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Abstract—The analog transmission of a bivariate Gaussian
source over a white Gaussian channel with 2:1 bandwidth
compression is addressed in this paper. We propose two nonlinear
coding structures for bandwidth compression based on the
Shannon-Kotel’nikov (S-K) mappings. For each coding structure,
the closed-form expression of distortion at any given channel
SNR is derived and the optimal energy scaling for each source
is computed. We perform theoretical deduction and numerical
evaluations to compare the performances of the proposed schemes
with a baseline linear mapping scheme. Results show that
nonlinear schemes are superior to the linear scheme when the
channel condition is good and the difference between the two
sources is not too large. Among the proposed nonlinear schemes,
the design to combine the two sources for S-K mapping with the
optimal energy scaling yields the best performance.

I. INTRODUCTION

The digital communication systems, although being widely
deployed in the past a few decades, have their own dis-
advantages, including the well-known threshold effect and
leveling-off effect [1]. In contrast, the analog systems do not
suffer from these two effects, allowing the system performance
to degrade gracefully when the channel signal-to-noise ratio
(CSNR) decreases and to continuously improve when the
CSNR increases. Recently, a scalable mobile video multicast
system was proposed based on analog transmissions [2], which
triggered tremendous research interests not only in mobile
image/video systems but in analog communications as well.
Our work to be presented in this paper is also motivated by
this new trend.

In the design of analog communication systems, the mis-
match of source-channel bandwidths has always been a great
challenge. Unlike digital systems which could adjust the trans-
mission rate through source coding, channel coding and/or
modulation rates, analog systems could at most allocate one
(complex) source sample to one (complex) wireless symbol.
When the number of source samples exceeds the number of
wireless symbols, it creates a bandwidth compression problem.
The most well-known and best performed bandwidth compres-
sion approaches are Power Constrained Channel Optimized
Vector Quantizers (PCCOVQ) [3] and Shannon-Kotel’nikov
(S-K) mappings [4]. In general, they have comparable perfor-
mance but S-K mappings have lower complexity [4].

The S-K mappings for a single variate Gaussian source
have been extensively studied in the literature. Based on the
general theory of S-K mappings [4], some practical schemes
using spiral codes are proposed for 2:1 compression or 1:2

expansion systems [5], [6]. However, we noticed that mul-
timedia communication systems usually need to cope with
parallel Gaussian sources, as a result of source de-correlation
[2], [7], [8]. A parallel Gaussian source consists of multiple
independent Gaussian sources, which in general have different
variances. The research on the bandwidth compression of
parallel Gaussian sources is relatively few. To the best of
our knowledge, there is no practical bandwidth compression
scheme designed for parallel Gaussian sources with S-K map-
pings.

In this paper, we consider a 2:1 bandwidth compression
system for a bivariate Gaussian source, where the variances
of the two Gaussian components are strictly different. The
solution to this basic system will be building blocks of more
general N : M bandwidth compression systems for parallel
Gaussian sources. We investigate two coding structures. In
Scheme-1, two sources are encoded separately using standard
2:1 compression method for single variate Gaussian source. In
Scheme-2, instances from the two sources are combined into
one codeword. The closed-form expressions of the distortions
of both schemes are computed. Based on the distortion analy-
sis, we propose optimization strategies for both schemes.

We conduct theoretical deductions and numerical evalu-
ations to compare the performances of both schemes with
a baseline scheme which simply discards all instances from
the source with smaller variance. We discover that, although
Scheme-2 does not perform as well as Scheme-1 in their plain
forms, the optimized Scheme-2 is superior to the optimized
Scheme-1. The performance gain increases as the ratio of
the two variances increases. We also discover that, the S-
K mapping-based schemes tend to outperform the baseline
scheme when the CSNR is high and when the variances of
the two sources do not differ too much. We use extensive
simulations to verify our results.

The rest paper is organized as follow. We first provide
background information in Section II, including the previous
design and analysis of S-K mappings. In Section III, we de-
scribe two coding structures and perform optimization for both
structures. Their performances are analyzed and compared.
Then, in Section IV, we give numerical results to validate our
analysis. We finally conclude this paper in Section V.



Fig. 1. One example of Archimedes’ spiral. ∆=2.

II. BACKGROUNDS

A. A brief overview of related work

The S-K mappings are first proposed for bandwidth ex-
pansion [9] and then extended to bandwidth compression. The
core idea of S-K mappings is to map the source samples to a
lower (in the case of compression) or to a higher (in the case
of expansion) dimensional space. Generally, the mappings are
achieved through space-filling curves such as the Archimedes’
spiral. Hekland et al. [4] build a general theory for bandwidth
compression using S-K mappings. The authors also analyze
in detail a concrete example for 2:1 bandwidth compression
using Archimedes’ spiral codes and show that the performance
gap to the Shannon limit is only 1.1 dB. Hu et al. [5] further
improves the performance of the spiral codes through the
minimum mean squred error (MMSE) estimation and joint
optimization of spiral size and mapping function. In [6], a low
complexity decoding method is proposed by only performing
MMSE estimation to the received coded symbol. Brante et al.
[10] further propose to utilize the spatial diversity to improve
the performance of S-K mappings in fading channels. In [11],
the idea of S-K mappings are applied in Wyner-Ziv scenario,
i.e. the side information is available in decoder. However, all
these works only consider a single Gaussian source.

B. S-K mappings using spiral curve for 2:1 bandwidth com-
pression

In order to make this paper self-contained, we now in-
troduce how the S-K mappings with Archimedes’ spiral can
achieve efficient bandwidth compression. Similar analysis can
also be found in [4]. The Archimedes’ spiral can be presented
as {

x1 = ∆
π θ cos θ

x2 = ∆
π |θ| sin θ.

(1)

where θ ∈ (−∞,+∞) and ∆ is the distance between two
spiral arms. One example is shown in Fig. 1 where θ > 0 for
the solid curve and θ < 0 for the dashed curve.

The flow chart of a 2:1 compression system is shown in Fig.
2. Let x1 and x2 be two instances drawn from the memoryless
Gaussian source X with E(X) = 0 and E(X2) = σ2

X , where
E(·) means expectation. In order to achieve 2:1 bandwidth
compression, the source point x = (x1, x2) is quantized to the
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Fig. 2. The system model of spiral codes for 2:1 system.

closest point x′ on the spiral as shown in Fig. 1. It is easy
to show that the vector x′ − x is perpendicular to the tangent
line at x′ on the spiral. Then, the two dimensional point x′

is mapped to a one-dimensional coded symbol y which could
uniquely identify the point on the curve. In general, the arc
length of spiral from the origin to x′ is selected as the mapping
function which can be calculated approximately as:

y = ±l(x′) ≈ ±ηπ
2

∆

(
(x′1)2 + (x′2)2

)
. (2)

where η ≈ 0.16 [4]. + is valid when the point x′ resides
on the curve where θ ≥ 0 (the solid curve in Fig. 1) and −
is valid when the point x′ resides where θ < 0 (the dashed
curve in Fig. 1). This kind of mapping function is selected
because it ensures that the distortion caused by channel noise
is independent from the source sample [4].

The coded symbol y is multiplied by a scaling factor γ to
meet the power constraint. When the average symbol power
is P , we have γ =

√
P/σ2

y where σ2
y = E(y2). The scaled

symbol is then transmitted over an additive white Gaussian
noise (AWGN) channel. At the receiver, the noisy symbol γy+
n is received where n is the channel noise with E(n2) =
σ2
n. After inverse scaling, we can get the noisy version of y,

denoted by ŷ = y + n/γ. Thus the origin sample x could be
reconstructed from ŷ through maximum likelihood (ML) or
MMSE decoding.

x̂ =

{
l−1(ŷ) for ML decoding,
E(x|ŷ) for MMSE decoding.

(3)

where l−1(·) is the inverse function of mappings in (2).

With the mean squared error (MSE) as the optimization
goal, MMSE decoding yields a better performance than ML
decoding. However, the gap between MMSE and ML is neg-
ligible when CSNR is high. Besides, the theoretical analysis
for MMSE decoding is difficult and its optimization is mainly
based on simulations [5]. Therefore, most theoretical results
are built on ML decoding.

The average distortion is defined as D = E
(
‖x̂− x‖2

)
/2.

The error vector x̂− x can be represented as

x̂− x = (x′ − x) + (x̂− x′), (4)

where the first term is the quantization error vector and the
second term is the channel error vector. Since x̂ is on the spiral,
when the channel noise is small, the channel error x̂− x′ is
in the tangent direction of x′ on the spiral. Thus, the vectors
x̂− x′ and x′ − x are mutually orthogonal. Hence, the overall
distortion can be calculated as follows.

D =
1

2

(
E(‖x′ − x‖2) + E(‖x̂− x′‖)2

)
=

1

2

(
∆2

12
+
σ2
y

P
σ2
n

)
,

(5)



where the average quantization distortion is obtained by assum-
ing ∆ � σX and the quantization error follows the uniform
distribution in the interval [−∆

2 ,
∆
2 ]. In order to estimate the

value of σ2
y , we assume that the spiral is very dense and x′1, x

′
2

in (2) can be substituted by x1, x2 approximately. Therefore
we have

σ2
y ≈ E

(
ηπ2

∆

(
(x1)2 + (x2)2

))2

=
8η2π4σ4

X

∆2
. (6)

Substitute (6) into (5) and apply the inequality (a+b
2 ≥

√
ab).

We thus have

D ≥
√

∆2σ2
yσ

2
n

12P
= 2ηπ2σ2

X

√
1

6 · CSNR
. (7)

where = holds when ∆ = 2πσX
4

√
6η2

CSNR . We define CSNR=

P/σ2
n. Equation (7) gives the minimum distortion the S-K

mappings could achieve. Obviously, the optimal ∆ balances
the channel and quantization distortions, resulting in

E
(
‖x′ − x‖2

)
= E

(
‖x̂− x′‖2

)
. (8)

C. A baseline scheme

In this part, we introduce a baseline scheme for 2:1
compression for two independent sources X1 and X2 with
E(X2

1 ) = σ2
1 and E(X2

2 ) = σ2
2 . Without loss of generality, we

assume σ1 > σ2. A straightforward method is to discard X2,
the source with lower variances and only transmit X1. In this
case, it is easy to calculate the final distortion Dbase as:

Dbase =
1

2
(
σ2

1σ
2
n

P
+ σ2

2). (9)

III. BANDWIDTH COMPRESSION OF A BIVARIATE
GAUSSIAN SOURCE WITH S-K MAPPINGS

With above preliminary knowledge, we now begin to
study the problem of 2:1 bandwidth compression with S-K
mappings. We propose and analyze two coding structures,
namely Scheme-1 and Scheme-2.

A. Two coding structures for 2:1 bandwidth compression

1) Scheme-1: In Scheme-1, we perform S-K mappings
for the two sources separately. Assume xi,1, xi,2 are two
source samples of Xi. In Scheme-1, the points (x1,1, x1,2)
and (x2,1, x2,2) are mapped to y1 and y2 respectively using the
compression method shown in Section II-B. Then the mapped
symbols y1 and y2 are transmitted with power scaling. At
the receiver, the two sources are also estimated separately.
According to (5), if we define µi = 2ηπ2σ2

i

√
σ2
n/6, the

distortion D1 in this case can be simplified as:

D1 =
1

2

(
µ1√
P

+
µ2√
P

)
. (10)

where P is the average power of coded symbols.

2) Scheme-2: In Scheme-2, we combine the samples from
the two sources for S-K mappings. Let x1,1 and x2,1 be source
samples of source X1 and X2 respectively. In Scheme-2, we
map (x1,1, x2,1) to a coded symbol y1 for 2:1 bandwidth
compression.

We still assume that ∆ is very small compared to σ1

and σ2, so the quantization distortion is still approximated as
∆2/12. With regard to channel distortion, we need to calculate

σ2
y first according to (5). Since x1,1 and x2,1 both follow

Gaussian distribution, it is easy to get

σ2
y ≈ E

(
ηπ2

∆

(
(x1,1)2 + (x2,1)2

))2

=
η2π4

∆2

(
3σ4

1 + 3σ4
2 + 2σ2

1σ
2
2

)
.

(11)

Substitute (11) into (5) and apply the inequality (a+b
2 ≥

√
ab),

we get the minimum distortion D2 and the optimal ∆ as

D2 = ηπ2

√
3σ4

1 + 3σ4
2 + 2σ2

1σ
2
2

12 · CSNR
, (12)

∆opt = π
4

√
12η2(3σ4

1 + 3σ4
2 + 2σ2

1σ
2
2)

CSNR
. (13)

While the average distortion of the two sources is given
in (12), the following theorem gives the average distortion of
each source.

Theorem 1. Let DX,i denote the average distortion of Xi,
i = 1, 2. When ∆opt is selected, we have DX,1 = DX,2 = D2.

The proof is in Appendix A. This theorem says that the
two sources share the same distortion whatever their variances
are.

Comparing the basic structures of Scheme-1 and Scheme-
2, we have the following theorem.

Theorem 2. For two sources X1 and X2 with σ1 > σ2, the
basic structure of Scheme-1 outperforms Scheme-2, i.e. D1 <
D2.

The proof is in Appendix B. The unsatisfactory perfor-
mance of this basic structure of Scheme-2 is mainly ascribed
to that it does not balance the protection of the two sources.
According to Theorem 1, two sources share the same dis-
tortions, which may be not the optimal results. However, as
we will shown later, the optimized Scheme-2 will outperfom
the optimized Scheme-1 although Scheme-2 cannot perform
as well as Scheme-1 in their basic forms.
B. Optimization of Scheme-1

In Scheme-1, since y1 and y2 have different statistics, they
need to be scaled differently before transmission. Let Pi be the
average power allocated to source Xi. In order to achieve the
minimum distortion, we formulate the optimization problem
as:

min
P1,P2

1

2

(
µ1√
P1

+
µ2√
P2

)
,

s.t. P1 + P2 = 2P.

(14)

This is a convex optimization problem and can be easily solved
using Lagrangian multiplier. The optimal power allocation P ∗1
and P ∗2 are given as follows:

P ∗1 =
2P

1 +
(
µ2

µ1

)2/3
, P ∗2 =

2P

1 +
(
µ1

µ2

)2/3
. (15)

We use D∗1 to denote the minimum distortion of Scheme-1
after optimization and we thus have

D∗1 =
ηπ2

√
12 · CSNR

σ2
1

√
1 +

(
σ2

σ1

) 4
3

+ σ2
2

√
1 +

(
σ1

σ2

) 4
3

 .

(16)



C. Optimization of Scheme-2

Since that the two sources are combined for S-K mappings
in Scheme-2, it is impossible to perform a general power
allocation to improve its performance like Scheme-1. Hence,
we try to optimize the performance of Scheme-2 in a different
way.

In Scheme-2, x1,1 and x2,1 have different variances, so the
source distributions need some shaping to adapt to the spiral.
This is achieved by (source) energy scaling in our proposed
optimization. We first transform source X2 to αX2 where
α > 0, so the energy of source X2 becomes α2σ2

2 . Then X1

and αX2 are encoded using the basic structure of Scheme-2.
According to (12) and (13), we can directly write the average
distortion for the sources (X1, αX2) as:

D(X1,αX2) = ηπ2

√
(3σ4

1 + 3α4σ4
2 + 2α2σ2

1σ
2
2)

12 · CSNR
, (17)

and the optimal ∆ as:

∆opt = π
4

√
12η2(3σ4

1 + 3α4σ4
2 + 2α2σ2

1σ
2
2)

CSNR
. (18)

According to Theorem 1, D(X1,αX2) is also the average
distortion of X1 and αX2. Therefore, the average distortion of
the original sources X1, X2 under specific α can be computed:

D(X1,X2) =
1

2
D(X1,αX2)

(
1 +

1

α2

)
,

=
ηπ2

2

(
1 +

1

α2

)√
3σ4

1 + 3α4σ4
2 + 2α2σ2

1σ
2
2

12 · CSNR
.

(19)

In order to achieve the minimum distortion, we need to
perform optimization for α. Note that D(X1,X2) is a continu-
ously differentiable function of α, so it is easy to obtain the
optimal α by letting dD(X1,X2)

dα = 0. Due to space limit, we
directly give the final result. The optimal α is the solution of
the following equation.

α8 +

(
1 +

σ2
1

3σ2
2

)
α6 −

(
σ4

1

σ4
2

+
σ2

1

3σ2
2

)
α2 − σ4

1

σ4
2

= 0. (20)

The equation (20) is essentially a quartic equation of α2 and
has closed-form solution although it is very complicated.

In order to show the necessity of the energy scaling, we
give the following theorem.

Theorem 3. When σ1 > σ2, equation (20) has only one solu-
tion when α > 0. Let αopt denote this unique solution, which
is also the optimal scaling factor. We have 1 < αopt <

σ1

σ2
.

The proof is in Appendix C. This theorem shows that
αopt 6= 1 when two sources have different variances, meaning
that the optimization will definitely yield a better performance.
The minimum distortion D∗2 Scheme-2 can achieve is obtained
by inserting αopt to (19).

It is difficult to analytically compare the performance of
Scheme-1 and Scheme-2 when they are both optimized. Thus
we calculate the value of D∗1/D

∗
2 under different σ1/σ2 and the

results are shown in Fig .3. It is clearly shown that D∗1 ≥ D∗2
when σ1/σ2 ≥ 1. Particularly, D∗1 is strictly equal to D∗2 if
σ1 = σ2. Thus, we could give the following proposition.

Fig. 3. The calculated value of D∗
1

D∗
2

under different σ1
σ2

.

Proposition 1. For the analog transmission of a bivariate
Gaussian source with 2:1 bandwidth compression, the opti-
mized Scheme-2 is superior to the optimized Scheme-1.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Verification of our analysis

In the theoretical analysis of the proposed nonlinear map-
ping schemes, we have made a few assumptions. In order to
show that these assumptions are reasonable, we use simulations
to verify our analysis. The objective evaluation criteria is the
signal-to-distortion ratio (SDR) [4], [5] which is defined as

SDR =
(
σ2

1 + σ2
2

)
/ (2 ·MSE) , (21)

where MSE is the mean square error of two sources.

In Fig. 4, we compare the simulated and calculated results
of two schemes, with or without optimization. The source
variances are set to σ1 = 1 and σ2 = 0.5. The spiral parameter
∆ is optimized for each CSNR, and the simulated results are
obtained by transmitting 105 source samples over the AWGN
channel. The figure shows that the analytical results match very
well with the simulation results in high CSNR regime. As the
CSNR decreases, the analytical results may deviate from the
actual performance. This is because that, in our analysis, the
channel error vector is assumed to follow the tangent direction
of the mapped point on the spiral, which may not be valid when
the CSNR is low. However, our analytical results could still
serve as a close approximation of the actual performance.

B. Comparison of all schemes

In this part, we compare the performance of all schemes.
In Fig. 5, we show the simulated results under three source
settings i.e. σ = 1 and σ2 = 0.3, 0.5, 0.8 respectively. First,
we can see that for Scheme-2, the optimization for energy
scaling definitely brings performance gain, which is in accord
with our theoretical analysis. This becomes obvious when
σ1/σ2 is large. When σ1 = 1, σ2 = 0.3, the optimal energy
scaling could improve the SDR by around 1.5 dB. For Scheme-
1, the optimization of power allocation also improves the
performance, although the gain is not as significant.

We can also see from Fig. 5 that Scheme-2 with optimal
scaling factor outperforms Scheme-1 with optimal power al-
location, which supports Proposition 1. For example, when



(a) Scheme-1 w/o optimization (b) Scheme-1 w/ optimization (c) Scheme-2 w/o optimization (d) Scheme-2 w/ optimization

Fig. 4. The comparison of simulated results and calculated results. σ1 = 1, σ2 = 0.5.

(a) σ1 = 1, σ2 = 0.3 (b) σ1 = 1, σ2 = 0.5 (c) σ1 = 1, σ2 = 0.8

Fig. 5. Performance comparison of all schemes. The opt in the legend denotes the optimization for power allocation in Scheme-1 and source energy scaling
in Scheme-2.

σ1 = 1, σ2 = 0.3, the performance gap is about 0.2-0.4dB.
We do not expect a larger gap at other reasonable settings.
As shown in Fig. 3, the value of D∗1/D

∗
2 increases slowly

with σ1/σ2. When σ1/σ2 = 10, D∗1/D
∗
2 is only 1.09, which

translates to 0.39dB of performance gap. The insight behind
this phenomenon is that both schemes try to balance the
protection of the two sources in the optimization, although
it is achieved by power allocation in Scheme-1 and by energy
scaling in Scheme-2.

Next, we compare the performance of the proposed nonlin-
ear mapping schemes with the baseline linear scheme. From
Fig. 5, we can see that the baseline scheme outperforms
the nonlinear mapping schemes at low CSNRs, but becomes
inferior to them when the CSNR is high. For example, when
σ1 = 1, σ2 = 0.5, the turning point is at around 17 dB as
shown in Fig. 5(b). This can be explained by comparing (9) and
(19). When the CSNR increases, the distortion of the baseline
scheme will be bounded by σ2

2 while the distortion of Scheme-
2 could approach zero. However, in low CSNR regime, ∆opt,
the optimal spiral size, becomes large as shown in (18). Hence,
the quantization distortion will have a larger impact on the
performance of Scheme-2.

For a given channel condition, we compare the perfor-
mance of the baseline scheme and the best nonlinear mapping
scheme (i.e. optimized Scheme-2) for different source statis-
tics. In Fig. 6, CSNR is fixed to 25dB and the x-axis is σ1/σ2.
When σ1 is close to σ2, Scheme-2 performs better; when
σ1/σ2 is large, the baseline scheme yields better performance.
It is also quite easy to understand. When σ1/σ2 is large,
X2 plays a negligible role and discarding it will not incur
large distortion. However, if X2 is of similar importance as
X1, discarding X2 will bring severe performance loss. When
CSNR=25dB, we can derive from our theoretical analysis
that Scheme-2 will outperform the baseline scheme when
σ1/σ2 > 4.2. This is very close to our simulated results as

Fig. 6. Performance comparison of the baseline and optimized Scheme-2
under different σ1/σ2. CSNR=25dB.

shown in Fig. 6.

V. CONCLUSION

In this paper, we investigate the problem of 2:1 bandwidth
compression for a bivariate Gaussian source with strictly
different variances. Two nonlinear mapping schemes based
on S-K mappings are analyzed, and their performances are
compared with each other and with a baseline linear scheme.
Both analytical and simulated results show that the optimized
Scheme-2, which combines two sources for S-K mappings,
yields the best performance when the CSNR is high and
the two sources do not differ too much. We believe that
our solution to the 2:1 bandwidth compression problem will
be building blocks in solving more general N:M bandwidth
compression problems.



APPENDIX A
PROOF OF THEOREM 1

Proof: According to (4), the total error can be split to
two orthogonal parts, quantization error and channel error. For
simplicity we use q and c to denote the quantization error
vector and channel error vector respectively. The q and c can
be presented as

q = (‖q‖ cos θq, ‖q‖ sin θq),

c = (‖c‖ cos θc, ‖c‖ sin θc).
(22)

As analyzed in Section II-B, the channel error vector c is
in the tangent direction at the mapped point x′. Because the
noise value does not depend on the position of x′, we can
conclude that |c| is independent with θc. With regard to q,
since it is assumed that the quantization error follows uniform
distribution in [−∆/2,∆/2] [4], thus ‖q‖ is also independent
with θq .

The error for each source can be presented as
x̂1 − x1 = ‖q‖ cos θq + ‖c‖ cos θc,

x̂2 − x2 = ‖q‖ sin θq + ‖c‖ sin θc.
(23)

We first calculate the average distortion of X1.

DX,1 = E(‖x̂1 − x1‖2) = E (‖q‖ cos θq + ‖c‖ cos θc)
2
,

= E
(
‖q‖2 cos2 θq + ‖c‖2 cos2 θc + 2‖q‖‖c‖ cos θq cos θc

)
.

(24)

For the third term in (24), we have

E (‖q‖‖c‖ cos θq cos θc) = E (‖q‖‖c‖)E (cos θq cos θc) = 0.
(25)

where the first equation follows the independence between ‖q‖
and θq , as well as ‖c‖ and θc. The second equation follows the
symmetry of the probability distribution of cos θq and cos θc.
Therefore, we have

DX,1 = E
(
‖q‖2 cos2 θq + ‖c‖2 cos2 θc

)
,

= E(‖q‖2)E(cos2 θq) + E(‖c‖2)E(cos2 θc),

= E(‖q‖2)E
(
cos2 θq + cos2 θc

)
= E(‖q‖2).

(26)

where the third equation follows that E(‖q‖2) = E(‖c‖2)
when the minimum average distortion is achieved. The fourth
equation follows that q and c are mutually orthogonal.

Similarly, we can obtain DX,2 = E(‖q‖2). Thus we have
DX,1 = DX,2 = D2. The theorem is proved.

APPENDIX B
PROOF OF THEOREM 2

Proof: According to (10) and (12), we have

D2
2 −D2

1 = η2π4

(
3σ4

1 + 3σ4
2 + 2σ2

1σ
2
2

)
12 · CSNR

−
η2π4

(
σ2

1 + σ2
2

)2
6 · CSNR

=
η2π4

12 · CSNR
(
σ2

1 − σ2
2

)2
.

(27)

Obviously, D2
2 ≥ D2

1 and D2
2 = D2

1 if and only if σ1 = σ2.
Since we have assumed σ1 > σ2, we can conclude D2 > D1.
The theorem is proved.

APPENDIX C
PROOF OF THEOREM 3

Proof: For simplicity, let ϕ = α2 and u = σ2
1/σ

2
2 .

Because we assume σ1 > σ2, we have u > 1. Then (20)
can be simplified as

ϕ4 + (1 +
u

3
)ϕ3 − (u2 +

u

3
)ϕ− u2 = 0. (28)

We first prove ϕ > 1. Let f(ϕ) denote the left hand of
(28). We have

f ′(ϕ) = 4ϕ3 + 3(1 +
u

3
)ϕ2 − (u2 +

u

3
). (29)

where f ′(ϕ) is the derivative of f(ϕ). Because u > 1, it is
easy to show f ′(ϕ) = 0 has only one solution in (0,+∞).
Let ϕ0 denote this unique solution. Thus we have f ′(ϕ) < 0
when 0 ≤ ϕ < ϕ0 and f ′(ϕ) > 0 when ϕ > ϕ0. Therefore, we
know that f(ϕ) is a decreasing function when 0 ≤ ϕ < ϕ0

and an increasing function when ϕ > ϕ0. Meanwhile, it is
easy to show f(ϕ) < 0, so we can conclude that the equation
f(ϕ) = 0 has only one solution in (0,+∞). We can denote this
unique solution as ϕopt. We also have f(1) = 2 − 2u2 < 0
when u > 1. Thus the unique solution ϕopt must be in the
interval (1,+∞). Hence, we have proved that αopt > 1.

In order to prove αopt < σ1/σ2, we denote z = ϕ/u. (28)
is written as

u2z4 + (1 +
1

3
u)uz3 − (u+

1

3
)z − 1 = 0. (30)

Similarly to the previous proof, it is easy to prove zopt < 1,
where zopt is the solution of (30). Thus we can obtain αopt <
σ1/σ2. The theorem is proved.
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