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Abstract—With the rapid development of smartphones, spatial
crowdsourcing platforms are getting popular. A foundational
research of spatial crowdsourcing is to allocate micro-tasks to
suitable crowd workers. Most existing studies focus on offline
scenarios, where all the spatiotemporal information of micro-
tasks and crowd workers is given. However, they are impractical
since micro-tasks and crowd workers in real applications appear
dynamically and their spatiotemporal information cannot be
known in advance. In this paper, to address the shortcomings
of existing offline approaches, we first identify a more practical
micro-task allocation problem, called the Global Online Micro-
task Allocation in spatial crowdsourcing (GOMA) problem. We
first extend the state-of-art algorithm for the online maximum
weighted bipartite matching problem to the GOMA problem as
the baseline algorithm. Although the baseline algorithm provides
theoretical guarantee for the worst case, its average performance
in practice is not good enough since the worst case happens
with a very low probability in real world. Thus, we consider the
average performance of online algorithms, a.k.a online random
order model. We propose a two-phase-based framework, based on
which we present the TGOA algorithm with 1

4
-competitive ratio

under the online random order model. To improve its efficiency,
we further design the TGOA-Greedy algorithm following the
framework, which runs faster than the TGOA algorithm but
has lower competitive ratio of 1

8
. Finally, we verify the effective-

ness and efficiency of the proposed methods through extensive
experiments on real and synthetic datasets.

I. INTRODUCTION

In recent years, crowdsourcing has attracted much attention
of the industry and the research communities with the blossom
of some successful crowdsourcing platforms, such as Amazon
Mechanical Turks (AMT), oDesk, etc. Particularly, with the
unprecedented development of smartphones and mobile Inter-
net, crowdsourcing marketplaces are switching from traditional
crowdsourcing markets to spatial crowdsourcing (a.k.a mobile
crowdsourcing) markets, where crowd workers (workers for
short in this paper) are paid to perform micro-tasks (tasks for
short in this paper) using their mobile phones [1]. For example,
on Gigwalk1 and Gmission2, consulting companies recruit
crowd workers to check the prices of products in supermarkets,
and Waze3 uses crowd workers to collect real-time information
of traffic or remaining parking lots.

Similar to the studies on traditional crowdsourcing markets,
most existing research on spatial crowdsourcing focuses on

1http://www.gigwalk.com
2http://gmissionhkust.com/
3http://www.waze.com/

the task allocation (a.k.a task assignment) problem [2], [3],
[4], [5], [6], which aims to assign tasks to suitable workers
such that the total number of assigned tasks or the total
weighted value of the assigned pairs of tasks and workers
is maximized. However, these existing works take the offline
scenario assumption, where the spatiotemporal information of
all the tasks and crowd workers is known before task alloca-
tion is conducted. Therefore, they are infeasible in real-time
dynamic environments, where each task and crowd worker may
appear anywhere at anytime and requires immediate responses
from spatial crowdsourcing platforms. Imagine the following
scenario. At noon on weekends, Tony usually wants to know
how crowded his favorite restaurants around his home are
so that he can decide which restaurant he should go to for
lunch to avoid long queues. Thus, Tony posts a task on a
spatial crowdsourcing platform, e.g. Gigwalk and Gmission,
and asks the crowd workers to take photos of the waiting
queues at the restaurants. Tony hopes to receive immediate
response rather than waiting long. In fact, such tasks arrive
dynamically and require real-time response, and so do crowd
workers. Therefore, it raises a problem that most spatial
crowdsourcing platforms encounter: how to allocate the tasks
to suitable workers in real-time dynamic environments (a.k.a
online scenarios) and model such online scenarios?

As introduced in [2], under offline scenarios, the task
allocation problem in spatial crowdsourcing can be solved by
being reduced to the problem of maximum weighted bipartite
matching[7], where the tasks and workers correspond to the
two disjoint sets of vertices in a bipartite graph, and there
is an edge between two vertices from the two disjoint sets
if the corresponding task locates in the restricted range of
the corresponding worker, whose weight is the corresponding
utility value of the pair of task and worker. Although the
reduction can still be performed under online scenarios, the
offline solutions become infeasible since the arrival orders of
tasks and workers are unknown in dynamic environments. To
further illustrate this motivation, we go through a toy example
as follows.

Example 1: Suppose we have six micro-tasks t1 − t6 and
three crowd workers u1 − u3 on a spatial crowdsourcing
platform, whose initial locations are shown in a 2D space
(X,Y ) in Fig. 1. Each worker has a spatial restricted activity
range, indicating that the worker can only conduct tasks that
locate within the range, which is shown as a dotted circle in
Fig. 1. Each user also has a capacity, which is the maximum
number of tasks that can be assigned to him/her. In this



TABLE I: Utility between Micro Tasks and Crowd Workers

t1 t2 t3 t4 t5 t6
w1 (1) 7 1 2 3 2 1
w2 (3) 5 1 1 2 1 2
w3 (2) 6 2 9 1 1 1

Fig. 1: Initial Locations of Micro-Tasks and Crowd Workers

example, u1 − u3 have capacities of 1, 3, and 2, respectively
(in brackets). TABLE I presents the utility values between
each pair of task and worker, which depends on the payoff
of the task and the success ratio of the worker that can be
inferred from how well this worker performs other tasks in
history[2], [8]. Under the offline scenario, the total utility of
the optimal task allocation, which is shown in bold font in
TABLE I, is 17. However, in dynamic online scenarios, the
offline solutions are not applicable since each task needs to be
promptly assigned to a worker who has already arrived and
vice versa, and we never know what the next arrival task or
worker is in advance. For example, if the tasks and workers
arrive following the “1st order” as shown in Table II, w1 can
be randomly assigned to t1 when it arrives, and w2 is assigned
to t3 after they arrive. Note that when w3 arrives, it can only
be assigned to two of t4 − t6, and thus the total utility is
7 + 1 + 1 + 1 = 10. However, if the tasks and workers arrive
following the “2nd order”, (t1, w1), (t3, w3) and (t4, w3) can
be allocated respectively, resulting in total utility of 17, which
is exactly the optimal allocation under the offline scenario.
It indicates that the effectiveness of an online task allocation
significantly depends on the arrival orders of tasks and workers.

As discussed above, we propose a new task allocation
problem in dynamic environments, called the Global On-
line Micro-task Allocation in spatial crowdsourcing (GOMA)
problem. As the example above indicates, the arrival order
of tasks and workers significantly affects the performance of
the algorithms. Notice that existing online studies generally
focus on the performance of online algorithms on the worst-
case arrival order, a.k.a online adversarial model. However,
such algorithms may not perform well in practice because the
worst-case order happens with a very low probability in real
world. Therefore, we study the average performance of online
algorithms in GOMA, a.k.a online random order model. In
addition, a close branch of research is the online maximum
weighted bipartite matching (OMWBM) problem [9], [10],
[11], where the information of the left-hand vertices in a
bipartite graph is known, and the right-hand vertices arrive
dynamically. However, our GOMA problem differs from the
OMWBM problem in that both the tasks and the workers

TABLE II: Arrival Time of Micro-Tasks and Crowd Workers

Arrival Time 8:00 8:01 8:02 8:07 8:08 8:09 8:09 8:15 8:18
1st Order t1 t2 w1 w2 t3 t4 w3 t5 t6
2nd Order w1 t1 t2 t3 w3 t4 w2 t6 t5

in GOMA are dynamic. Hence, the OMWBM problem is
a special case of the GOMA problem. Therefore, we claim
that the GOMA problem is global online or two-sided online.
To the best of our knowledge, as discussed later, this is the
first work that studies the GOMA problem particularly under
the random order model and thus we should design efficient
algorithms specifically for our problem. We make the following
contributions.

• We identify a new online micro-task allocation prob-
lem, the Global Online Micro-task Allocation in spa-
tial crowdsourcing (GOMA) problem, that has exten-
sive spatial crowdsourcing applications. We extend the
state-of-art algorithm for the OMWBM problem under
the online adversarial model to the GOMA problem as
the baseline algorithm and show that it has competitive
ratio of 2eln(1+Umax), where Umax is the maximum
utility of a task-worker pair.

• We clarify that the baseline algorithm performs not
well enough in practice since the worst case un-
der the adversarial model happens with a very low
probability in real world. We propose a two-phase-
based framework that has competitive ratio of 1

4 under
the online random order model, which describes the
average performance of online algorithms. Following
the framework, we further propose a more efficient
algorithm with slightly lower competitive ratio of 1

8 .

• We verify the effectiveness and efficiency of the
proposed methods through extensive experiments on
real and synthetic datasets.

The rest of the paper is organized as follows. In Section II,
we formally formulate our problem. In Section III, we review
related works. In Section IV, we present an online algorithm
and prove its competitive ratio under the online adversarial
model. Two effective algorithms with better theoretically guar-
anteed competitive ratios under the online random order model
are proposed in Section V. Extensive experiments on both
synthetic and real datasets are presented in Section VI. We
finally conclude this paper in Section VII.

II. PROBLEM STATEMENT

We first formally define the global online micro-task allo-
cation in spatial crowdsourcing problem, and then introduce
two types of online models. Finally, an optimal solution which
can be achieved under the offline scenario is proposed.

A. Problem Definitions

Definition 1 (Micro-Task): A micro-task (“task” for short),
denoted by t =< lt, at, dt, pt >, at the location lt in a
2D space is posted on the platform at time at and is either
allocated to a crowd worker who arrives on the platform before
the response deadline dt or cannot be allocated thereafter.
Furthermore, pt is the payoff of the task t.



Definition 2 (Crowd Worker): A crowd worker (“worker”
for short), denoted by w =< lw, aw, dw, rw, cw, δw >, arrives
at the platform with initial location lw in a 2D space at time aw
and either performs several tasks which arrive at the platform
before its response deadline dw or does not conduct any task.
rw is the radius of the restricted circular range of w, whose
center is lw. In addition, capacity cw is the maximum number
of tasks that w intends to finish, and δw ∈ (0, 1] is the success
ratio of w according to the historical records of w completing
tasks on the platform.

We then define the utility value that a worker is allocated
to a task as follows.

Definition 3 (Utility Value): The utility that a worker w
performs a task t is measured by U(t, w) = pt × δw.

Note that the micro-tasks in this paper are usually simple
and trivial, e.g. taking a photo by mobile phones, checking
prices in the supermarket, etc. On one hand, we assume that
the crowd workers do not need any specific skill to conduct
a micro-task, so the success ratio of a worker represents
his/her reliability. On the other hand, we can observe that the
rewards of different micro-tasks have no much difference in
real applications. Since most spatial crowdsourcing platforms
make a profit in a fixed proportion of the payoff of the
allocated tasks, the aforementioned utility function not only
maximizes the profits of spatial crowdsourcing platforms but
also guarantees the reliability of the assigned workers. Finally,
we define our problem as follows.

Definition 4 (GOMA Problem): Given a set of micro-tasks
T , a set of crowd workers W , and a utility function U(., .) on
a spatial crowdsourcing platform, which has no task or worker
initially and allows that each task and worker can arrive one by
one at any time, the GOMA problem is to find an allocation M
among the tasks and the workers to maximize the total utility
MaxSum(M) =

∑
t∈T,w∈W U(t, w) such that the following

constraints are satisfied:
• Deadline constraint: after a task t arrives, it is either

assigned to a worker w who arrives at the platform be-
fore the response deadline of t, dt, or is not allocated
thereafter, and vice versa.

• Invariable constraint: once a task t is allocated to a
worker w, the allocation of (t, w) cannot be changed.

• Capacity constraint: the number of tasks assigned to
a worker w cannot exceed w’s capacity cw.

• Range constraint: any task assigned to a worker w
must locate in the restricted range of w.

B. Online Input Models

The performance of online algorithms is usually compared
with the optimal allocation of the offline scenario and heavily
depends on the arriving orders of tasks and workers. In the
following, we first provide the corresponding offline version
of the GOMA problem and then formally introduce the online
arriving models of the GOMA problem.

The offline version of the GOMA problem is identical to
the online GOMA problem except that the first two constraints
are excluded. In other words, the spatiotemporal information
of all the spatial tasks and the crowd workers is known before
the task allocation is conducted. Therefore, we can obtain the
optimal result under the offline GOMA problem.

Moreover, different from traditional approximation algo-
rithms for which approximation ratios are utilized to measure
the approximation quality, for online algorithms, competitive
ratios (CR) are used to evaluate their performance. In par-
ticular, the competitive ratio measures how good an online
algorithm is compared with the optimal result of the offline
model where all the information is provided. Based on different
assumptions on the arrival order of the tasks and workers, we
use two types of online models, called the adversarial model
and the random order model, which focus on the worst-case
arrival order and the stochastic arrival order of all the tasks and
workers, respectively. The corresponding competitive ratios of
the two types of online models are defined as follows.

Definition 5 (CR in the Adversarial Model): The compet-
itive ratio in the the adversarial model of a specific online
algorithm for the GOMA problem is the following minimum
ratio between the result of the online algorithm and the optimal
result over all possible arrival orders of the tasks and the
workers,

CRA = min∀G(T,W,U) and ∀v∈V
MaxSum(M)

MaxSum(OPT )
(1)

where G(T,W,U) is an arbitrary input of tasks, workers and
their utilities, V is the set of all possible input orders, v is one
order in V , MaxSum(M) is the total utility produced by the
online algorithm, and MaxSum(OPT ) is the optimal total
utility of the offline scenario.

Definition 6 (CR in the Random Order Model): The
competitive ratio in the the random order model of a specific
online algorithm for the GOMA problem is the following
ratio,

CRRO = min∀G(T,W,U)
E[MaxSum(M)]

MaxSum(OPT )
(2)

where G(T,W,U) is an arbitrary input of tasks, workers and
their utilities, E[MaxSum(M)]

MaxSum(OPT ) is the expectation of the ratio
of the total utility produced by the online algorithm and the
optimal total utility of the offline scenario over all possible
arrival orders.

The optimal solution of the offline problem is introduced
in the next subsection.

C. Offline Algorithm
In this subsection, we introduce an optimal algorithm for

the offline GOMA problem. Since the offline GOMA problem
can be reduced to the maximum weighted bipartite matching
(MWBM) problem as explained shortly, the main idea of
the offline algorithm is to first transform an offline GOMA
problem instance to an MWBM instance and then adopts
classical flow algorithms, e.g. Hungarian algorithm [12], to
calculate the optimal result.

Specifically, given an instance of the offline GOMA prob-
lem, which includes a set of spatial tasks T , a set of crowd
workers W , and a utility function U(., .), we construct a flow
network G = (V,A) as follows. V = W ∪ T ∪ {s, d},
where s is a source node and d is a sink node. For each pair
t ∈ T,w ∈W , there is a weighted directed arc aw,t ∈ A with
aw,t.weight = U(w, t) from w to t if the time interval [aw,
dw] of w overlaps with the time interval [at, dt] of t, namely



(aw ≤ dt) ∧ (at ≤ dw). In addition, for every w ∈ W , there
is a directed arc as,w ∈ A from s to w with as,w.weight = 0.
Similarly, for every t ∈ T , there is also a directed arc at,d ∈ A
from t to d with at,d.weight = 0. The total amount of flow in
the network is min(|T |, |W |). So far, the flow network instance
has been constructed. Then, we use existing flow algorithms
to obtain the optimal result of the MWBM instance. Then to
obtain the allocation result of the offline GOMA problem, we
simply assign a crowd worker w to a task t if there is a non-
zero flow between them in the MWBM result.

III. RELATED WORK

In this section, we review related works from two cate-
gories, spatial crowdsourcing and online maximum bipartite
matching.

A. Spatial Crowdsourcing

In recent years, a wide spectrum of fundamental data-
driven operations for general crowdsourcing platforms are
well studied, such as filtering[13], entity resolution[14], data
cleaning[15], topic discovery[16], and a couple of crowd-
powered database systems have been successfully developed,
such as CrowdDB[17], Deco[18] and Qurk[19]. Particularly,
task assignment is one of the most important issues. [20],
[21] study the task assignment problem in offline scenarios by
learning the quality of crowd workers. [22] propose online task
assignment in crowdsourcing, where only tasks are dynamic.
In particular, all these studies focus on data management for
traditional crowdsourcing rather than spatial crowdsourcing.

With the development of smartphones, more real applica-
tions of crowdsourcing are switching to spatial crowdsourcing
[1]. [2] is the first on task allocation on spatial crowdsourcing
platforms, whose goal is to maximize the number of assigned
tasks. [8] generalizes the model of [2] by adding a score
function to each pair of task and worker and aims to maximize
the total score of the assignment. [3] integrates the reliability
of crowd workers into the model of [2], and [6] studies the
problem of maximizing the reliability and the spatiotemporal
diversity of workers concurrently. [5], [23] focus on protecting
the location privacy of crowd workers in the assignment
process. The route planning problem for a crowd worker is also
proposed, which aims at maximizing the number of completed
tasks [3], and its corresponding online version is also studied
[24], whose route optimization problem is quite different from
ours. In addition, a general spatial crowdsourcing platform,
gMission, is developed [25]. Although the aforementioned
works study the task allocation problem on spatial crowd-
sourcing, they mostly focus on offline scenarios, where the
spatiotemporal information of all the tasks and workers is
known before the task allocation is conducted. In other words,
the above studies do not address the task allocation problem
for tasks and workers that arrive dynamically, and are thus
impractical for dynamic environments in real spatial crowd-
sourcing applications.

Some recent works on spatial matching [26], [27], [28]
focus on matching two sets of objects based on their spatial
locations, where different optimization goals on the distance
between the matched objects are proposed, e.g., total sum[27],
stable marriage[26] and min-max[28]. Note that these studies
also take the offline scenario assumption.

In particular, a closely related research [29], the online
spatial task assignment problem to maximize the number
of assigned tasks, has been proposed recently. The biggest
difference between [29] and our work lies in the problem
definitions. First, in our online model, all the tasks and workers
can dynamically appear anywhere at anytime, but in [29] only
tasks are dynamic. Also, our goal is to maximize the total
utility value of the allocated pairs of tasks and workers, but
[29] is to maximize the number of assigned tasks. In addition,
the solutions of [29] fail to provide any competitive ratio
guarantee, but our proposed approaches provide competitive
analysis and theoretical guarantees under both the adversarial
model and the random order model, respectively.

B. Online Maximum Bipartite Matching

The OMWBM problem is the online version of the max-
imum weighted bipartite matching problem [7]. The input
of the OMWBM problem is a weighted bipartite graph
G = (L,R,E,U), whose left-hand vertices L are known
beforehand, but the right-hand vertices R are unknown and
arrive one by one. Once a right-hand vertex r ∈ R arrives,
the edges (l, r) ∈ E incident to r and their corresponding
weights U(l, r) ∈ U are revealed, and r must either match
a left-hand vertex l or remain unmatched thereafter. The goal
of the OMWBM problem is to maximize the total sum of
the weights of the matched edges [30]. In particular, different
assumptions on the arrival orders of R lead to different online
models, which can be simply divided to two categories: the
online adversarial model and the online random order model.

1) Adversarial Model: In this model, we assume that the
information of R, E and U and the arrival order of R is
unknown and can be arbitrarily bad. In other words, the
adversarial model focuses on the worst-case arrival order of R.
Karp et al. first defines the problem of online maximum UN-
WEIGHTED bipartite matching under the adversarial model
and proposes the Ranking algorithm with competitive ratio
of 1 − 1

e . Recently, for the OMWBM problem under the ad-
versarial model, [11] proposes the state-of-the-art randomized
algorithm. Note that the aforementioned works only focus on
the case where only one single side of vertices arrive online.
However, in our GOMA problem, both sides of vertices arrive
online. Furthermore, a closely related research, the two-sided
online maximum unweighted bipartite matching problem [31]
is studied. However, there are two major differences between
our GOMA problem and [31]. First, our GOMA problem
considers the weighted cases, but [31] can only address the
unweighted case. Second, as discussed later, our main con-
tribution is to devise effective and efficient online algorithms
under the random order model, which is not considered in [31].

2) Random Order Model: The major characteristics of the
random order model is the assumption that the arrival order of
vertices follows a uniform random permutation, hence focuses
on the average or expected performance of online algorithms.
[32] first proposes the online maximum unweighted bipartite
matching problem under the random order model and proves
that the competitive ratio of the simple greedy algorithm can
be enhanced from 1

2 under the adversarial model to 1 − 1
e .

Then, [33] and [34] propose two randomized algorithms with
competitive ratios of 1

8 and 1
e for the OMWBM problem

under the random order model, respectively. However, all these



existing studies only address the case where one single side of
vertices arrive online. Therefore, our GOMA problem, where
both the tasks and workers (two sides of vertices) arrive online,
cannot be solved directly by any existing solution.

IV. BASELINE ALGORITHM

In this section, we extend the Greedy-RT algorithm [11]
as a baseline algorithm. The Greedy-RT algorithm [11] has
the state-of-art competitive ratio of 1

2eln(1+Umax) under the
online adversarial model for the OMWBM problem, where
only one single side of vertices in the weighted bipartite
graph arrive online and Umax is the maximum weight. The
main idea of Greedy-RT [11] is to first randomly choose a
threshold on the weights of edges, and then for each new
arrival vertex, an arbitrary edge incident to it whose weight
is no less than the chosen threshold is added to the match
result if such edge exists. We extend the Greedy-RT algorithm
to the GOMA problem, called Extended-Greedy-RT, whose
framework is similar to that of Greedy-RT, but both sides of
vertices (i.e. tasks and workers) of the weighted bipartite graph
arrive dynamically, and the deadline constraint of our GOMA
problem is considered. Note that in the Extended-Greedy-RT
algorithm, for each worker with capacity cw, we treat it as
cw duplicated workers who arrive at the same time. In other
words, when a worker with capacity cw arrives, we take it
as cw duplicated workers, each of whom has capacity 1, and
process each of them in order.

The procedure of Extended-Greedy-RT is illustrated in
Algorithm 1. In lines 1-2, Extended-Greedy-RT randomly
chooses a threshold (ek) on the weights of edges according to
the estimated maximum weight Umax, which can be learned
from historical records on the spatial crowdsourcing platform.
When a new vertex arrives, which may be a task or a worker,
Extended-Greedy-RT then adds an edge among the ones whose
weights are no less than the threshold and that satisfy all the
constraints to the match result in lines 3-9. Note that when a
worker with capacity cw arrives, Extended-Greedy-RT takes it
as cw duplicates of w that arrive at the same time and processes
them one by one. We then explain Extended-Greedy-RT with
a running example and further show that Extended-Greedy-
RT achieves the same competitive ratio as Greedy-RT does
following the analysis similar to [11].

Example 2 (Extended Greedy-RT): Back to our running
example in Example 1. The Extended Greedy-RT algorithm
sets θ = dln(9 + 1)e = 3, so k ∈ {0, · · · , 3}. If k is
chosen as 0, the threshold is e0 = 1. According to the 1st
arrival order in Table II, when w1 arrives, the candidate set
Cand = {t1, t2}, and the algorithm assign t1 to w1. Similarly,
t3 and t4 are allocated to w2 and w3, respectively. Thus,
when k = 0, the total utility score is 10. Since the Extended
Greedy-RT algorithm is a randomized algorithm on choosing
k, the expectation of the total utility score for all possible k
is 10+16+16+0

4 = 10.5.

Lemma 1: The competitive ratio of Extended-Greedy-RT
is 1

2edln(Umax+1)e .

Proof: According to the offline algorithm in Section II-C,
we can obtain the corresponding weighted bipartite graph of
the GOMA input, denoted as G. Let G[ei,ei+1) be a subgraph
of G, which only contains the edges whose utilities lie in

Algorithm 1: Extended Greedy-RT
input : T,W,U(., .)
output: A feasible allocation M

1 θ ← dln(Umax + 1)e;
2 k ← randomly choosing an integer from {1, · · · , θ}

with probability 1
θ ;

3 foreach new arrival task or worker v do
4 Cand← {∀u|u is an unmatched neighbor of v such

that U(u, v) ≥ ek and it satisfies all constraints};
5 if Cand = ∅ then
6 continue;
7 else
8 u? ← an arbitrary item is chosen from Cand;
9 M ←M ∪ (u?, v);

10 return M

the interval [ei, ei+1), and OPT[ei,ei+1) and M[ei,ei+1) be the
optimal match and the one returned by Extended-Greedy-RT
on G[ei,ei+1), respectively. For any edge in OPT[ei,ei+1), at
least one of the two vertices of this edge must be matched in
M[ei,ei+1). Therefore, |M[ei,ei+1)| ≥ 1

2 |OPT[ei,ei+1)|. Then,
we have

E[MaxSum(M)] =
1

θ

θ∑
i=0

MaxSum(M[ei,Umax))

≥ 1

θ

θ∑
i=0

ei|M[ei,ei+1)|

≥ 1

θ

θ∑
i=0

ei
|OPT[ei,ei+1)|

2

≥ 1

2eθ

θ∑
i=0

MaxSum(OPT[ei,ei+1))

≥ 1

2eθ
MaxSum(OPT )

Thus, the competitive ratio of Extended-Greedy-RT is

CR =
E[MaxSum(M)]

MaxSum(OPT )
=

1

2eθ
=

1

2edln(Umax + 1)e

since θ = dln(Umax+1)e, where Umax is the maximum utility
of the GOMA input.

Complexity Analysis. For the each new arrival task or
worker, the time and space complexity of the Extended-
Greedy-RT algorithm are both O(max(|T |, |W |)), respec-
tively.

Although Extended-Greedy-RT provides a theoretical guar-
antee for the worst case, the worst case only appears with
probability 1

n! in online scenarios if the total number of
tasks and workers is n. That is because the worst case is
only one among n! different arrival orders of n tasks and
workers. Therefore, if an online algorithm focuses on its
performance on the worst case, it does not make much sense
in real applications, which pay more attention to the average
performance of the algorithms. In order to address this issue,
we adopt the competitive ratio on the random order model



Algorithm 2: TGOA
input : T,W,U(., .)
output: A feasible allocation M

1 m← |T |, n←
∑|W |
i=1 ci, k ← b

m+n
2 c;

2 Multiset W∆ ← ∅, T∆ ← ∅;
3 for each new arrival task or worker v do
4 if |T∆|+ |W∆| < k then
5 if v ∈W then
6 t← the task with the highest utility that is

unmatched and satisfies all constraints;
7 if t exists then
8 M ←M ∪ (t, v);

9 else
10 w ← the worker with the highest utility that

is unmatched and satisfies all constraints;
11 if w exists then
12 M ←M ∪ (v, w);

13 else
14 Mv ← Hungarian(T∆ ∪W∆ ∪ {v});
15 if v is matched in Mv then
16 if v ∈W then
17 t← the task assigned to v in Mv;
18 if t is unmatched in M and satisfies all

constraints then
19 M ←M ∪ (t, v);

20 else
21 w ← the worker assigned v in Mv;
22 if w is unmatched in M and satisfies all

constraints then
23 M ←M ∪ (v, w);

24 if v ∈W then
25 W∆ ←W∆ ∪ v;
26 else
27 T∆ ← T∆ ∪ v;

28 return M

as the new evaluation standard, which measures the average
performance of online algorithms, and propose a more effective
algorithm framework in the next section.

V. A TWO-PHASE-BASED FRAMEWORK

As discussed in Section IV, the global adversarial model
only focuses on the worst case, which actually happens with
a very low probability in real world. Therefore, we propose
a more effective algorithm framework, a two-phase-based
framework, which can obtain better theoretical guarantees –
constant competitive ratios under the global random order
model in this section. Based on the framework, we present a
Two-phase-based Global Online Allocation (TGOA) algorithm
with competitive ratio of 1

4 . To improve its time efficiency,
we further present the TGOA-Greedy algorithm following the
framework, which is faster than the TGOA algorithm but leads
to a slightly lower competitive ratio of 1

8 .

A. TGOA Algorithm

Inspired by the approaches solving the classic secretary
problem [35], we present the TGOA algorithm. The main idea
of TGOA is to first divide all the vertices, each of which can
either be a task or a worker, into two equal groups according to
their arrival orders and adopt different strategies on them. That
is, the first half of vertices arrive first while the second half of
vertices arrive afterwards. Note that the total number of tasks
and workers on the platform in a time interval, e.g. 24 hours,
can be estimated according to the historical records of the
platform. Then for the first half of tasks and workers, TGOA
conducts a greedy strategy to assign each new arrival task
(worker) to the corresponding worker (task) with the highest
utility and satisfying all the constraints. For the second half of
tasks and workers, when a new task or worker arrives, TGOA
tries to perform a global optimal match w.r.t. the second-half
vertices that have arrived if possible in order to reduce the
possibility of being trapped to the local optimal of the greedy
strategy on the first half of tasks and workers. Similar to the
Extended Greedy-RT algorithm, for each worker with capacity
cw, we treat it as cw duplicated workers who arrive at the same
time and process them one by one.

More specifically, let k ← bm+n
2 c, where m is the number

of tasks and n ←
∑|W |
i=1 ci. Then the first k items (tasks or

workers) arrive belong to the first half of vertices, and the
others belong to the second half of vertices. Then for the first
half of tasks or workers, when a new task (or worker) arrives,
we simply assign the corresponding worker (or task) with the
largest utility value and satisfying all the constraints to the new
arrival task (or worker). Then starting from the (k+1)-th new
arrival task or worker, we adopt a more optimal strategy. That
is, among the second-half vertices that have arrived, including
the new arrival one v, we hypothetically find a global optimal
match Mv using the Hungarian algorithm. If v is matched in
the global optimal match Mv , we assign v to the corresponding
vertex that is matched to v in Mv if such vertex has not been
assigned previously and satisfies all the constraints.

Algorithm 2 illustrates the procedure of TGOA. In line 1,
we calculate the number of the first half of vertices k, which
can be estimated according to historical records. In line 2,
we initialize two sets, which are used to store the vertices
that have arrived. Note that W∆ is a multiset. Then in lines
3-27, we iteratively process each new arrival task or worker.
Particularly, we adopt a greedy strategy on the first half of new
arrival vertices in lines 4-12 and adopt a more optimal strategy
on the second half of new arrival vertices in lines 14-23. For
each of the first half of vertices, we either assign a task with
the highest utility value that satisfies all the constraints to it if
it is a worker in lines 6-8 or assign a worker with the largest
utility that satisfies all the constraints to it if it is a task in lines
10-12. Then for each of the second half of vertices, we first
run the Hungarian algorithm on the vertices that have arrived
to obtain a current global optimal match Mv in line 14. If v is
matched in Mv , we either assign to v the corresponding task
that is matched to v in Mv if v is a worker in lines 17-19 or
assign to v the corresponding worker that is matched to v in
Mv is v is a task if such allocation is feasible in lines 21-23.
Finally, the sets T∆ and W∆ are updated accordingly in lines
24-27.



Example 3 (TGOA Algorithm): Back to our running ex-
ample in Example 1. The TGOA algorithm first estimates
m = 6, n = 1 + 3 + 2 = 6, k = 6+6

2 = 6. Based on the 1st
arrival order in Table II, for the first half of vertices, namely
the first 6 arrival tasks and duplicates of workers, the algorithm
allocates t1 to w1. For the second half of vertices, t3 and t4 are
assigned to w3 since the Hungarian algorithm only match the
second half of vertices to each other. Therefore, the total utility
score is 7+9+1=17, which is better than the expectation of the
total utility score, 10, of the Extended Greedy-RT algorithm.

Competitive Ratio. We next study the competitive ratio of
TGOA, which is inspired by [35] and extended to our problem.
For convenience, we propose a variant of TGOA, TGOA-Filter,
which directly ignores the first half of arrival tasks and workers
and only performs lines 14-27 of TGOA for the second half of
arrival tasks and workers. Therefore, the total utility of TGOA-
Filter must be no greater than that of TGOA. In other words,
if the competitive ratio of TGOA-Filter is α, the competitive
ratio of TGOA must be at least α. Note that the following
analysis assumes that TGOA-Filter filters out the first bm+n

ε c
arrival items. As discussed later, the optimal value of ε is 2.

The following analysis about TGOA-Filter relies on the fact
that, for each new arrival item v on the platform, the possibility
of v ∈ T (v being a task) is equal to that of v ∈W (v being a
worker). For the first bm+n

ε c arrival items that are filtered out
by TGOA-Filter, it can be regarded as that bm+n

2ε c tasks and
bm+n

2ε c workers are filtered out, respectively. When TGOA-
Filter processes the i-th arrival item v (i ∈ [bm+n

ε c+1,m+n]),
|T∆| tasks and |W∆| workers have arrived on the platform.
Hence, we have the following lemmas.

Lemma 2: E[MaxSum(Mv)] ≥ |T
∆||W∆|
mn

MaxSum(OPT )

Proof: Let OPT(|T∆|,n) be the optimal matching gen-
erated by the Hungarian algorithm for the offline weighted
bipartite graph, which includes |T∆| tasks and n workers, so
MaxSum(OPT(|T∆|,n)) is the total utility of OPT(|T∆|,n).
Due to the randomness of the random order model, W∆ can
be considered as the set of |W∆| workers who are uniformly
chosen from W . Therefore, we have

E[MaxSum(Mv)] ≥
|W∆|
n

MaxSum(OPT(|T∆|,n))

Similarly, T∆ can also be considered as the set of |T∆| tasks
which are uniformly chosen from T , then we have

MaxSum(OPT(|T∆|,n)) ≥
|T∆|
m

MaxSum(OPT )

Therefore,

E[MaxSum(Mv)] ≥
|T∆|
m

|W∆|
n

MaxSum(OPT )

According Lemma 2, we can achieve the following lemma.

Lemma 3:{
E[U(v, w)] ≥ |W

∆|
mn MaxSum(OPT ) v ∈ T

E[U(t, v)] ≥ |T
∆|

mn MaxSum(OPT ) v ∈W

Proof: If v ∈ T , when v arrives at the platform and is
added into T∆, which is the set of tasks that have already

arrived, v can be considered as a task that is uniformly chosen
from T∆. Thus, the expectation of the utility of edge (v, w)∈
Mv is

E[U(v, w)] =
1

|T∆|
MaxSum(Mv)

According to Lemma 2, we have

E[U(v, w)] =
1

|T∆|
MaxSum(Mv)

≥ |W
∆|

mn
MaxSum(OPT )

Similarly, we can also obtain the expectation of the utility of
edge (t, v)∈Mv if v ∈W ,

E[U(t, v)] =
1

|W∆|
MaxSum(Mv)

≥ |T
∆|

mn
MaxSum(OPT )

The aforementioned two lemmas provide a bound on the
expectation of the utility of edge (v, w)∈ Mv (or (t, v)∈ Mv)
under the random order model, which is added into the final
matching if and only if w (or t) is not matched before the i-th
item v arrives. We further analyze the probability that the task
or worker matched to v is unmatched when the (bm+n

ε c+1)-th
to (i− 1)-th items arrive.

Lemma 4:{
P{w is unmatched in steps [bm+n

ε
c+ 1, |T∆| − 1]} = bm+n

2ε
c

|T∆|−1
v ∈ T

P{t is unmatched in steps [bm+n
ε
c+ 1, |W∆| − 1]} = bm+n

2ε
c

|W∆|−1
v ∈W

Proof: If v ∈ T , we construct T
′

=
{tbm+n

2ε c+1, · · · , t|T∆|−1}, which is the set of the tasks
that arrive after the (bm+n

2ε c)-th task but before v. Let tj ∈ T ′
be the j-th task arriving at the platform, then the worker w is
assigned to tj with probability at most 1

j since at least the first
j − 1 arrival tasks cannot be matched to w. In other words,
for the j-th arrival task, u is unmatched with probability j−1

j .
Therefore, we have

P{w is unmatched in steps [bm+ n

ε
c+ 1, |T∆| − 1]}

=

|T∆|−1∏
j=bm+n

ε c+1

j − 1

j
=
bm+n

2ε c
|T∆| − 1

Similarly, if v ∈W , we have

P{t is unmatched in steps [bm+ n

ε
c+ 1, |W∆| − 1]} =

bm+n
2ε
c

|W∆| − 1

According Lemmas 3 and 4, we have the following lemma.

Lemma 5:E[U(v, w) ∈M ] ≥ b
m+n

2ε c
|T∆|−1

|W∆|
mn MaxSum(OPT ) v ∈ T

E[U(t, v) ∈M ] ≥ bm+n
2ε c

|W∆|−1
|T∆|
mn MaxSum(OPT ) v ∈W



Proof: If v ∈ T , the edge (v, w)∈ Mv can be added to
the final match, M , of TGOA-Filter if and only if w is not
matched when the the (bm+n

ε c+1)-th to (i−1)-th items arrive.
According to Lemmas 3 and 4, we can obtain the expectation
of the utility U(v, w) ∈M

E[U(v, w) ∈M ] ≥
bm+n

2ε c
|T∆| − 1

× |W
∆|

mn
MaxSum(OPT )

Similarly, we can also obtain the expectation of the utility
U(t, v) ∈M if v ∈ T ,

E[U(v, w) ∈M ] ≥
bm+n

2ε c
|W∆| − 1

× |T
∆|

mn
MaxSum(OPT )

Theorem 1: The competitive ratio of the TGOA algorithm
under random order model is 1

4 .

Proof: Let Uv denote the utility contributed by v in the
final match M . According to Lemma 5, it is easy to see that
E[Uv] = 1

2E[U(v, w) ∈ M ] if v ∈ T , vice versa. In addition,
in the online random order model, an arbitrary order must
have a corresponding symmetrical order. In other words, in
an arbitrary order, if a new arrival item v is a task, in the
corresponding symmetrical order, there must be an item with
the same arrival order that is a worker. Therefore, we have

E[MaxSum(M)] =
1

2
E[
m+n∑
v=1

Uv]

≥ 1

2
× 1

2

m+n∑
v=dm+n

ε
e

(
bm+n

2ε
c

|W∆| − 1

|T∆|MaxSum(OPT )

mn
+

bm+n
2ε
c

|T∆| − 1

|W∆|MaxSum(OPT )

mn
)

≥ 1

2

m+n∑
i=dm+n

ε
e

m+n
2ε

mn
MaxSum(OPT )

=
bm+n

2ε
c

2mn
(m+ n− dm+ n

ε
e+ 1)MaxSum(OPT )

≥ 1

ε
(1− 1

ε
)MaxSum(OPT )

In order to maximize the 1
ε (1−

1
ε ), we can easily know that

1

ε
(1− 1

ε
) ≤ (

1
ε + 1− 1

ε

2
)2 =

1

4

Therefore, E[MaxSum(M)] ≥ 1
4MaxSum(OPT ).

Complexity Analysis. For each of the first half of new
arrival tasks or workers, the time and space complexity of
TGOA are O(max(|T |, |W |)) and O(1), respectively. For each
of the second half of new arrival tasks or workers, the time
and space complexity of TGOA are O(max(|T∆|3, |W∆|3))
and O(max(|T∆|2, |W∆|2)), respectively.

B. TGOA-Greedy Algorithm

Notice that though the TGOA algorithm adopts a more
optimal strategy on the second half of vertices to ensure higher
quality of the allocation results, it is not efficient enough since
it takes cubic time complexity to find the current global optimal
match for each of the second-half vertices. Therefore, in this
subsection, we improve the efficiency of TGOA by replacing

Algorithm 3: Greedy-Match
input : A baipartite graph
output: An offline allocation MGreedy

v
1 MGreedy

v ← ∅;
2 while True do
3 (t, w)← the task-worker pair with the highest

utility that is unmatched and satisfies all constraints;
4 if (t, w) exists then
5 MGreedy

v ←MGreedy
v ∪ (t, w);

6 else
7 break;

8 return MGreedy
v

the optimal Hungarian algorithm with a greedy strategy, which
leads to a slightly lower competitive ratio.

More specifically, we replace the Hungarian algorithm with
the following greedy algorithm in line 14 of Algorithm 2
to find the hypothetical match Mv . Among the second-half
vertices that have arrived, we iteratively find an unmatched
edge between them with the largest utility value that satisfies
all the constraints and add such edge into Mv if it exists.

The procedure is illustrated in Algorithm 3. In lines 3-
7, we iteratively add an unmatched edge with the largest
utility value into Mv if such edge exits. If no more such edge
exists, Mv is returned as the result. And the whole procedure
of the TGOA-Greedy algorithm is similar to Algorithm 2,
except that line 14 is replaced by “MGreedy

v ← Greedy −
Match(second-half vertices in T∆ ∪W∆ ∪ {v})”.

Example 4 (TGOA-Greedy Algorithm): Similar to the
TGOA algorithm, based on the 1st arrival order in Table II,
the TGOA-Greedy algorithm has same result of the TGOA
algorithm the for first half of vertices. For the second half
of vertices, TGOA-Greedy also allocates t3 and t4 to w3.
Thus, the total utility score of the TGOA-Greedy algorithm is
7+9+1=17 as well.

Competitive Ratio. We next analyze the competitive ratio
of the TGOA-Greedy algorithm. As introduced above, the
TGOA-Greedy algorithm follows the framework of Algorithm
2, except that line 14 calls Algorithm 3 instead of the Hun-
garian algorithm. The greedy strategy affects MGreedy

v when
v arrives at the platform. Therefore, we have the following
lemma and theorem.

Lemma 6: E[MaxSum(MGreedy
v )] ≥ |T∆||W∆|

2mn MaxSum(OPT )

Proof: Let MGreedy
(|T∆|,n)

be the matching returned by Al-
gorithm 3 for the offline weighted bipartite graph. Ac-
cording to [12], we know that MaxSum(OPT(|T∆|,n)) ≥
1
2MaxSum(MGreedy

(|T∆|,n)
), and thus we have

E[MaxSum(Mv)] ≥
|T∆||W∆|

2mn
MaxSum(MGreedy

(|T∆|,n)
)

Theorem 2: The competitive ratio of the TGOA-Greedy
algorithm under random order model is 1

8 .



TABLE III: Real Dataset
Platform |T | |W | cw rw δ due pt
gMission 713 532 [1,2,3] 1km 0.8 5 min 10.45

EverySender 4036 517 [1,2,· · · ,20] 1km 0.6 10 min 5.24

Proof: According to Lemmas 5 and 6, the final match
returned by the TGOA-Greedy algorithm satisfies thatE[U(v, w) ∈M ] ≥ bm+n

2ε c
2(|T∆|−1)

|W∆|
mn MaxSum(OPT ) v ∈ T

E[U(t, v) ∈M ] ≥ bm+n
2ε c

2(|W∆|−1)
|T∆|
mn MaxSum(OPT ) v ∈W

Based on Theorem 1, we have E[MaxSum(M)] ≥
1
8MaxSum(OPT ).

Complexity Analysis. For each of the first half of new
arrival tasks or workers, the time and space complexity of
TGOA are O(max(|T |, |W |)) and O(1), respectively. For each
of the second half of new arrival tasks or workers, the time and
space complexity of TGOA are O(|T∆||W∆| log(|T∆||W∆|))
and O(max(|T∆|2, |W∆|2)), respectively.

VI. EXPERIMENTAL STUDY

A. Experimental Setup

We use two real datasets, the gMission dataset [25] and the
EverySender dataset 4. gMission is a research-based general
spatial crowdsourcing platform. In the gMission dataset, every
task has a task description, a location, a release time, a deadline
and payoff. Each worker is also associated with a location, an
available time, a deadline, the maximum activity range, and a
success ratio based on his/her historical records on completing
tasks. EverySender is a spatial crowdsourcing expressage plat-
form on campus, where everyone on campus can post micro-
tasks, e.g. buying some drinks or collecting a package, or
conduct tasks as a crowd worker. Similar to the gMission
dataset, each task and worker in the EverySender dataset
also includes its corresponding information. Since capacity of
workers is not given in the datasets, we generate the capacity
of workers following uniform distribution. TABLE III presents
the statistics of both real datasets. We also use synthetic dataset
for evaluation. We generate the utility values following uniform
and Normal distributions respectively. Furthermore, the arrival
order of all tasks and workers follows uniform distribution
following the online random order model. Statistics of the
synthetic dataset are shown in TABLE IV, where we mark
our default settings in bold font.

We evaluate the Greedy-RT, TGOA, and TGOA-Greedy
algorithms in terms of total utility score, running time and
memory cost, and study the effect of varying parameters on
the performance of the algorithms. In each experiment, we
repeatedly test 50 different online arrival orders of tasks and
workers and report the average results. The algorithms are
implemented in Visual C++ 2010, and the experiments were
performed on a machine with Intel(R) Core(TM) i5 2.40GHz
CPU and 4GB main memory.

B. Experiment Results

Effect of cardinality of W . The results of varying |W |
are shown in the first column of Fig. 2. For total utility

4http://www.dajiasong.com/

TABLE IV: Synthetic Dataset

Factor Setting
|T | 500, 1000, 2500, 5000, 10000
|W | 100, 200, 500, 1000, 5000
cw 1, 2, 5, 10, 20
rw 1.0, 1.5, 2.0, 2.5, 3.0
δw 0.1, 0.3, 0.5, 0.7, 0.9

Deadline 2, 4, 6, 8, 10
pt 2, 5, 10, 20, 50

Scalability |T | = 10K, 20K, 30K, 40K, 50K, 100K
|W | = 500, 1000, 2500

score, we can first observe that the value increases as |W |
increases, which is reasonable since there are more matched
edges as |W | increases. Second, we can observe that the
TGOA-based algorithms return better matching results than
the baseline Extended Greedy-RT does. Finally, TGOA-Greedy
returns slightly worse results than TGOA does. As for running
time, we can first see that it reasonably increases when |W |
increases for all the algorithms. Another observation is that the
TGOA algorithm is inefficient due to its cubic time complexity
compared with the other two algorithms whose running time
only increases slightly as |W | increases. Finally, for memory
consumption, we can see that it reasonably increases as |W |
increases. Also, the TGOA-based algorithms are less efficient
than the baseline algorithm since they consume more space in
storing results of a hypothetical global matching. Particularly,
the TGOA algorithm is the most inefficient since it consumes
more space when adopting the Hungarian algorithm.

Effect of cardinality of T . The results of varying |T | are
shown in the second column of Fig. 2. First for total utility
score, we can observe that it generally increases when |T |
increases. And again, we can see that the TGOA-based algo-
rithms perform much better, and the TGOA-Greedy algorithm
is only slightly worse than the TGOA algorithm. For running
time, we can observe similarly that the TGOA algorithm is
inefficient compared with the TGOA-Greedy algorithm and the
baseline. Finally, as for memory consumption, we can again
see that the TGOA-based algorithms consume more space to
store the results of the hypothetical global matching and all
the three algorithms consume more space as |T | increases.

Effect of capacity. The results of varying cw are presented
in the third column of Fig. 2. For total utility score, our
first observation is that the value increases at first when cw
increases from 1 to 5 but then decreases when cw is larger
than 5. The reason is that when cw ≤ 5, the number of tasks
is still larger than that of workers and thus more tasks can
be assigned when cw increases, resulting in larger total utility.
However, when cw > 5, there are more workers than tasks and
thus the total utility cannot be larger as the total number of
tasks is fixed. Also, when the capacity of workers increases, the
workers who arrive earlier will be allocated more tasks whose
utility may be small, and the workers who arrive late may
not be allocated tasks with large utility. Therefore, the total
utility score decreases when cw increases. Again, the TGOA-
based algorithms perform better than the baseline algorithm.
As for running time, we can again observe that TGOA is
the most inefficient. Finally, for memory consumption, all the
algorithms generally consume more space as cw increases.
Notice that Extended Greedy-RT consumes more space than
TGOA-Greedy does since it needs more space to store the



|W|

1
0
0
 

2
0
0
 

5
0
0
 

1
0
0
0

5
0
0
0

U
ti
lit

y

0

500

1000

1500

2000

2500

3000

Extended Greedy-RT

TGOA

TGOA-Greedy

OPT-Offline

(a) Utility of varying |W |
|T|

5
0
0
  

1
0
0
0
 

2
5
0
0
 

5
0
0
0
 

1
0
0
0
0

U
ti
lit

y

200

400

600

800

1000

1200

1400

1600

Extended Greedy-RT

TGOA

TGOA-Greedy

OPT-Offline

(b) Utility of varying |T |

c
w

1 2 5 10 20

U
ti
lit

y

500

600

700

800

900

1000

1100

1200

1300

Extended Greedy-RT

TGOA

TGOA-Greedy

OPT-Offline

(c) Utility of varying cw

r
w

10 15 20 25 30

U
ti
lit

y

0

500

1000

1500

2000

2500

Extended Greedy-RT

TGOA

TGOA-Greedy

OPT-Offline

(d) Utility of varying rw

|W|

5
0
0
  

1
0
0
0
 

2
5
0
0
 

5
0
0
0
 

1
0
0
0
0

T
im

e
(s

e
c
s
)

0

50

100

150

200

250

Extended Greedy-RT

TGOA

TGOA-Greedy

(e) Run time of varying |W |
|T|

5
0
0
  

1
0
0
0
 

2
5
0
0
 

5
0
0
0
 

1
0
0
0
0

T
im

e
(s

e
c
s
)

0

50

100

150

200

250

Extended Greedy-RT

TGOA

TGOA-Greedy

(f) Run time of varying |T |

c
w

1 2 5 10 20

T
im

e
(s

e
c
s
)

0

50

100

150

200

250

Extended Greedy-RT

TGOA

TGOA-Greedy

(g) Run time of varying cw

r
w

10 15 20 25 30

T
im

e
(s

e
c
s
)

0

5

10

15

20

25

30

35

40

Extended Greedy-RT

TGOA

TGOA-Greedy

(h) Run time of varying rw

|W|

1
0
0
 

2
0
0
 

5
0
0
 

1
0
0
0

5
0
0
0

M
e

m
o

ry
(M

B
)

2.5

3

3.5

4

4.5

5

Extended Greedy-RT

TGOA

TGOA-Greedy

(i) Memory of varying |W |
|T|

5
0
0
  

1
0
0
0
 

2
5
0
0
 

5
0
0
0
 

1
0
0
0
0

M
e

m
o

ry
(M

B
)

2.8

3

3.2

3.4

3.6

3.8

4

Extended Greedy-RT

TGOA

TGOA-Greedy

(j) Memory of varying |T |

c
w

1 2 5 10 20

M
e

m
o

ry
(M

B
)

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Extended Greedy-RT

TGOA

TGOA-Greedy

(k) Memory of varying cw

r
w

10 15 20 25 30

M
e

m
o

ry
(M

B
)

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

Extended Greedy-RT

TGOA

TGOA-Greedy

(l) Memory of varying rw

Fig. 2: Results on varying |T |, |W |, capacity cw, and radius rw.

candidate neighbors when cw increases and thus the number
of unmatched neighbors also increases.

Effect of radius of restricted range. The results of
varying the restricted range are shown in the last column of
Fig. 2. For total utility score, we can first observe that the
value increases when the restricted range increases, which
is reasonable as workers can conduct more tasks. Also, we
can again observe that the TGOA-based algorithms are more
effective than the baseline algorithm and TGOA-Greedy is only
slightly worse than TGOA. As for running time, again we can
see that TGOA is the most inefficient. Note that the baseline
algorithm is more efficient than the TGOA-Greedy algorithm.
However, increasing restricted range of workers does not affect
the running time of the algorithms too much. Finally, for
memory consumption, we again observe that the TGOA-based
algorithms consume more memory.

Effect of success ratio. The results of varying the success
ratio of workers are presented in the first column of Fig. 3.
For total utility score, we can see that the value increases with
increasing success ratio of workers, which is reasonable as the
utility of each pair of task and worker becomes larger. Also,
the TGOA-based algorithms are again more effective than
Extended Greedy-RT. For running time, we can again observe
that TGOA is the most inefficient while Extended Greedy-
RT is the most efficient. However, increasing success ratio of
workers does not affect the running time of the algorithms.

Finally, for memory consumption, we can see that TGOA
consumes the most and the memory consumption of the three
algorithms does not vary too much as the success ratio of
workers varies.

Effect of deadline. The results of varying deadline are
presented in the second column of Fig. 3. For total utility, our
first observation is that the value increases when the deadline
becomes longer, which is reasonable as more task-worker
pairs can be matched. Also, again the TGOA-based algorithms
perform better than the baseline, while TGOA-Greedy is nearly
as good as TGOA. For running time, we can see that it
does not vary too much when the response deadline increases.
Again, TGOA is very inefficient compared with the other two
algorithms. Finally, for memory consumption, TGOA is again
the most inefficient and the memory consumption of all the
algorithms does not vary much with varying deadline.

Effect of payoff. The results of varying the payoff of tasks
are presented in the third column of Fig. 3. For total utility,
we can first observe that its value increases with increasing
payoff of tasks, which is reasonable as the utility of each
task-worker pair becomes larger. Also, we can see that the
TGOA algorithm performs slightly better than the other two
algorithms. For running time, we can again see that TGOA is
the slowest among the three. Also, varying the payoff of tasks
does not affect the running time of the algorithms. Finally,
for memory consumption, we can again see that TGOA is the
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Fig. 3: Results on varying success ratio δw, deadline, payoff pt, and scalability.

most inefficient and all the three algorithms do not vary too
much in memory when the payoff of tasks varies.

Scalability. The TGOA algorithm is not efficient enough
according to our previous experiment results. Thus, we study
the scalability of TGOA-Greedy in this part. The results are
shown in the last column in Fig. 3. Specifically, we set |W | =
500, 1000, 2500 respectively, and vary the size of |T |. Since |T |
is relatively large, we set max cv to 20. The other parameters
are set to default. We observe that the memory cost of TGOA-
Greedy grows linearly with the size of data. Also, the time
cost of TGOA-Greedy grows nearly linearly with the size of
data. The results show that TGOA-Greedy is scalable in both
time and space.

Real dataset. Fig. 4 shows the results on real dataset
(EverySender). Notice that the results on real dataset have
similar patterns to those of the synthetic data. In particular, we
test the average response time, Timers − at (Timers − aw),
of each arrival task (worker) where Timers and at (aw) are
the time the task/worker is allocated and the arrival time of
each task (worker), respectively. Note that if a task (worker)
is unmatched, its response time is dt − at (dw − aw). We can
observe that the response time of the TGOA-based algorithms
is much smaller than that of the baseline algorithm, and
TGOA-Greedy has the least response time. This is because the
TGOA-based algorithms avoid being trapped in local optimum
and thus have better average response time. Similar patterns

are observed on the gMission dataset and when the capacity
values are generated following Normal distribution, and we
omit the results due to limited space.

Conclusion. The algorithms using the two-phase-based
framework always achieve the larger total utility value com-
pared with the Extended Greedy-RT (baseline) algorithm. The
TGOA-Greedy algorithm, though with a theoretically lower
competitive ratio than that of the TGOA algorithm, signifi-
cantly outperforms the TGOA algorithm in terms of running
time and memory cost and is nearly as good as the TGOA
algorithm in total utility. Finally, TGOA-Greedy is effective
and also scalable in both terms of time and space in practice.

VII. CONCLUSION

In this paper, we identify a new online micro-task allo-
cation problem, called Global Online Micro-task Allocation
in spatial crowdsourcing (GOMA). We first analyze our
differences with existing spatial crowdsourcing problems that
assume offline scenario and traditional online maximum
weighted bipartite matching (OMWBM) problems. Then, we
extend the state-of-art algorithm under the online adversar-
ial model for OMWBM problem as the baseline algorithm.
Although the baseline algorithm guarantees the worst case,
it does not perform well enough in practice. To find better
solutions, we first clarify that the worse performance of the
baseline algorithm is because the worst case happens with a
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Fig. 4: Performance on the real dataset (EverySender).

very low probability in real world, and then propose a two-
phase-based framework. Based on this framework, We present
the TGOA algorithm, which has 1

4 -competitive ratio under
the online random order model, which describes the average
performance of an online algorithm, but is not scalable to
large dataset due to its cubic time complexity. In order to
improve the scalability, we further design the TGOA-Greedy
algorithm following the two-phase-based framework, which
runs faster than the TGOA algorithm but returns a result with a
lower competitive ratio, 1

8 . We conduct extensive experiments
which verify the efficiency, effectiveness and scalability of the
proposed approaches.
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