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Abstract— The Internet of Things (IoTs) has triggered rapid 

advances in sensors, surveillance devices, wearables and body 
area networks with advanced Human-Computer Interfaces 
(HCI). One such application area is the adoption of Body-Worn 
Cameras (BWCs) by law enforcement officials. The need to be 
‘always-on’ puts heavy constraints on battery usage in these 
camera front-ends thus limiting their widespread adoption. 
Further, the increasing number of such cameras is expected to 
create a data deluge, which requires large processing, 
transmission and storage capabilities. Instead of continuously 
capturing and streaming or storing videos, it is prudent to 
provide “smartness” to the camera front-end. This requires 
hardware assisted image recognition and template matching in 
the front-end capable of making judicious decisions on when to 
trigger video capture or streaming. Restricted Boltzmann 
Machines (RBMs) based neural networks have been shown to 
provide high accuracy for image recognition and are well suited 
for low power and re-configurable systems. In this paper we 
propose an RBM based “always-on’’ camera front-end capable 
of detecting human posture. Aggressive behavior of the human 
being in the field of view will be used as a wake-up signal for 
further data collection and classification. The proposed system 
has been implemented on a Xilinx Virtex 7 XC7VX485T 
platform. A minimum dynamic power of 19.18 mW for a 
recognition accuracy of more than 80% has been measured. The 
hardware-software co-design illustrates the trade-offs in the 
design with respect to accuracy, resource utilization, processing 
time and power. The results demonstrate the possibility of a true 
“always-on” body-worn camera system in the IoT environment. 

Keywords—Body Worn Cameras, Smart Front-end, Restricted 
Boltzmann Machines, Low Power Recognition, Human Action 
Recognition (key words) 

I. INTRODUCTION 

The “Internet of Things” represents a paradigm shift in the 
interconnected world, leading to communication among 
various physical entities around us. At the same time these 
devices are expected to possess sufficient intelligence to be 
able to assimilate, analyze and process data. Constraints due to 
battery life and storage capacity make it imperative to have a 
smart front-end capable of making decisions regarding the 
relevance and importance of the image, before storing or 
transmitting it.  Recently there has been an increased interest 
for the use of Body Worn Cameras for law enforcement. 
Automatic recognition of human actions and postures is a key 
enabler for both video surveillance and Body-Worn Cameras.  

Body Worn Cameras (BWCs) are gaining traction both 
commercially and from the law enforcements’ point of view. 
Multiple pilot programs are being conducted for BWCs, 

including those in Mesa, Arizona, in the United States [1], 
Plymouth, United Kingdom [2]. These studies have highlighted 
the potential of such video cameras to capture much more 
compelling evidence and also act as a deterrent to crime. These 
also highlight benefits such as increase in accountability and 
transparency. However, short battery life, limited storage 
capacity [3] as well as the need for a human operator to 
analyze the data, limit wide-spread adoption of the BWCs. 
Since data is analyzed off-line, it cannot be used for triggering 
affirmative action such as alerting law enforcement. To 
enhance battery life, the current cameras are manually turned 
on and off, which defeats the purpose of ‘always-on’ sensing. 
Hence, in an ‘always on’ camera front-end it is desired to 
enable ‘smartness’ such that the camera would be able to make 
intelligent and judicious decisions on when to start storing a 
video stream while at the same time providing a metric of 
human aggressiveness in the field of view. Aggressiveness is 
associated with human posture and hence, we propose a 
hardware assisted camera front-end capable of detecting human 
posture and identifying relevant ‘information’ in incoming 
video stream. To enable ultra-low power operation, the 
hardware architecture needs to be co-optimized with the 
algorithm as well as the frame-rate, data resolution and 
accuracy targets. Fig. 1a illustrates the proposed system. An 
alternative to an intelligent camera front end is to continuously 

 
Fig. 1. (a) Usage model for a typical ‘always-on’ body worn camera (b) 
The different components of power dissipation in a state-of-the-art 
camera based sensor node with continuous wireless transmission (c) 
Breakdown of power illustrating a large section of the total dissipation in 
the digital codec (H.264). 

 



capture data and either store or wirelessly transmit it. Fig. 1b 
and c illustrate the ‘energy cost’ of an H.264 encoder and 
transmitter. It illustrates the prohibitive cost (hundreds of mW 
to ~1W) of digital processing (on a GPU, ASIC and near-
threshold voltage ASIC) which makes such a continuous time 
system unrealizable. 

 In this paper, we explore a camera front-end with 
Restricted Boltzmann Machine (RBM) based Artificial Neural 
Network (ANN) as the recognition and classification engine. 
When cascaded to the data acquisition (pixel array and analog-
to-digital converters) unit, it can allow ultra-low power video 
capture as well as intelligent data assimilation. We demonstrate 
the efficacy of the system illustrated in Fig. 2 in recognizing 
human posture from the ‘Weizmann Human Actions Silhouette 
database’ with greater than 80% accuracy and at a fraction of 
the power cost. The hardware has been implemented on Xilinx 
Virtex 7 XC7VX485T. By careful co-optimization between 
algorithm and hardware we enable ‘always on’ sensing and 
recognition at less than 20mW (excluding the power of the 
signal acquisition unit and the background subtraction unit). 
This illustrates an order of magnitude improvement in: (1) 
power efficiency for ‘always on’ camera based wireless sensor 
nodes, which continuously capture and transmit data and (2) 
significant savings in storage space for systems with 
continuous time capture and storage.   

II. RESTRICTED BOLTZMAN MACHINE BASED 

RECOGNITION AND POSTURE DETECTION 

An ‘always-on’ smart BWC needs to be equipped with 
low-power hardware capable of detecting certain human 
posture when trained. Recent progress in Deep Neural 
Networks illustrates the efficacy of using neuromorphic 
systems in providing high accuracy even under acquisition 
noise and image occlusion. However such deep networks are 
not suitable for our application because: (1) such networks 
require tens to hundreds of thousands of neural processing 
units, or nodes which are typically executed in many-core 
servers and distributed machines (2) the power cost of such 
networks in prohibitive in a mobile platform and (3) they are 
not suitable for real-time applications. On the other hand, our 
accuracy targets can be relaxed from that of deep networks 
(accuracies > 95-97%). Our target is > 80% accuracies (with 
minimum number of false rejects) but with tens of mW of 
power consumption. This is almost three orders of magnitude 
reduction of power when compared to deep networks and 
would enable true mobility. Hence we adopt Restricted 
Boltzmann Machine based Artificial Neural Networks (ANNs) 
as the algorithmic and hardware design paradigm for ultra-low 
power recognition. Restricted Boltzmann Machine (RBM) 
based recognizers are probabilistic graphical models (which 
form the basis of deeper networks). RBMs are modular, 
scalable and can be efficiently mapped to hardware with well-
controlled data movement between logic and embedded 
memory. RBMs allows us to re-use the same resources via 
time multiplexing because of their modularity and Single 
Instruction Multiple Data (SIMD) nature. We also provide an 
option of increasing the network depth, for potentially higher 
accuracy, which amounts to storing different sets of weights 

for each layer and reusing the available computational 
resources.  These weights are pre-trained in software for our 
network and the usage model requires them to be programmed 
on the BWC before deployment. Hardware based online 
training can also be incorporated in the usage model, but since 
our primary objective is ultra-low power, we have adopted 
off-line training.  

A. Mathematical Description  

The basic RBM consists of two layers, an output visible 
layer “V” representing the observable data and a hidden layer 
“H” which portrays the internal representation of the 
observable data into the system. These layers are comprised of 
processing elements referred to as Neurons or nodes. RBMs 
form a special category of Boltzmann Machines where these 
two layers form a bipartite graph. There are no connections 
between the hidden neurons.  Each hidden unit describes a 
probability distribution over the inputs provided by the visible 
layer units. Further, the hidden layer provides a higher level of 
feature set for the input data and enables associativity between 
a set of observable outputs and control inputs. Using the 
following notation: V = (V1… Vm) representing the Visible 
input units, H = (H1… Hn) representing the Hidden Neurons, 
and the random variables V and H take binary values (v,h).    
The joint probability distribution for both the layers is given 
by the Gibbs Distribution [5] 

 
p (v,h) α e-E(v, h)                                    (1) 

 
Here the Energy function is given by 

E (v,h)   = - ∑i  ∑j wij hi vj  -  ∑j bj vj  -  ∑i ci hi           (2) 
 
The j and i sum over all the nodes in the visible layers and 
hidden layer respectively. wij represents real valued weights 
across the edge between the jth visible node and ith hidden 
node. bi and cj represent the real valued bias terms associated 
with the jth visible node and ith hidden node respectively. 

 
Based on this energy it can be shown [5] that the 

conditional probability of any unit being 1 can be written as  
 

P ( Hi =1 | v)   =   sig( ∑j wij vj  + ci )              (3) 
 

 
Fig. 2: The recognizer flow highlights the layers of the Restricted Boltzmann 
Machine and the pre-processing unit. The output layer is designed as winner-
take-all and the posture with highest probability is chosen. 



 P ( Vj=1 | h)   =   sig( ∑i wij hi  + bj )           (4)                          

Here sig refers to the sigmoid function. These equations show 
that an RBM can be reinterpreted as a standard feed-forward 
neural network with one layer of non-linear processing units.  

B. Training in RBMs 

The weights need to be modified such that the RBM 
produces the minimum energy across the training set of 
observable data. The accurate calculation of the log-likelihood 
gradient is computationally prohibitive. We follow the method 
provided in [5] for approximating the RBM log-likelihood 
gradient namely, “Contrastive Divergence” which was 
originally described in [9]. Obtaining unbiased estimates of 
the log-likelihood gradient using Markov Chain Monte Carlo 
methods typically requires many sampling steps. In [9] the 
authors show that estimates obtained after running the chain 
for just a few steps can be sufficient for model training. We 
follow the training algorithm described in [9] for training the 
RBM. Since our application is ‘posture detection’ in BWCs, 
we perform off-line training on sample data-set using 
MATLAB and then transfer the weights to the Xilinx compiler 
using “Memory Initialization Files”. The training set is 
divided into mini-batches. We set the learning rate to provide 
us with a target recognition accuracy.  The RBM is trained in 
an unsupervised manner using Contrastive Divergence. The 
features generated by the RBM are used to train the classifier. 
Since, our input (pixel data) is real valued and not binary, we 
scale them to [0, 1] and treat them as probabilities [5]. As per 
[5] the learning process remains the same. Classification in 
contrast to training just involves a forward pass. We treat the 
input data as a vector and multiply this vector with 
corresponding trained weights along the edges of the 
networks. Since the network forms a bipartite graph this is a 
vector – matrix multiplication followed by application of the 
sigmoid non-linearity to generate the hidden node 
representation. A similar method is applied for the 
classification layer   

C. Image Database for Posture Dectection: 

The experiments are carried out on the Weizmann human 
silhouette based action database [10] (Fig. 3). The database 
consists of video sequences (180 x 144, de-interlaced 50 fps) 
of nine different actors, each performing ten different actions 
such as “bending”, “jumping-jack”, “jumping forward-on-
two-legs”, “jumping-in-place-on-two-legs”, “running”, 
“galloping-sideways’’, “waving-with-one-hand”, “waving 
with-two-hands”. To obtain the silhouettes, we perform 
background subtraction. These silhouettes are aligned and the 
training of the neural network is performed using these 

aligned silhouettes. It is interesting to note that with the  
popularity and deployment of BWCs, this data base is 
evolving and better training sets are expected in the recent 
future. Different postures from the Weizmann database 
correspond to basic human postures and are applicable to 
BWCs. For example, ‘putting both hands up’ is treated as a 
defensive posture while ‘running’ is treated as aggressive 
behavior. Once proper posture identification is enabled, the 
output can be used for further action as the situation and usage 
demands. However, posture identification is a key primitive 
that can enable ‘always-on’ BWCs for law enforcement.   
 

III. HARDWARE INFRASTRUCTURE 

To meet the extreme power constraints in ‘always-on’ 
BWCs, custom hardware architecture is required. We have 
implemented the proposed algorithm on a Xilinx Virtex 7 
XC7VX485T platform. Before discussing the efficacy of the 
RBM based ANNs in posture detection, we explore the design 
implementation on the hardware platform and discuss 
software-hardware co-design for maximum power efficiency 
at a target accuracy rate. Our proposed design comprises of 
the camera front-end hardware used for image sensing and 
conversion into the raw pixel data, followed by the silhouette 
extraction unit through background subtraction. The algorithm 
and hardware implementation is straightforward and has been 
discussed in  [11] [12] [13]. 

A. Hardware Design of the Recognizer 

The motivation for RBM based ANNs comes from the 
models of synaptic behavior of human neurons, by computing 
the function: 

 
∑ i Wip Xip + θp.                           (6) 

 
In Equation (6), Wip represents the synaptic weights, Xi 
represents the input feature to the neuron, θi is the bias for the 
pth neuron and these are summed over all the input features of 
the image. Each Neuron in our network models the 
computation represented by (6). We call the instantiation of 
this neuron in hardware as the neuron processing core (NPC) 
illustrated in Fig. 4. The NPC comprises of a fixed point 
signed multiplier, accumulator, and memory for storing the 
weights. The weights are stored as distributed memory within 
each neuron core. A hidden layer in a neural network 
comprise of many such neurons performing a similar 

  
(a)                                                   (b) 

Fig. 3. (a) Actions in Weizmann Human Actions Silhouette Database (b) 
‘Both Arms Raised’ - Action Silhouette 

  
Fig. 4. Block Diagram of the Neuron Processing Core showing the 
incoming and outgoing control signals, the data path and the address 
bus 
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Fig. 7. Showcases the increasing in Recognition Accuracy with 
Increase in Number of Virtual NPCs in the hidden layer of a Network 
as the network gains more representation power. 

computation as (3) but with a different set of weights and 
biases. Similarly, in hardware many such NPCs are grouped 
together to form a layer. The input to each layer is provided in 
parallel to all the NPCs within the Layer.  
The inherent parallelism of such a neural network results from 
the fact that, in a fully connected network, the computation in 
(6) is carried out by all the neurons in parallel for an input 
feature Xi. Ideally to obtain the least processing time we 
would desire as many NPCs in parallel as the number of 
neurons in the hidden layer. This results in very high resource 
utilization and consequently greater overall power and area. 
We provide the capability to reuse these NPCs by time 
multiplexing, for computations belonging to the same layer. 
We differentiate between these as “Virtual” and “Physical” 
NPCs. Physical NPCs are instantiated in the physical design 
and consume physical resources. This comes with large area 
and power (both leakage and dynamic). Virtual NPCs 
represent the actual number of neurons in a hidden layer for a 
particular network configuration. The ratio between Virtual 
Neurons and the Hidden Neurons gives you the number of 
“phases” or the number of times these NPCs need to re-
execute so that the computation for the layer gets completed 
shown in Fig. 5. The most serialized case comprises of a 
single NPC executing as many times as the number of virtual 
NPCs or neurons in the layer, resulting in the least amount of 
resource utilization, power but much higher processing time. 
In ‘always-on’ microphone-based audio sensors, such 
serialization of parallel workload has been shown to be 
effective in reducing the overall system power. For a given 
computational complexity at a frame rate of 30fps, a lower 
number of ‘virtual NPCs’ demonstrate a favorable trade-off 
between power and the total computational time.   
The layer as described by Fig. 6 also consists of a sigmoid 
approximating unit, a control unit, a bus arbitration unit and a 

first-in, first-out (FIFO). Direct implementation of a sigmoid 
unit is expensive in hardware and increases the power and the 
processing time. We approximate the sigmoid using a piece-
wise linear approximation. We opt for a distributed control 
unit so that the computation of layers remain as independent 
from each other as possible. The control unit provides the 
address for the weights, communicates with other layers and 
provides control signals to the NPCs, bus arbitration unit and 
the FIFO. A bus arbitration unit is required to serialize the 
neuron outputs generated and store it in the output FIFO, 
before the next computation of the layer can take place. 

We pipeline the layers using a FIFO. The FIFO full and 
empty signals are used for the communication between the 
layers. If any succeeding stage is still processing the data, the 
preceding layer is stalled from transferring the values from its 
output FIFO. The system is thus a pull-based pipelined 
system. To allow multiplexing the FIFO length equals the 
number of Virtual NPCs. Similar to the concept of re-using 
the NPCs, we provide the capability of reusing the layer by 
allowing the output FIFO to feed data back as input. This path 
is multiplexed with the original input path. The end of the 
network consists of a final layer, which comprises of a store 
buffer, counter and a comparator in addition to the NPCs, 
FIFO and the control unit. The store buffer is used for storing 
the largest value read from the FIFO. The counter keeps track 
of the output number of the NPC because this corresponds to 
the classification label. Input is serially fed from the FIFO into 
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Fig. 6. The Block Design of a Single Layer showing the control and data 
flow. 01, the output of the layer if input back into a multiplexer. S1, a 
control signal from the Controller is used for selecting the input.  

Fig. 5. Depicts the Virtualization of Neuron Computation, Layer 
Computation and the entire network. The Physical NPCs are reused for a 
count equal to Total Phases so as to compute for all the Virtual NPCs.  
The Layer can be reused to provide an increase in depth of the network. 
Similarly, The Entire Network can then be reused for a different purpose 
or even for recognizing the same image with higher Accuracy. 

 



the comparator and signed compared with the value stored in 
the store buffer. The store register and the counter are updated 
if the input value is greater than the store buffer. It is 
beneficial to keep final layer as parallel as possible, since it 
allows us to avoid the replay of outputs from the previous 
layer. The weights, input features and the data transferred are 
represented using a signed fixed-point notation Q2.10 for the 
base case. Fixed point data representation of resolution more 
than Q2.6 shows no impact on recognition accuracy over a 
floating point representation and results in significant cost 
savings with respect to resource utilization and power. The 
accumulator output buffer resolution is kept significantly 
greater than the resolution of the input to the accumulator to 
prevent any overflows which has shown to impact the 
accuracy of the network severely. The entire design is made 
configurable by extensively parameterization. This allows us 
to perform design space exploration where the role of these 
parameters on performance, power and resource utilization 
can be studied for design optimization. More details are 
provided in Section IV. The configurable parameters comprise 
of the following:  

1) Fixed Point Data Resolution : We maintain the total 
resolution length and the fraction length as parameters 
throughout the system. 

2) Number of Input features  
3) Number of Virtual and Physical Hidden NPCs 
4) Number of Virtual or Physical Hidden Layers 
5) Frequency of the clock  

IV. EXPERIMENTAL RESULTS 

Our main goal is to study the tradeoffs of power, timing 
and resource utilization with different network configurations 
and also the resolution of the data within the network. The 
configuration knobs in our design consist of size of input 
features, number of virtual and physical hidden neurons, 
number of virtualized hidden layers and physical hidden 
layers, fixed point data resolution and frequency. The FPGA 
platform used for measurements is the Xilinx Virtex-7 
XC7VX485T. Software based simulations are used to train the 
network weights. The weights are then extracted and fed into 
the FPGA platform at compile time as memory initialization 
files. The baseline Neural Network configuration selected for 

experimentation is a shallow network comprising of 256 
feature inputs, 300 virtual NPCs, and 30 physical NPCs for 
hidden layer 1 and a final layer comprising of 10 NPCs 
corresponding to 10 silhouette actions. The RBM at each layer 
is separately trained using contrastive divergence, and the 
final layer is trained as multinomial logistic classifier using 
the features provided by the RBM layers below. We do not 
perform back-propagation to further tune the parameters, 
because it may cause over fitting since the labelled data of the 
Weizmann database is limited.   

A. Algorithmic Accuracy  

Fig. 7 illustrates the trade-off between accuracy and the 

1

10

100

1000

0 100 200 300
P
ro
ce
ss
in
g 
Ti
m
e
 (
u
s)

Number of Physical NPCs 

50 MHz 100 MHz 250 MHz

 
Fig. 10.  Describes the Increase in Processing Time as the 
parallelization is reduced by reusing the Physical NPCs for 
computation so as to save resources and power 
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Fig. 9.  Describes the Normalized Resource Utilization for increase in 
parallelization in the network layer. The normalization is with respect 
to the resource utilization of NPC = 300 (Slice LUT = 97572, Slice 
Registers = 29582) 
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Fig. 11. Normalized Resource Utilization vs fractional bit resolution. 
Integer bits kept constant. Normalization is carried with respect 
resource utilization of 16 bits resolution (Slice LUTs = 35787, Slice 
Registers = 9437)  
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Fig. 8. Classification Accuracy with varying fixed point representation 
resolutions. The integer bits kept constant at 1. We make sure there is 
low probability of overflow by having higher bit width for the 
accumulator 



number of virtual NPCs. We observe an increase in accuracy 
of the network as the number of Virtual NPCs are increased. 
We note the saturating nature of the curve and for a target 
accuracy rate of 80% we choose a baseline design with 300 
virtual NPCs. Fig. 8 illustrates the dependence of recognition 
accuracy on the bit width of the data representation. With a 
fractional bit width of 6 (Q2.6 format) and avoiding overflow 
while accumulating, the accuracy tends to that of a floating 
point representation and has been chosen for our design. This 
results in lower design complexity and power without 
compromising the accuracy of recognition. 

B. Hardware Measurement Results 

The most important design criteria is the choice of the 
number of physical NPCs. As seen in Fig. 9 the resource 
utilization of the network can be improved by reducing the 
number of physical NPCs. This however results in an increase 
the in the processing time as shown in Fig. 10. It should, 
however be noted, that at 30 fps the amount of time available 
for processing the data is sufficient with a small number of 
physical NPCs. The choice of the data bit width also has 
significant impact on the resource utilization of the network 
and has been shown in Fig. 11, which further justifies the 
notion of using a low bit width (8 bits here) for data 
representation.  

V. DESIGN SPACE EXPLORATION  

To minimize the overall network power and utilization at 
acceptable performance, we jointly optimize algorithms and 
hardware. It has already been shown that for acceptable 
performance, we choose 8 bits for data representation. The 
number of virtual NPCs is chosen as 300. We explore the 
entire design space of power and the bit width of data 

representation as a function of the total number of physical 
NPCs (Fig. 12). We observe that increasing the number of 
NPCs increase the total power dissipation but results in faster 
compute (Fig. 10). Further, the power increases rapidly with 
the data width. Finally it is important to understand the impact 
of serialization to the total energy cost of the design (i.e., the 
energy required to compute per frame). Fig. 13 illustrates the 
total energy cost of the design as a function of the number of 
physical NPCs when operated at 50 MHz For a large number 
of NPCs, the total (leakage and dynamic) power increases 
whereas for a small number of NPCs the total data movement 
and time to process increases rapidly (Fig. 10). The point of 
minimum energy is measured for 30 physical NPCs (with 300 
virtual NPCs). This illustrates the need for hardware-software 
co-design & by joint optimization of the accuracy-energy-
resource utilization space, an optimum design point is 
attained. At this design point, we note less than 5nJ of 
energy/frame for processing. This illustrates three orders of 
magnitude improvement in total power (<20mW) compared to 
a camera based wireless sensor node. 

VI. CONCLUSIONS 

This paper presents an RBM based ANN for ‘human posture’ 
identification in ‘always-on’ Body-Worn-Cameras. Design 
space exploration reveals the need for algorithm-hardware co-
optimization and illustrates a minimum energy design point 
for thirty physical NPCs. At the minimum energy point, we 
spend less than 5nJ per frame and achieve greater than 80% 
accuracy in posture detection. 
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Fig. 12. Power vs Fractional bit resolution for different network Physical 
(P) NPCs. The integer bits are kept constant. 

 
Fig. 13. Total energy/frame as a function of the number of physical 
NPCs. The ‘Minimum Energy’ design is obtained for 30 physical 
NPCs running at a clock frequency of 50 MHz 


