Protocol

We start our overview with a simplified SDE protocol that achieves security against semi-honest
adversaries (with a non-collusion assumption). The parties involved are denoted as follows: C
(cloud), P1, . . . ,Pn (data owners), and Q (a third party/function evaluator). The input data of a
party Pi is denoted by xi and any input data of Q by xQ.

In many of the examples of Section 1.2 the data xi is meaningful to use for several executions of
the protocol with different Q, however, it is also possible for the Pi to have per computation inputs
analogous to xQ, but we omit this simple addition in our discussion here.

The semi-honest protocol works as follows. First, each Pi uniformly samples a secret seed
ri ← {0, 1}κ and computes zi := xi ⊕ g(ri), where g is a pseudo-random function (PRF) that all
parties have agreed to use. Then each Pi uploads its secret-share zi to C for long-term storage.

When a party Q wishes to engage in SDE with some subset of the parties Pi, it will ask those
particular Pi for their respective seeds ri. After all involved parties have agreed on a function
f(x1, . . . ,xn,xQ) to be computed, C and Q engage in a secure 2PC protocol where the private
input of C is the set of the zi and the private input of Q is the set of the g(ri) together with its
own private data xQ. The secret-shares zi and g(ri) are combined only inside the 2PC protocol.

We point out several important aspects of this approach:

• While we use the language of secret sharing to describe zi = xi ⊕ g(ri), in practice g(ri) will
be AES in counter-mode keyed by ri. Hence zi, which is what Pi uploads to the cloud, is in
fact a standard AES-CTR encryption of xi under an ephemeral key.

• By choosing g to be AES in counter mode, it becomes easy to perform computations on any
subset of the data xi. The cloud C provides the appropriate subset of zi while the evaluator
Q can compute the subset of g(r) with random access. We note that this approach leaks to
all parties (including the server) which subset of the data is used. However, it is well-known
that hiding this access pattern would require all parties to “touch” every bit of their shares.

• Our goal is to reduce the burden on each Pi as much as possible, beyond simply uploading their
data to the cloud. By letting one of the shares g(ri) be pseudorandom, the communication
from Pi and Q is reduced to a constant (independent of |xi|).

• By exploiting the linearity of the secret-share reconstruction, it is possible fold it into the OT
extension such that the labels encoding g(ri) need not be sent.

We now describe our enhancements to this basic protocol, making it secure against malicious Q
and Pi, and a semi-honest cloud C. The change results in a security/performance trade-off which
preserves the practicality of the protocol.

5



Preventing Q from cheating in the 2PC with C: When Q is potentially malicious, it may try
to cheat in the 2PC protocol execution with C. The natural way to address this is to use the garbled
circuits paradigm of Yao [31, 20]. This protocol paradigm is naturally secure against a malicious
receiver.

Forcing Q to use the correct inputs: In Yao’s protocol between C and Q, C produces a so-called
garbled circuit. A garbled circuit can be thought of as an encryption of a normal Boolean circuit,
where all wires hold encrypted (garbled) binary values. The garbled output of the garbled circuit
can be decrypted using keys known only to the garbler, i.e. the cloud C. To evaluate the garbled
circuit, Q must obtain garbled inputs corresponding to its own input to the computation. This is
typically done using oblivious transfer (OT) (see Section 2.1 and Section 2.2 for details).
Q is supposed to use g(ri) as its input to the 2PC, and we need a way for the data owners Pi

to bind Q to these inputs in the oblivious transfers. We achieve this by a novel adaptation of the
malicious-secure OT extension (OT-e) protocol of [16] (see also [12, 26, 1, 2]). At a very high level,
Pi can execute the OT-e protocol with C in an offline phase, with Pi acting as the oblivious receiver
(OT receiver). There is a point in the protocol at which Pi would send a large message that binds
it to g(ri) as its choice bits. Rather than send this message, we have Pi commit to it.

At this point, the receiver’s internal state in the OT-e protocol can be derived from a short
seed (and its input g(ri)). For an SDE computation, Pi sends this short seed to Q, who can then
reconstruct the state and continue the OT-e protocol. The commitment made by Pi ensures that
Q must complete the OT-e protocol using g(ri) as its OT selection string.

This approach to ensuring correct inputs has the following advantages:

• Pi must compute the long message for the OT-e protocol (it has length O(κ|xi|)), but Pi does
not need to send it. Only a short commitment (κ bits, in the random oracle model) needs to
be sent to C, and a short seed (κ bits) sent to Q.

• Pi’s involvement in the OT-e input-binding technique happens only once, i.e. at the time it
uploads the data to the cloud. We show that performing a single OT-e instance suffices for
using the same dataset in many SDE computations.

• By exploiting the internal structure of the OT-e protocols, we can allow the SDE computations
to use only certain subsets of the data. In short, Pi makes a commitment to a long OT-
e message, whose blocks have a 1-to-1 correspondence to the bits of g(ri). Hence, if the
commitment takes the form of a Merkle tree, then Q can efficiently and selectively decommit
to only a specified region of this OT-e message.

Overall, Pi’s involvement in the SDE protocol is minimal. While uploading data to the cloud,
Pi performs some additional cryptographic processing. However, the data uploaded to the cloud
is simply an AES-CTR encryption of its data. When Q wishes to perform a computation on Pi’s
data, Pi indicates its approval to C somehow, and then just sends a very short O(κ)-bit message to
Q.

1.3.1 Security

We describe the security of our final protocol in more detail in Section 4. For now we merely
mention that the protocol is secure under the assumptions that:

• The cloud C is semi-honest, and

• Any number of P1, . . . ,Pn,Q can be potentially malicious, and

6



• The cloud C and evaluator Q do not collude.

To formally model a setting in which adversaries do not collude, we use the definitions and results
of [14].

1.4 Related Work

Our work is most closely related to protocols in the server-aided MPC model, epitomized by the
Salus protocol of Kamara et al. [15]. Salus, and other protocols in this model [8, 7, 23, 9], consider
weak parties who wish to outsource as much of an MPC computation to a powerful cloud server
as possible. The server itself has typically no input of its own, and it receives no output from the
MPC. In this sense the goals of Salus are partially similar to what we are trying to achieve. In
fact, [15] describes a protocol similar to the semi-honest variant of our protocol (see Section 1.3
below), but with an obviously different focus.

However, our work deviates significantly from this line of work in how the protocol is adapted
to a particular use case. The main differences are:

(1) Difference in security model: In the server-aided protocols listed above, the cloud is not
assumed to be semi-honest. This difference results in a severe asymptotic and concrete efficiency
penalty, and makes a direct performance comparison less valuable. Our focus on this weakened
security model stems not only from considerable performance gains, but also from the real-world
applications that this work addresses. Foremost in our considerations is the need for a highly
flexible framework and the ability to leverage cloud storage in a secure manner.

The security of the Salus protocol is proved under two settings: one in which the server is
covert [3] and non-colluding, and another one in which the server is malicious and non-colluding,
and all but the circuit evaluator are malicious. To achieve security against the server, Salus uses cut-
and-choose [25, 21, 22, 17, 30, 19] which results in as much as a 40× overhead in communication and
computation. Despite this relaxation of the security model, Salus requires a strong non-collusion
assumption. Even in the presence of a semi-honest adversary, if any party colludes with the server,
all of the parties’ inputs are trivially leaked. Our protocol relaxes this non-collusion assumption to
only apply between the cloud and the evaluator.

The Whitewash protocol [7] considers the malicious setting with only two parties where one
outsources their work to a cloud. Whitewash achieves superior security than Salus in that the party
who outsources their work can not learn the other parties input when colluding with the cloud.
However, none of the protocols protect against a cloud colluding with the circuit evaluator due to
the server aided paradigm reducing to two party secure computation.

(2) The protocols in this model (with one exception — see below) do not consider long-term
storage and repeated use of the data of the weak parties, and as such is not directly applicable to
the SDE setup. In particular, in the Salus protocol all parties must perform a bandwidth-intensive
Distributed OT protocol for each computation. Furthermore, Salus does not specify any mechanism
for allowing parties to receive private outputs but instead assumes that each party receives the same
output. Trivially, any secure computation protocol can provide private output by encrypting (e.g.
one time pad) each party’s output under an input key. However, this results in additional overhead
that breaks our requirement for data owners to perform a constant amount of online work.

The work of Mood et al. [23] does consider long-term storage of MPC data. However, the data is
represented between computations in garbled form (i.e., as wire labels) which incurs a multiplicative
storage overhead of κ (e.g., 128) bits. For very large data, of the type that may be outsourced to
the cloud, such an overhead would be prohibitive.

7



2 Preliminaries

2.1 Garbled Circuits

Conceived in the seminal work of Yao [31], garbled circuits allow two parties with respective private
inputs x and y to jointly compute a possibly probabilistic functionality f(x,y) = (f1(x,y), f2(x,y)),
such that the first party learns f1(x,y) and the second party learns f2(x,y). Garbled circuits have
become fundamental building blocks in many cryptographic protocols in recent years, and while
they are most widely used in two-party secure function evaluation, other multi-party protocols
make extensive use of them (see e.g. [27, 11]).

Formalizing appropriate security definitions and proving the security of Yao’s protocol under
these definitions was a difficult task, and was finally completed in 2009 by Lindell and Pinkas [20].
Intuitively, the security requirement is that no information is learned by either party beyond their
prescribed output (privacy) and that the output distribution follows that specified by f (correct-
ness).

The garbled circuits construction can be thought of as a compiler which takes a functionality f
as input and outputs a secure protocol for computing f . First, the functionality is expressed as a
Boolean circuit C consisting of gates (typically and and xor gates). Each gate g takes two logical
bits a, b ∈ {0, 1} as inputs and returns a logical bit c := g(a, b) as output. The secure protocol then
evaluates each gate of the circuit C such that it hides the logical values in all internal wires and
contains a mechanism to decode the garbled output wires.

The first party known as the garbler generates the garbled wires and the garbled gates. The
other party, known as the evaluator, needs to obtain the garbled wire labels from the garbler for their
respective input. To ensure the privacy of the evaluator’s input, this must be done without revealing
to the garbler which labels the evaluator picks. In addition, the evaluator must be prevented from
evaluating the garbled circuit on several inputs, so for each garbled wire the evaluator is allowed
to learn precisely one of the two labels. This is achieved using Oblivious Transfer (OT), which we
will discuss in 2.2. Once the evaluator has learns the input wire labels for a garbled gate, exactly
one garbled output wire labels can be learned. A garbled circuit is the collection of all the garbled
gates and may be evaluated with an input encoding, i.e. one label per wire. The above process can
then be repeatedly applied to each gate of the garbled circuit.

For security of the garbled circuits construction, the evaluator will need to learn exactly one
of the two output wire labels C0, C1, while the other one must remain entirely unknown. It can
then be seen that the use of malicious secure OT (see 2.2) yields a protocol that is secure against
a malicious evaluator who may arbitrarily deviate from the protocol. However, the garbler can
maliciously construct a garbled gate or an entire circuit that computes the wrong logic. The
evaluator may not be able to detect such malicious behavior, and it can be shown that all security
properties of the construction are lost. A standard technique for overcoming this is known as cut-
and-choose, in which the garbler generates several garbled circuits and sends them to the evaluator.
The evaluator randomly checks some of them for correctness, and if all turn out to be honestly
generated the evaluator evaluates the remaining ones. When the evaluator checks and evaluates
O(κ) of the circuits, the garbler only succeeds in this attack with exponentially small probability
in the security parameter κ.

Due to the significant overhead incurred in sending several garbled circuits, in this work we will
avoid the use of cut-and-choose and instead assume that the garbler is semi-honest and garbles the
correct circuit. In particular, the cloud C will take the role of garbler and receive no output.

There are several ways of improving the practicality and efficiency of garbled circuits. Most
importantly, xor gates can be evaluated for free using the Free-XOR technique of [18], and garbled

8



and gates can be reduced down to two 128 bit AES blocks using the half-gates construction of [32].
Finally, note that it is not necessary to know the full garbled output labels for decoding, as long as
they are known to differ at a particular (typically the last) bit position. This makes it very easy
for the garbler to communicate the decoding information to the evaluator, namely all the garbler
needs to do is to give the evaluator a string of permutation bits that tells the evaluator how the
last bit of a particular garbled output label corresponds to the logical output value [21].

2.2 OT Extension

Oblivious Transfer (OT) is a fundamental cryptographic primitive with numerous applications to
modern protocols. As was explained in 2.1, we will use OT for communicating wire labels in Yao’s
protocol from the garbler to the evaluator, without revealing the evaluator’s input to the garbler.
The idea is that a sender S has two input strings x0 and x1 of length `, and a receiver R has a
selection bit b ∈ {0, 1}, and wants to obtain xb from S in an oblivious way, meaning that S does
not learn b and R is guaranteed to obtain only xb and learns no information about x1−b. Figure 1
describes an ideal functionality for the oblivious transfer primitive.

Parameters: A sender S and a receiver R.

Main Phase: On input (select, sid, b) from R and (send, sid, (x0,x1)) from S, send R
(recv, sid,xb).

Figure 1: Fot ideal functionality.

While one round of OT is fairly efficient to do [28], it requires public-key primitives and as such
is not practical for exchanging very large amounts of information. For example, in Yao’s protocol if
the bit-length of the evaluator’s input is ` and each wire label has length κ (typically the labels are
AES blocks and κ = 128), the evaluator must engage in ` OTs with the garbler. This is problematic
when ` is large, so a technique called OT extension was invented (see [12, 26, 1, 2, 16]) to efficiently
extend κ so-called base OT s into ` OTs. More precisely, instead of having to perform ` OTs of
length κ, it will be enough to perform κ OTs of length κ. In this section we will explain how OT
extension works following [16]. Subsequently we will describe a novel adaptation of OT extension
to force the evaluator in Yao’s protocol to either remain honest, or with overwhelming probability
to fail the garbled circuit evaluation. In this description we will use OT as a black box and focus
on explaining the extension procedure.

We break the OT extension protocol into several steps. The protocol we describe below is a
slight variant of what is referred to as correlated OT extension in [16]. It is not secure against an
active malicious R, but is easily strengthened to be by adding a minimal amount of overhead, as
is also described in [16]. For the sake of simplicity we will omit describing the malicious secure OT
extension protocol.

Let {(xi0,xi1)} for i = 1, . . . , ` be pairs of κ-bit messages that S wants to obliviously transfer
to R. In other words, R has an `-bit selection string r := (r1, . . . , r`) and it wants to obtain the
messages xiri in an oblivious way. The semi-honest OT extension protocol ΠOT-e that we will use
is described in Figure 2.

It will be important to understand the amount of communication between R and S in each
step. In the Setup Phase a small amount of OT communication between R and S takes place.
Note that typically we would take κ := 128. In the Select and Receive Phases a significant amount
of communication takes place. Matrices of size ` × κ are sent between R and S, where ` can
potentially be very large.

9



Parameters: A sender S and receiver R. A security parameter κ, and a number ` (the
number of OTs to be obtained).

Setup Phase: On common (setup, sid, κ): R uniformly samples kib ← {0, 1}κ for each
i ∈ [κ], b ∈ {0, 1}, and S uniformly samples ∆← {0, 1}κ.

For each i ∈ [κ], R sends (send, (sid, i), (ki0,k
i
1)), and S sends (select, (sid, i),∆i) to Fot,

who responds with (recv, (sid, i),ki∆i
).

Select Phase: Let tib := g(kib). On input (select, sid, r) from R, where r is an `-bit selection
string, R computes a matrix u ∈ {0, 1}`×κ whose i-th column is ui := ti0⊕ ti1⊕ r, and sends it
to S. For each i ∈ [κ], S computes `-bit column vectors qi := (∆i · ui)⊕ ti∆i

= ti0 ⊕ (∆i · r).

Receive Phase: On input (send, sid, (i,xi0,x
i
1)) from S, let ti (resp. qi) denote the i-th row

of the `× κ matrix formed from the column vectors tj0 (resp. qj) for each j ∈ [κ]. S sends

(i,yi0,y
i
1) :=

(
i,xi0 ⊕H(i,qi),x

i
1 ⊕H(i,qi ⊕∆)

)
to R, who computes xiri = yiri ⊕H(i, ti) and outputs (recv, sid, (i,xiri)), for each i ∈ [`].

Figure 2: Semi-honest OT extension protocol ΠOT-e

3 Our Solution

3.1 Semi-Honest Protocol

We will now explain our basic protocol that is secure in a semi-honest setting, where in addition
C and Q are non-colluding. The parties involved are the data owners P1, . . . ,Pn, where each Pi
holds persistent input data xi that is stored in the cloud C, and Q who acts as the garbled circuit
evaluator and holds input data xQ. The parties anticipate that some subset {Pi | i ∈ I} of them
will perform a cloud-assisted private computation with Q over their datasets at some later point
in time.

In an offline phase, each party Pi samples ri ← {0, 1}κ uniformly at random, and uploads a
secret-share zi := xi ⊕ g(ri) of their dataset xi to the cloud C. Here g(ri) is an agreed-upon public
PRF, such as AES in counter-mode keyed by ri.

Let I := {I1, . . . , Im} ⊆ [n]. At a later time, Q along with {Pi | i ∈ I} decide to evaluate a
functionality

f({xi}i∈I ,xQ) := (f1({xi}i∈I ,xQ), . . . ,

fm({xi}i∈I ,xQ), fQ({xi}i∈I ,xQ)) ,

where each data owner PIj learns fj({xi}i∈I ,xQ), and Q learns fQ({xi}i∈I ,xQ). Any additional
per computation input data x′i for party Pi is expressed as being appended to the end of zi, and
will be discussed in greater detail in 3.3.3. The cloud C verifies that all involved parties wish to
compute f . The data owners {Pi | i ∈ I} send their secret seeds ri to Q, who computes the
masks g(ri). A two-party secure computation is then performed between C and Q to compute the
related functionality

f̃ ({zi}i∈I , {g(ri)}i∈I ,xQ) := f ({zi ⊕ g(ri)}i∈I ,xQ) .

To evaluate f̃ securely using MPC, the cloud C acts as the garbler and generates the garbled
circuit that computes the functionality f̃ , and sends it to Q (recall 2.1). In the oblivious transfer
phase Q will select the input wire labels corresponding to g(ri). In the traditional Yao’s protocol C

10



would input the corresponding wire labels by their truth values resulting in Q obtaining the labels
that encode g(ri). C would then send the labels encoding zi so that Q could evaluate the f̃ circuit.
Instead, we employ an optimization where C inputs the wire labels for g(ri) into the OT protocol
after permuting them by zi. This results in Q obtaining the effective input wire labels with values
xi = zi⊕ g(ri) with no additional overhead. In particular, C only garbled the circuit corresponding
to f and Q obliviously learns the wire labels encoding xi. After evaluating the garbled circuit,
Q sends to party PIj the encoding information yj (i.e. the permute bits) for the garbled output
corresponding to the function fj , and keeps the encoding information yQ corresponding to the
garbled output of fQ to itself. The cloud C sends PIj the corresponding decoding information dj
that PIj uses to obtain its result fj({xi}i∈I ,xQ) = dj⊕yj , and it sends Q the decoding information
dQ that Q similarly uses to obtain its result fQ({xi}i∈I ,xQ) = dQ ⊕ yQ.

This basic protocol securely and privately computes the functionality f({xi}i∈I ,xQ) under
the assumption that the parties are semi-honest, and that C and Q are non-colluding. By the
security properties of garbled circuits, Q’s view of the output encoding information yj (resp. yQ)
is uniformly distributed without the decoding information dj (resp. dQ). Therefore, the evaluator
Q learns nothing more than their prescribed output and the ri values that data stored in the cloud
is encrypted under.

3.2 Enhanced Protocol

We will now describe several attacks against the semi-honest protocol and their respective solutions.
Looking forward, we will arrive at a malicious secure protocol subject to a non-collusion assumption
between the cloud and circuit evaluator.

3.2.1 Input Consistency

In 3.1 the party denoted by Q evaluates the garbled circuit computing the function f ′, which
reconstructs the 2-out-of-2 secret shares of the logical inputs and subsequently evaluates f . This
leads to a situation where Q can easily flip any set of input bits. In order to obtain malicious
security, it is necessary for Q to prove that they provided the correct value for the input secret
shares g(ri).

Suppose that instead of secret sharing Pi’s input xi between C and Q, Pi simply performs
oblivious transfer with C in the setup phase and forwards the wire labels to Q at the start of each
computation. While this achieves the desired security, it leads to a situation where Pi must send
a significant amount of data for each computation on its data. Instead, we will show how to adapt
OT-e (recall 2.2) in a non-black box manner to also achieve persistent cloud storage for Pi, as
in 3.1, with minimal online interaction.

For simplicity, suppose there is only one data owner P who has a secret seed r that it has sent
to Q. In the next step Q needs to obtain the wire labels from C corresponding to the bits of the
selection string c := g(r). Let ` denote the bit-length of c. We now explain the protocol ΠOT-e

(see Figure 2) in the context of our setup. At a high level, OT-e works in three phases. First κ
so called base OTs on κ-bit strings are performed. We note that these OTs are in the reversed
direction relative to the final OT messages. That is, the cloud C acts as a receiver and Q acts
as the sender with uniform messages ki0,k

i
1 ∈ {0, 1}κ in the i-th base OT. The cloud C samples

∆ ∈ {0, 1}κ uniformly, and selects ki∆i
.

In the second phase, suppose that OT-e should result in ` OTs of length κ of pairs {(mi
0,m

i
1)},

where the receiver Q wants to learn the messages indexed by the selection string c ∈ {0, 1}`, i.e.
mi
ci for every i ∈ [`]. Both parties expand the kib values to be ` bits by computing tib := g(kib). The

11



cloud C now holds the larger messages ti∆i
∈ {0, 1}`. Q knows both ti0 and ti1, but does not know

which one is held by C. The OT-e receiver Q then computes ui := ti0⊕ ti1⊕ c for every i ∈ [κ], and
sends them to C. This is the final message sent by Q in the protocol, and commits it to the choice
of the selection string c.

In the last phase, the cloud C computes a matrix q ∈ {0, 1}`×κ, where the i-th column is
qi := (∆i · ui) ⊕ ti∆i

= ti0 ⊕ (∆i · c). Let t0 ∈ {0, 1}`×κ be the matrix whose i-th column vector

is ti0. Let ti denote the i-th row of t. Then, by definition, the i-th row qi of q is qi = ti ⊕ (ci ·∆),
where ti is the i-th row of t. To see this, consider the case when ci = 1. Then in the j-th bit
location of the i-th row of q there is an additional (ci ·∆j) = ∆j additive term, and similarly when
ci = 0 there is no additional term. The cloud C then one-time pad encrypts the i-th message pair
{(mi

0,m
i
1)} as yi0 := mi

0 ⊕H(i,qi) and yi1 := mi
1 ⊕H(i,qi ⊕∆), and sends them to the receiver.

The receiver Q can then compute mi
ci = yici ⊕H(ti).

We now show how to efficiently distribute this basic OT-e protocol described in Figure 2.2 to
the setting where P chooses which messages are learned in the OT, while allowing Q to be the
oblivious receiver. Critical in this observation is that the selection string c is fixed by P in the first
two phases described above, i.e. by choosing the base OT messages ki0, ki1, and the matrix u (with
column vectors ui). Once the cloud C receives these protocol messages, the final OT messages that
can be learned by the receiver are fixed.

Thus, in the offline phase, P will upload its data to the cloud as z := x ⊕ c. P will perform
the first two phases of OT-e using the correct c, and send the matrix u to C. C will then learn
the matrix q whose i-th row is qi = ti ⊕ (ci ·∆). In the online phase, P will send the seed r and
the seed used to derive the base OT messages kib to Q, who can then regenerate u, c = g(r), and
complete the OT-e with C. To prevent Q from cheating, C only needs to check that the matrix u
sent by Q is the same as that sent earlier in the offline phase by P.

As in the semi-honest protocol of 3.1, C will permute the input wire labels that Q will use
to evaluate the circuit with by z = x ⊕ c. This results in Q obtaining the wire labels encoding
x = z ⊕ c, while remaining oblivious to the value of x.

However, the downside of this approach is that C will have to store the κ × `-matrix u, which
is potentially huge. In addition, this places a heavy communication cost for the data owners Pi,
which we would like to avoid. The simplest solution is for P to locally compute the matrix u in
the offline phase, and send C only a small commitment to it. In the online phase Q will regenerate
the matrix and eventually send it to C, at which point C can open the commitment and verify that
the matrix Q sent is the correct one. This adds only a small κ-bit communication overhead for P.

In the case of multiple data owners P1, . . . ,Pn, the protocol described above is simply performed
for each of them individually.

3.2.2 Output Fairness

After Q has evaluated the garbled circuit and obtained the garbled outputs yi of all involved
parties Pi (and its own garbled output yQ), it needs to distribute yi to Pi, who then obtains the
corresponding decoding information di from C to recover the actual output bits. If C sends to Pi
the wire labels for both logical outputs for each output bit of Pi’s output, and one of them is what
Q sent to Pi, then Pi can be sure that Q indeed evaluated the circuit correctly and handed Pi the
correct output wire label, as Q will never be able to learn more than one of the two output labels
for any output wires.

Since C would need to send Pi two wire labels for each output bit, there is a possibly significant
communication cost involved in this, which we would like to reduce. One step in this direction is
for C to construct the output wire labels corresponding to Pi’s output of the garbled circuit from a

12



PRF with a seed rout
i . Now C can send rout

i to Pi, who can expand the PRF and obtain the output
wire labels and decode the output, significantly reducing the communication cost.

There is still a possibly significant communication cost involved inQ sending the the appropriate
output wire labels to Pi. This cost can be reduced by instead using the point-and-permute technique
first presented in [4]. Essentially, the garbling scheme will ensure that the last bits of each pair of
output labels are different, so that Q only needs to send these last bits to Pi (select bits), who only
needs to receive from C the permutation that matches them with the correct logical output bits.
The problem with simply using this approach is that it makes it very easy for Q to flip any of the
bits of Pi’s output. To prevent this, Q will compute the xor of all of the wire labels corresponding
to Pi’s output, and send it to Pi. Now C will send to Pi the seed for the PRF to compute the entire
output wire labels as we explained above. Pi can then compute the xor of the appropriate labels
received from C for each of its output wires, and verify that it matches the xor received from Q.
This way Pi can be sure that the output bits it gets from Q are indeed the correct ones. Once all
data owners have confirmed that they received valid encoded outputs from Q, the semi-honest C
will distribute the decoding information, and otherwise abort the protocol execution, guaranteeing
fairness.

The communication cost in the output distribution and decoding process for Pi is therefore κ
bits of communication with C and κ+ |yi| bits of communication with Q.

3.3 Improvements

3.3.1 Random Access

Typically in applications of garbled circuits circuits are garbled and evaluated at a significantly
faster rate than they are sent to the network interface, making the network communication into a
bottleneck. If the data owner and evaluator want to hide their access patterns to the private data,
they actually need to touch all of it at all times, which quickly becomes infeasible.

In many cases, however, it is not necessary to hide such access patterns, or only a part of the
access pattern needs to be hidden. We now explain how we can enable efficient random access to
private data inside the MPC, significantly reducing the size of data that needs to be touched, and
thus significantly reducing the size of the garbled circuit that needs to be communicated in the
online phase of our protocol.

Let P be any one of the data owners. Recall that in 3.2.1 P sends a commitment to its matrix
u to C. This commitment is opened by Q in the online phase of the protocol, guaranteeing that Q
uses the correct selection string in the OT-e protocol ΠOT-e (recall Figure 2). Instead of committing
to the entire matrix u, P can instead build a Merkle tree of commitments, where the leaves are
commitments to the individual rows of u. The j-th row of u corresponds to randomness associated
with the effective OT for the j-th wire label, so when C forms the garbled circuit it asks P to
provide a Merkle chain of commitments for all of the rows of the u matrix that the circuit needs
to touch. Q sends the corresponding rows of the matrix u to C, who opens the commitments,
guaranteeing that Q uses the correct selection string. This allows for efficient random access to the
data inside the MPC phase, reducing the communication overhead to quasi-linear in the amount of
data touched. More generally, one can imagine not committing to individual lines of the matrix u
in the leaves of the Merkle tree, but to larger leaf blocks corresponding to, say, the bits of a certain
database entry, or a file.

This line of thinking leads us to also consider using a tree-like structure of keys for P, rather
than a single key such as the r whose expansion g(r) was earlier used to encrypt the entire data x.
For example, suppose we divide the data x into blocks of a certain size, e.g. into individual entries

13



in a database, groups of entries, or files. For each such leaf block P assigns a seed that is used by
a PRF to encrypt it. P then builds a tree by encrypting two or more of the leaf block keys under
a new node key. Two or more of the node keys are then again encrypted using a new higher level
node key, and so on, until a tree of encryptions of keys is formed. This tree of keys for each P
can be stored by C along with the data of P. When Q and C want to touch certain parts of the
data of P in a secure computation, C shares with Q an appropriate set of encrypted nodes of the
tree, who obtains the corresponding keys from P, and can recover the seeds it needs for the PRF.
This way only a limited amount of key material has to be shared with Q. Of course, the larger the
leaf blocks and the nodes are the more efficient this is both in terms of communication between C
and Q, and between P and Q. Using larger leaf blocks would typically cause P to share more extra
key material, however, by organizing the tree of keys in a certain way, P can efficiently control this
leakage and possibly optimize for the types of computations that Q is most likely to request.

3.3.2 Updating the Keys

Let P be one of the data owners. Since P ends up sharing its secret key r with each buyer, there
should be an easy way for it to revoke the key r and change the data stored by C to use a new
key r′. A simple way to do this would be for P to send g(r) ⊕ g(r′) to C, who simply computes
z′ := z ⊕ (g(r)⊕ g(r′)) to update the encryption. Unfortunately, this means that P has to send
a linear amount of data to C, which might in many cases be impractical, especially if P wants to
update the key regularly.

Using the tree of keys described in 3.3.1 we can efficiently instead revoke and update selected
parts of the key material. All that P needs to do is to send C updates to the appropriate nodes of
the tree of keys.

3.3.3 Append, Delete, Update

P can at any point append data to x (which is stored in encrypted form z by C) by computing
further pseudo-random bits from the PRF using either a seed r that was used before, or possibly
a new seed, depending for example on whether the optimizations of 3.3.1 are used. If a seed that
was used also earlier is used for the newly appended data, it is crucial that none of the earlier
pseudo-random bits generated from that seed are reused, as this leaks a linear relation between the
updated data.

If trees of commitments and keys are used (see 3.3.1), then P will need to expand these trees
in an appropriate way, depending on the nature of the data. For example, if the data is expected
to be used a lot together with some other earlier data, then P might want to consider appending it
to the same branch of the trees. Obviously P might need to update the relevant meta-data stored
by C.
P can at any point request C to delete certain parts of the data. Since we assume that C follows

the protocol, we assume that this operation will be appropriately carried out, and the relevant
meta-data updated correctly. To update any piece of data, P must first ask C to delete it, and
subsequently append the replacement data as was explained above. As soon as all of the meta-data
is updated, the value has been replaced. A per computation input of a party Pi can be expressed
as appending data to the end of xi, which is then deleted before the next computation.

14



4 Security

We now discuss the security of our protocol. To keep the technical details sufficiently clean, we focus
on a special case of our protocol, which does not involve parties updating their data or computing
on subsets of the data. Nevertheless, this special case captures the main mechanisms and security
considerations.

In Figure 3 we define the ideal functionality that our protocol securely realizes. Importantly,
the functionality explicitly captures a setting with in which cloud-stored data of the parties is used
for several computations. Furthermore, the role of the evaluator Q is not fixed, and can change
from computation to computation. Finally, the functionality is fair in the sense that either all
parties receive their output, or else no party receives any output.

Parameters: Parties P1, . . . ,Pn, C.
Data Upload: On input xi from party Pi, store xi internally. This kind of command can
happen once per party Pi.
Computation: On input (f, I,Q) from C, where

• f is a function with |I| inputs and |I|+ 1 outputs

• I = {i1, . . . , ik} ⊆ {1, . . . , n} denotes a set of input parties

• Q denotes a designated evaluator party (who may be one of the Pi’s or any other party),

compute (yi1 , . . . ,yik ,yQ) := f(xi1 , . . . ,xik). Give message ready to the adversary. When
the adversary responds with deliver, then give yi to Pi and yQ to Q. This kind of command
can happen any number of times.

Figure 3: Ideal functionality for SDE.

Kamara et al. [14] define a notion of non-cooperating adversaries. Suppose two parties A and B
are both corrupt, and in particular A may be malicious. Informally, party A is non-cooperating with
respect to party B if party A does not use its malicious capability to send B any useful information.
More formally, B should be able to simulate the communication between A and B in the protocol.

We then show the following:

Theorem 1 Our protocol securely realizes the ideal functionality in Figure 3 provided that:

• Party C may be corrupted only in a semi-honest way, while any other parties may be corrupted
in a malicious way.

• If an adversary controls a set A of colluding parties, and there is ever a computation whose
evaluator is among A, then the adversary A must be non-cooperative with respect to C.

In short, the protocol is secure as long as the cloud is semi-honest and no evaluator cooperates
with the cloud. This holds even if the parties Pi are otherwise malicious (simultaneous with the
cloud being semi-honest).

Proof 1 (Sketch) There are a few cases to consider. First, suppose no corrupted party ever acts
as evaluator (Q). Then the theorem gives no restriction on non-cooperation. By symmetry suppose
the corrupted parties are P1, . . . ,Pk and C (assuming C to be corrupt only helps the adversary,
however we require it to follow the protocol). We describe the simulation:

15



The first time Pi’s input is used in a computation, Pi must send to Q the value ri as well as is
OT-e protocol tape. Q will abort if these values are not consistent with the OT-e protocol transcript
or the commitment to the final message. Hence the simulator can extract xi = g(ri) ⊕ zi as Pi’s
input.5 Provided neither Q nor C abort, the OT-e protocol is effectively run semi-honestly. Hence
Q will indeed learn the OT outputs corresponding to choice bits g(ri), while the opposite OT outputs
are pseudorandom. Furthermore, this holds for every computation involving Pi’s data.

All that is left is to simulate the messages from honest Q to the Pi’s. These messages depend
on the garbled circuit output wire labels corresponding to Pi’s output of f . Since C is running
Yao’s protocol honestly, we have in particular that Q evaluates a garbled circuit in the support
of the garbling procedure. In that case, the output wire labels leak no more information than the
prescribed output of f , so the messages from Q can be simulated given just the ideal output of
P1, . . . ,Pk.

Now we discuss the other case, in which a corrupted party acts as evaluator. From a useful
lemma shown in [14, Lemma 6.1], it suffices to prove that: (1) the protocol is secure when all
parties are semi-honest and use independent simulators; (2) the protocol is secure when A (as in
the theorem statement) is malicious and all other parties are honest.

Part (1) is relatively straight-forward and omitted in the interest of space. For part (2), we
consider an honest cloud. Then the cloud honestly acts as in Yao’s protocol. The more challenging
case is when Q is corrupt.

Consider the OT-e protocols involved in a computation. When Pi is corrupt, we can conceptually
combine Q and Pi into a single corrupt OT-e receiver, playing against an honest C. Hence the
simulator can extract an effective OT input for Pi, as described above, and this OT input will be
the same for all computations. When Pi is honest, the binding property of the commitment ensures
that all OT-e protocol messages are as intended by Pi. By the argument above, Q will receive only
the OT outputs corresponding to the g(ri) desired by Pi. The corresponding share zi for an honest
Pi is known only to the honest parties.

Then by the security of Yao’s protocol against a malicious receiver, we have that the remainder
of the interaction with honest C can be simulated knowing only the prescribed output of f .

5 Implementation

We demonstrate several applications which build on the Secure Data Exchange framework. Our
implementation is of the semi-honest protocol described in section 3.1. We note that the malicious
protocol requires a minimal amount of overhead, and is not expected to significantly affect the
running times reported in this section.

5.1 Test Platform

All performance numbers reported were obtained on a single server with simulated network latency.
The server contains two 36-core Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30 GHz, and 256 GB of
RAM. We executed our prototype in two network settings: a LAN configuration with all parties in
the same network with 0.2 ms round-trip latency and 400 Mbps throughput, and a WAN configu-
ration with a simulated 95 ms round-trip latency and 40 Mbps throughput. The network latency
was simulated with the Linux tc command. All experiments were performed with a computational
security parameter of κ = 128. The times reported are an average over 10 trials with variance

5We can assume without loss of generality that the cloud artificially calls the random oracle on zi at the time it is
uploaded, to allow the simulator to learn zi; note that this will always happen since we assume a semi-honest cloud.

16



between 2.1% − 8.0% in the LAN setting, and 6.0% − 16% in the WAN setting with a trend of
smaller variance as n (see below) becomes larger.

We instantiate the garbled circuits using the state-of-the-art half-gates construction of [33].
The implementation employs the hardware accelerated AES-ni instruction set and uses fixed-key
AES as the gate-level cipher, as suggested by [5]. Since circuit garbling and evaluation is the
major computation bottleneck, we have taken great care to streamline and optimize the execution
pipeline. However, all circuits generated in the following examples were created using a custom
compiler which does not optimize the circuit size. Works such as TinyGarble [29] have shown that
circuit sizes can be reduced by upwards of 80% when optimizers are applied. We expect that such
techniques when applied to this protocol framework would result in a corresponding speedup. The
semi-honest OT-e protocol is an instantiation of [16], and does not implement the malicious secure
input commitment phase. The base OTs are performed using the protocol of [6].

5.2 Anova Test

Analysis of Variance (Anova) [24] is a family of statistical tests that compares the similarity of
populations. In particular, the test determines whether the means of the populations differ by a
statistically significant amount. We consider the scenario where four hospitals perform a compu-
tation over their joint patient data. Each hospital holds n patent records, where each patient has
received one of four possible treatments. The hospitals wish to engage in a computation where the
means of the treatment outcomes are compared. Due to patient privacy concerns, the hospitals are
unable to aggregate the data in the clear. Instead, the hospitals can upload their data and a small
amount of summary statistics to the cloud using our SDE protocol. In particular, each hospital
will locally pre-compute and upload the mean, standard deviation, and variance of the four sets of
treatment outcomes which they hold. They then engage in an SDE, where the Anova statistic is
computed.

Figure 4 contains the running times in seconds and the overall communication cost of the anova
test between four hospitals, a total of 4n patent records. By leveraging a preprocessing phase, the
size of the circuit scales logarithmically in the size of the input dataset. As previously mentioned,
each data owner computes the mean, standard deviation, and variance for their data. These
summary values are then input into the secure data exchange protocol and all participants are
return the result identifying whether there is a statistically significant difference in the treatment
outcomes.

Another motivating scenario for the Anova test was mentioned in 1.1, where hospitals wish to
compare the quality of treatment outcomes with respect to each other. In this case, each hospital
would input their outcomes as a single set of treatments. The secure computation would then be
used to decide if any hospital has significantly better or worse outcomes without calling out any
single hospital for providing less effective care.

5.3 Chi Squared Test

Another motivating scenario mentioned in 1.1 was evaluation of the quality of data being placed
on the market. In 1.1 this was explained in the context of a pharmaceutical company wishing to
purchase patient data for which their model does not accurately predict the treatment outcomes.
The model held by the data buyer may have significant value and must therefore be kept private.
Likewise, data sellers do not wish to disclose their data until after it has been purchased. The
Chi Squared test is a commonly used statistical test that computes the probability that a sample
population follows a given model. For example, in this case the buyer would be interested in data

17



n # ands # xors
Time

Comm.
LAN WAN

212 351 485 0.12 0.9 9
216 462 632 0.13 1.42 10
220 584 799 0.13 1.50 13
224 721 985 0.25 1.93 20

Figure 4: Running time (sec.) and communication (MB) overhead of the Anova statistical test for
four datasets of size n. The # ands (resp. # xors) report the number of thousands of and (resp.
xor) gates in the circuit.

n # ands # xors
Time

Comm.
LAN WAN

28 4.73 6.43 0.78 5.6 0.15
210 21.5 28.2 4.02 22 0.64
212 91.2 124 17.9 97 2.8
214 398 543 71.2 420 12

Figure 5: Running time (sec.) and communication (MB) overhead of the Chi Squared statistical
test for two datasets of size n. The # ands (resp. # xors) report the number of millions of and
(resp. xor) gates in the circuit.

that does not fit their current model according to the Chi Squared test.
Figure 5 reports the running times of this use-case, where the Chi Squared statistic is computed

for two independent datasets of size n. The data buyer provides a linear model with 24-bit coeffi-
cients, and receives a 32-bit Chi Squared value describing how well their model predicts the given
datasets. Unlike the previous application, no preprocessing is performed on the data.

5.4 Machine Learning

Machine Learning techniques are now commonly being applied to numerous applications ranging
from health care to business insights. However, due to privacy concerns the amount of data avail-
able for learning algorithms is often a limiting factor in the ability to generate accurate models.
For instance, network monitoring systems analyze network traffic to detect abnormal activities,
such as denial of service attacks, against a server. To increase the effectiveness of their models,
many technology companies may wish aggregate their data, but are prevented by the reluctance to
reveal such detailed information. Another prevalent yet significantly different example of machine
learning are Genome-Wide Association Studies (GWAS), where the genes of a species are mapped
to associated traits. However, when applied to human subjects, individuals may prefer not to
participate in such studies due to privacy concerns.

Such limitations can be overcome by performing the computation within the SDE framework.
Figure 6 reports the running times of a machine learning algorithm known as Ridge Regression. In
this application, three participants each hold a dataset consisting of n 25-tuples of 8-bit values. The
algorithm performs one complete iteration over all 3n records, and performs a stochastic gradient
descent step for each record in a random order. The output of the computation is a linear model
with 32-bit coefficients, which predicts the 25-th feature as a function of the remaining 24 features.

18



n # ands # xors
Time

Comm.
LAN WAN

28 24.0 37.4 4.12 25.1 0.78
212 425 648 64.2 424.2 12.6
216 6,533 10,010 1,045 6,213 207.0
220 104,181 157,623 23,654 100,706 3,179.1

Figure 6: Running time (sec.) and communication (MB) overhead of the machine learning task for
three datasets of size n. The # ands (resp. # xors ) report the number of millions of and (resp.
xor) gates in the circuit.

References

[1] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient obliv-
ious transfer and extensions for faster secure computation. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, pages 535–548. ACM, 2013.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient obliv-
ious transfer extensions with security for malicious adversaries. In Advances in Cryptology–
EUROCRYPT 2015, pages 673–701. Springer, 2015.

[3] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. Journal of Cryptology, 23(2):281–343, 2010.

[4] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols.
In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pages
503–513. ACM, 1990.

[5] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling
from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and Privacy, pages 478–
492, Berkeley, California, USA, May 19–22, 2013. IEEE Computer Society Press.

[6] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In Ad-
vances in Cryptology–CRYPTO 89 Proceedings, pages 547–557. Springer, 1989.

[7] Henry Carter, Charles Lever, and Patrick Traynor. Whitewash: Outsourcing garbled circuit
generation for mobile devices. In Proceedings of the 30th Annual Computer Security Applica-
tions Conference, pages 266–275. ACM, 2014.

[8] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. Secure outsourced
garbled circuit evaluation for mobile devices. In Samuel T. King, editor, Proceedings of the
22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013, pages 289–
304. USENIX Association, 2013.

[9] Henry Carter, Benjamin Mood, Patrick Traynor, and Kevin R. B. Butler. Outsourcing secure
two-party computation as a black box. In Michael Reiter and David Naccache, editors, CANS
15, LNCS, pages 214–222, Marrakesh, Morocco, December 10–12, 2015. Springer, Heidelberg,
Germany.

[10] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation. In Proceedings
of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pages 554–563. ACM,
1994.

19



[11] Ben A Fisc, Binh Vo, Fernando Krell, Abishek Kumarasubramanian, Vladimir Kolesnikov,
Tal Malkin, and Steven M Bellovin. Malicious-client security in blind seer: A scalable private
dbms. In Security and Privacy (SP), 2015 IEEE Symposium on, pages 395–410. IEEE, 2015.

[12] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Advances in Cryptology-CRYPTO 2003, pages 145–161. Springer, 2003.

[13] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings of
the 14th ACM Conference on Computer and Communications Security, pages 584–597. ACM,
2007.

[14] Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing multi-party computa-
tion. IACR Cryptology ePrint Archive, 2011:272, 2011.

[15] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: A system for server-aided secure
function evaluation. In Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, pages 797–808. ACM, 2012.

[16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal
overhead. In Advances in Cryptology–CRYPTO 2015, pages 724–741. Springer, 2015.

[17] Mehmet S Kiraz and Berry Schoenmakers. An efficient protocol for fair secure two-party
computation. In Topics in Cryptology–CT-RSA 2008, pages 88–105. Springer, 2008.

[18] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and
applications. In Automata, Languages and Programming, pages 486–498. Springer, 2008.

[19] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In Advances in Cryptology-EUROCRYPT 2007, pages
52–78. Springer, 2007.

[20] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party compu-
tation. Journal of Cryptology, 22(2):161–188, 2009.

[21] Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. Fairplay-secure two-party
computation system. In USENIX Security Symposium, volume 4. San Diego, CA, USA, 2004.

[22] Payman Mohassel and Matthew Franklin. Efficiency tradeoffs for malicious two-party compu-
tation. In Public Key Cryptography-PKC 2006, pages 458–473. Springer, 2006.

[23] Benjamin Mood, Debayan Gupta, Kevin R. B. Butler, and Joan Feigenbaum. Reuse it or
lose it: More efficient secure computation through reuse of encrypted values. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14, pages 582–596, Scottsdale, AZ, USA,
November 3–7, 2014. ACM Press.

[24] Jim Morrison. Statistics for engineers: An introduction. Wiley, 2009.

[25] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 245–254. ACM,
1999.

[26] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A
new approach to practical active-secure two-party computation. In Advances in Cryptology–
CRYPTO 2012, pages 681–700. Springer, 2012.

20



[27] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Seung Geol Choi,
Wesley George, Angelos Keromytis, and Steve Bellovin. Blind seer: A scalable private dbms.
In Security and Privacy (SP), 2014 IEEE Symposium on, pages 359–374. IEEE, 2014.

[28] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint
Archive, 2005:187, 2005.

[29] E. M. Songhori, S. U. Hussain, A. R. Sadeghi, T. Schneider, and F. Koushanfar. Tinygarble:
Highly compressed and scalable sequential garbled circuits. In 2015 IEEE Symposium on
Security and Privacy, pages 411–428, May 2015.

[30] David P Woodruff. Revisiting the efficiency of malicious two-party computation. In Advances
in Cryptology-EUROCRYPT 2007, pages 79–96. Springer, 2007.

[31] Andrew Yao. How to generate and exchange secrets. In Foundations of Computer Science,
1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[32] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In Advances in
Cryptology-EUROCRYPT 2015, pages 220–250. Springer, 2015.

[33] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250, Sofia, Bulgaria, April 26–
30, 2015. Springer, Heidelberg, Germany.

21


