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ABSTRACT External Influence Infected Neighbors
Social networks play a fundamental role in the diffusionrdbi- _Event Profile
mation. However, there are two different ways of how infotiom ENAeu?
reaches a person in a network. Information reaches us throor §\/ Internal Exposures
nections in our social networks, as well as through the inflee e
external out-of-network sources, like the mainstream medihile Time _Exposure Curve
most present models of information adoption in networksimes S
information only passes from a node to node via the edgeseof th External Exposures | 8 N\1
underlying network, the recent availability of massiveioalsocial T
media data allows us to study this process in more detail. Exposures
We present a model in which information can reach a node via
the links of the social network or through the influence okexal Infection

sources. We then develop an efficient model parameter fiticty: ) -
nique and apply the model to the emergence of URL mentions in Figure 1: Our model of external influence. A node (denoted
the Twitter network. Using aompleteone month trace of Twitter ~ PY @ big circle) is exposed to information through an externa
we study how information reaches the nodes of the network. We Source (govermned by external activityA..(t)) and by already
quantify the external influences over time and describe thmga  infected neighbors (governed by the internal hazard funcon
influences affect the information adoption. We discovet thein- Aint(t)). With each new exposurer, the probability of infection
formation tends to “jump” across the network, which can dndy changes according to the exposure curvg(z). We infer both
explained as an effect of an unobservable external influendbe the external activity Ac.+(t), as well as the exposure curve(z).
network. We find that only about 71% of the information volume
in Twitter can be attributed to network diffusion, and theneéning
29% is due to external events and factors outside the network
Categories and Subject DescriptorsH.2.8[Database Manage-
ment]: Database Applications Bata mining

fluence of exogenous out-of-network sources [6]. From thily ea
stages of research on news media and, more generally, iafimm
diffusion, there has been the tension between global sffieatn
the mass media and local effects carried by social strufzdie
Traditionally, it was hard to capture and study the effe€taass

General Terms: Algorlthms, thgory, experlmgntatlon. media and social networks simultaneously [16]. However\tieb,
Keyyvordg: Dllffu5|on of |nnlovat|ons, Infqrmatlon F:ascades, Infor- blogs and social media changed the traditional picture efdi
mation diffusion, External influence, Twitter, Social netks. chotomy between the local effects carried by the links ofidoc
networks and the global influence from the mass media. Today,
1. INTRODUCTION mass media as well as the social networks both exist in the sam
Networks represent a fundamental medium for the emergence YVeb “ecosystem,” which means that it is possible to colleasm
and diffusion of information [23]. For example, we oftenrtkiof sive online social media data and at the same time capturefthe
fects of mass media as well as the influence arising from tbialso

information, a rumor, or a piece of content as being passedthe ! K
edges of the underlying social network [22, 29]. This wagpinfa- networks [21]. This allows us to study processes of inforomat
tion spreads over the edges of the network like an epidensit [1 diffusion and emergence in much finer detail than ever before
However, due to the emergence of mass media, like newspapers N this paper, we ask the question “How does informationstran
TV stations and online news sites, the information not oeches ~ Mitted by the mass media interact with the personal influemise

us through the links of our social networks but also throughin- ing from social networks?” Based on tbempleteone month Twit-
ter data we study ways in which information reaches the notles

the Twitter network. We analyze overllion tweets to discover
mechanisms by which information appears and spreads thitbeg
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explained by the influence of some unobserved exogenousesour
However, when information appears at a node with a neightar t
already tweeted it, then it is not clear whether the node tieeetne
information due to neighbor’s influence or due to the infleent
the exogenous source. Thus, the effect of internal andredter-
fections get confounded [4] and the goal of the paper is teldgv
models that will allow us to separate the influence transahitty
social networks from the influence of the exogenous souxce(s

Effects of external influence. On Twitter, users often post links
to various webpages — most often these are links to newseatic
blog posts, funny videos or pictures. Generally there areftm-

damental ways how users learn about these URLs and tweet them

One would be due to the exogenous out-of-the-network efféair

example, one can imagine a scenario, where one checks news o

CNN.com, finds an interesting article and then posts a twétht w
a URL to the article. In this case CNN is the “external influghc
that caused that URL to emerge onto a particular Twitter. user
contrast, users can also come across URLs by seeing thestdpost
by other users that they follow. This type of user-to-usgrosxre

is what we refer to as “internal influence,” or diffusion. Wadi
that both external and internal influence play significafe o the
emergence of URLs in the Twitter network.

Modeling the external influence.In order to accurately model the
emergence of content in Twitter we need to consider theict¥
the invisible out-of-network sources that also transnfibimation
to the nodes of the Twitter network (via channels, like T\Wyapa-
pers, etc.). We present a probabilistic generative modefofma-
tion emergence in networks, in which information can reanhde
via the links of the social network or through the influencehaf
external source. Developing such a model is important. kame
ple, we simulated a purely non-diffusive process that piubdes
of the Twitter network at random and ‘infects’ them. Afterchu
process infects 10% of the nodes, about 30% of infectiomse(fa
appear to be a result of diffusiong., the random process picks
a node that has (simply by chance) an already infected neighb
Thus, instead of estimating the amount of internal influeatda®o,
naive estimate would be 30%. Due to the confounding of diffus
and external influence, we aim to separate the two factors.

In our model (Figure 1) we distinguish betweexposuresand
infections[24]. An exposure evenbccurs when a node gets ex-
posed to informatiord, and aninfection evenbccurs when a node
posts a tweet with informatiodi. Exposures to information lead
to an infection. A node can get exposed to information in tifo d
ferent ways. First, a nod€ gets exposed to or becomes aware of
informationI whenever one of his neighbors in the social network
posts a tweet containing(we call this aninternal exposurg The
second wayU can be exposed td is through the activity of the
external source (we refer to this esternal exposuje We refer to
the volume of external exposures over time asahent profile In
order to establish the connection between exposures aautimfs,
we define the notion of thexposure curvéhat maps the number
of times nodelJ has been exposed tointo the probability ofU
getting infected [24]. Distinguishing between exposuned iafec-
tions, and explicitly modeling the exposure curve allowsaisap-
ture rich effects. For example, during the diffusion of a aestory,
the story may become stale and less relevant each time aaeser s
it, so the probability of infection would decrease with e&oipo-
sure. On the other hand, exposures to a story about new tegyno
may have the opposite effect; with each exposure the userslea
more about the technology so the probability of infectiorulgan-
crease. Exposure curves allow us to model such diverse ioebav
that our model is able to accurately estimate from the data.

Furthermore, we also develop an efficient parameter estmat
technique. We are given a network and a set of node infection
times. We then infer the event profile, which quantifies thennu
ber of exposures generated by the external source over tee.
also infer the exposure curve that models the probabilityfefc-
tion as a function of the number of exposures of a node. Oueinod
accurately distinguishes external influence from netwdfflagion.

We experiment with our model on Twitter and find that we can
accurately detect the occurrence external out-of-netvawdnts,
and the exposure curve inferred from our model is often 50%&mo
accurate than baseline methods. We find even though we alse stu
ing processes intrinsic to the Twitter network, only abolfs7of
the content that appears in Twitter can be attributed to ifie-d
sion through the edges of the Twitter network. We fit our model
Mo 18,186 different URL's that have appeared across Twitsers,
and we use the inferred parameters of the model to providghitss
into the mechanics of the emergence of these URLsS. Moreawer,
also perform per topic analysis and find that topics, liketPesland
Sports , are most heavily driven by the external sourcedeviini-
tertainment and Technology are driven internally with orly 8%
of exposures being external.

2. RELATED WORK

Work on the diffusion of innovations [23] provides a concep-
tual framework to study the emergence of information in reeks.
Conceptually, we think of an (often implicit) network whezach
node is eithelctive (infected, influenced) omactive and active
nodes can then spread tbentagion(information, disease) along
the edges of the underlying network. A rich set of models fegsnb
developed that all try to describe different mechanisms biclv
the contagion spreads from the infected to an uninfectea fi&d
10, 22, 24, 29]. However, nearly all models only focus on tifie d
fusive part of the contagion adoption process, while neijigthe
external influence. In this regard our work introduces andrtgnt
dimension to the diffusion of innovations framework, whemex-
plicitly model the activity and influence of the external source.

External influence in networks has been considered in the cas
of the popularity of YouTube videos [11]. Authors considtie
simple model of information diffusion on an implicit comeéy
connected network and argued that since some videos becgme p
ular quicker than their model predicted, the additionalpapty
must have been a result of external influence. Our approdfendi
significantly: We directly consider the network and the efffef
node-to-node interactions, explicitly infer the activitf external
source over time and use a much more realistic model of infor-
mation adoption that distinguishes between exposures daten
adoption of information. Our model builds on the notion opex
sure curves which was proposed and studied by Romero e#al. [2
Recently, it was also argued [26] that it is the shape of exmos
curves that stops the information from spreading. We makem s
forward by providing an inference method that infers thepshaf
such exposure curves. Simulations show that our method much
more accurately infers the exposure curves than the metiress
ously proposed [24, 26].

3. PROPOSED MODEL

Here, we develop in detail our novel information diffusionael
that incorporates both the spread of information from nadsode
along edges in the network as well as the external influences a
ing on the network. Additionally, our model reconciles thapg
between a stream of exposures arriving in continuous tinteaan
series of discrete decisions leading to infection.



We refer to the amount of influence external sources haveen th
network as a function of time as tlegent profile It is proportional
to the probability of any node receiving an external expesatra
particular time. We use the teroontagionto refer to a particular
piece of information emerging in the Twitter network and ves s
a node isnfectedwith a particular contagion when she first men-
tions/tweets the contagion. We model contagions as inafgen
of each other, which means we consider them one by one.

We illustrate our model in a node-centric context in Fig. k-A
sume a single contagion (i.e., a piece of information). Agtpro-
gresses, a node receives a stream of varying intensity efreat
exposures, governed by the event profile;(¢). Additionally, its
neighbors in the network also become infected by the combagi
and each infected neighbor generates an internal expo&iaeh
exposure has a chance of infecting the node, but with theahrri
of each exposure, the probability of infection changes miing to
the exposure curvg(z). Eventually, either the arrival of exposures
will cease, or the node will become infected and then expoé#s t
neighbors. Our goal is to infer the number of exposures geeer
by the external source over time, as well as the shape of fhe ex
sure curve)(x) that governs the probability of node’s infection.

Modeling the internal exposures.Consider a single contagion. In
our model, an internal exposure occurs when a neighbor ofla no
becomes infected, and then an exposure is transmittedaafter-
dom interval of time. Imagine a real world scenario in whibl t
social network is the Twitter network and the contagion agieg
across the network is a particular URL. If a neighbor writéseet
involving a particular URL then a user sees their neighboviset,
then and only then has the internal exposure propagated &hen
edge. An infected node will expose each of its outgoing neigh
exactly once, and the time it takes for each exposure to dscur
sampled from some distribution universal to all edges inrtée
work. Therefore, a hazard function [12] is appropriate tadeio
this process. Hazard functions were originally developeddtu-
ary sciences, and they describe a distribution of the leafitime
it takes for an event to occur. Recently, [13] used hazardtions
as a basis for disease propagation in continuous time asozssl
networks. They are extremely effective at modeling discesents
that happen over continuous time. In this respect hazartioins
represent a principled way of occurrence of discrete evérs
exposures) as a function of continuous time.

Specifically, leth;: be theinternal hazard functionwhere

Aint () dt = P (i exposeg € [t, t + dt)|i hasn't exposed yet)

for any neighboring nodesand j, wheret is the amount of time
that has passed since notlavas infected. In our context\;,:
effectively models how long it takes a node to notice one of it
neighbors becoming infected. It is a function of the frequyenith
which nodes check-up on each other. For the Twitter netvea&h
time a user logs-in they are updated on all of their neighbors

The expected number of internal exposures a riddes received
by time¢, which we will define as\'"), (¢), is the sum of the cumu-
lative distribution functions of exposures propagatirangleach of
the node’s inbound edges and can be derived as follows:

AGL () = > P(j exposed beforet) 1)
;5 Isi’s inf. neighbor
t
= Z 1—exp <—/ Aint (s — Tj)d8>:|
j;5 isi’s inf. neighbor i
@)

wherer; is the infection time of nodg.

Modeling the external exposures. The second source of expo-
sures to a particular single contagion for nodes in the néte@mes
from the external source acting on the network. The fundaahen
property of the problem we are trying to solve is that the ke
source cannot be observed. The source varies in intengtyiowe,
and this function is called thevent profile which we designate as
ezt (t). Specifically,

Aezt(t) dt = P(i receives exposure [t,t + dt))

for any nodei, wheret represents the amount of time since the
contagion first appeared in the network. A couple of thingsufth
be noted here. First, all nodes have the same probabilityazfiv-
ing an external exposure for any point in time. Second, is not
conditioned upon the node not already having received aarrmeadt
exposure. This means that any node can receive an arbitary n
ber of external exposures. We call,: the event profile because it
describes an actual real world event that caused the infamto
arrive in the network and start spreading. As the event pssgEs
over time, event's efficacy in the network changes. For examp
if our contagion is civil unrest in Libya, then every time itheuler
Gaddafi gives a speech or the rebels win a battle we would eapec
spike in the intensity of the external source and thus the eve-
file Aez¢. As time passes without any new developments or as the
event's relevancy fades, we expect,: decrease to 0. However,
every time there is a new development we expect a spike inthe e
ternal event profilé\...:. We will infer \..: non-parametrically, so
we can quantify the relevancy of any event over its lifespan.

In order to derive the distribution of exposures a node wesei
over time as a function of time, we model the arrival of expesas
a binomial distribution. Consider we were to take the erdmetin-
uous time interval of the lifetime of the contagion and brizalown
into smaller but finite time intervals. Then whether an expe®c-
curred during each such subinterval is a Bernoulli randoriabe
(exposure vs. no exposure) with its own probability. Therefthe
total number of exposures received in a time interval is a sfim
Bernoulli random variables, just as a binomial random V#Aeigs a
sum of Bernoulli random variables. Let's say that.: is constant
for all time and that time is discretized into finite intervalf length
At. Then the probability that external exposures have been re-
ceived aftefl” time intervals is exactly a binomial distribution:

Peowp(n; T - At) = (i) Newt - AE)™ - (1 — Xewt - AL)TT

Sett = T - At. If we take the limit of asA¢ — 0 andT — oo
such that does not change, then this probability approaches

To relax the constraint that. .+ is constant, we use the average of
Aext(t) OVert:

P (n;t) ~ <t/:t> <A””Tt(t) -dt)n- (1—

whereAcq+(t) = fot Aezt(s)ds. Finally, users are receiving both
external and internal exposures at the same time, so if wibtake
into account both processes. This would imply taking thevoen
lution of the two probabilities, which would be computatidiy

infeasible. Instead, we use the average gf; (¢) + /\gift (t):

t/dt—n
A”;(t) : dt) .



Symbol Name Description Technical Definition
) Proportional to the probability of any .
Aewt(t) The Event profile node receiving an exposure at time ezt (t) dt = P[node exposede [t, ¢ + dt)]
Governs the random amount of timelit
Xint (t) Internal Hazard takes an infected node to expose its . ) Aint (£) dt_ o
Function : P (i exposeg € [t,t + dt]| i hasn’t exposed yet)
neighbors
The Exposure Curve | Determines how the probability of o i o
n(x) (parameters, p2) infection changes with each exposute.  7(z) = P(linfected right after:™ exposurg
piy = 12 (BBt )’
X HH . exr n t
Péi)p(n;t) The Exposure Distribution The probablhty that node_has » /At
receivedn exposures by time A ()4 Awr (8)
T Infection time The infection time of node

Table 1: Definition of symbols used in the model.

o (t/dt> (w .dt>n ®

n t
AD @)+ Aee(t) L\
% (1 _ % -dt> @)

Effectively, we approximated the flux of exposures as consta
time such that each interval of time has an equal probatufign
exposure arriving, so the sum of the events is a standararniého
random variable.

Modeling the exposure curve.We model the exposure curve as
a parameterized equation. Recall that the exposure cusgzides
the probability of infection as a function of the number opesures
received. More specifically, if is the current number of exposures
the node has received andr) is the exposure curve, then

n(x) = P(nodei is infected immediately after’” exposure.

We choose to parameterizézr) as

n(x):&~x~exp<1—£).
P2 P2

wherep; € (0,1] andp2 > 0. Parameterizing(x) in this manor
allows for several desirable properties. Fimgt)) = 0 so it is
impossible to become infected by a contagion before beirg ex
posed to it. Secondly, this function is unimodal with an exgattial
tail, so there is a critical mass of exposures when the candg
most infectious followed by decay brought on by the idea beco
ing overexposed/tiresome. Lastly, and most importantlyand
p2 have important conceptual meaningsi max, n(z) and
p2 = argmax, n(z). Because of this, we can think pf as a gen-
eral measure of how infectious a contagion is in the netwoda
as a measure of the contagion’s enduring relevancy. Fig.o&sh
several different forms ofy(xz). This parameterization is expres-
sive, but any other parameterization fgc) is also valid. For the
remainder of the paper, we will discuss the model in the care
then(z) parameterization presented above.

From exposures to infections. In order to fit the parameters of
the model to observed data, we must now construct the pridipabi
functions to describe the model. With the equations givesveb
building the distribution of the infection time of a nodecan be

)
1

P(Infection)

|
P2

Exposures

Figure 2: Example exposure curvesy(z), where n(z) is the
probability of a node becoming infected upon itsz!" exposure
to the contagion. The parameters ofy(x) are p; and p2.

done as follows. Lef")(t) = P(r; < t) be the probability that
nodei has been infected by timewherer; is the infection time of

nodei. Making use of the quantitg/?e(;)p(n; t),

FO(t) = i Pli hasn exp.] x P[iinf. |i hasn exp.]  (5)
n=1
-yt 1= [T0-a0]. @
n=1 k=1

While F(¥)(t) is analogous to the cumulative distribution func-
tion of the infection probability, it is important to noteatit is not
actuallya distributionlim; ., F'(¢) < 1asaresult ofim,_, n(z) =
0. This is ideal because it implies that there is a non-zeraabha
that a node will never become infected, as should be the case.

3.1 Inferring the model parameters

Next we develop a method of inferring the model parametars fo
a given network and the tract of a single contagion. We fit tbdeh
to each contagion separately. We are given the network and th
infection times for each node that got infected with the agign
under consideration. We then need to infer the event prfile(t)
for all ¢ at which at least one node was infected, and parameters
of n(x), p1 and p2, of the exposure curve. In all, the number of
parameters we are inferring is the numbeunfguenode infection
times plus the two parameters 9fz). Our general strategy is to
alternate back and forth from inferring...(¢) to inferring n(z),
assuming we known one for certain while we infer the otheti] un
both functions converge. Below, we first demonstrate hownfieri
the event profile when the exposure curve is known. Then, a& sh



how to infer the exposure curve with a known event profile afyn
we combine the two steps into a single algorithm.

Inferring the event profile. The following outlines a fast and ro-
bust method for inferring\c..(¢), givenn(z). Let S(t) be the
number of nodes that are uninfected (by the contagion cilyren
under consideration) at time S(t) is a random variable whose ex-
pectation value is dependent du.+(t), n(x), and the underlying
network. The networks which we are interested in are sufftyie
large, so the quantitg(t) — E [S(t)] is usually very small in mag-
nitude. This prowdes us W|th a very straight-forward mettior
inferring Acx:(t fo ezt (8)ds. Letty, be thek!" time at which
at least one node was mfected, then defneas Acat(tx). TO
calculateS(¢),

M=

S(te) = P( nodei not infected by time) )
i=1
N oo n
=33 P, (nsty) H ®
i=1 n=1 k=1
~ DY Plh(nitk)exp (—/ n(y)dy> ©)
i=1n=1 y=0

(10

Ak+/\mt(tk)
~~ E exp —/ n(y)dy | -
: 0

The first approximation comes from treating the number ofoexp
sures received by a node at any given time as a continuousuneal
ber instead of an integer. This provides us with a closenhfex-
pression. The second approximation comes from settinguhe n

ber of exposures received by each node to be the expectedenumb

of exposures.

Since the right-hand side is monotonic (it is strictly desiag
with respect toAx), we can solve for\; using bisection search.
Doing this for all¢i gives usAe.¢ (i) for each possible time, and
then we can use finite difference to det.:(¢x).

Once the event profile has been inferred, we must then update

the exposure curve accordingly.

Inferring the exposure curve. Now, we assume we KnoWeq¢ (t)
for all 5, and we want to infer the exposure cumyér), specif-
ically its parameterg: andp2. Our strategy in solving for these
parameters will be to fiy-, and then solve for g; that maximizes
the following approximation to the log-likelihood. Makinge of

Eqg. 6, we have o
LonA ~ 3" 1o {d[F ] S log [F() }
1€L i€Z¢
szpe(w)p n; T |:log +Zlog 1-n :|

1€L n=1

+ Z Zpe(wp (n; Tmaz) Zlog 1-—

1€ZC n=1

ezt7 znt

whereZ is the set of all infected nodeg’ is the set of all unin-

fected nodes, and,,.. is the time of the last observed infection.

The optimalp, satisfiess= = 0 so
n—1
+ > Z P, (0 Tmaa) - > —————— (11)
1€ n=1 k=1 pL- ))
£ P ) -3 — 1) (a2
i€TC n=1 = e (L= n(k)

The parametep, can be solved iteratively, using and initial value

between 0 and 1. Becaueté;)p is independent op, they only
need to be calculated once. This, along with the iterationserg-
ing quickly, makes this entire process very fast.

Now, we combine the event profile inference process with the
exposure curve inference process to form a single algoritiah
infers the entire model.

Inferring all parameters. If we use the previously mentioned
method to infer(z) using the actual ground-trutke.. (¢), it works
extremely well. In fact, coming up with contrived instandas
which it breaks is difficult. The same thing is true for usifg t
event profile inference method with ground-trutfx). When nei-
ther ground-truth function is known and we have to iteratekba
and forth between both methods, however, the results arasot
stable. Both functions’ inference methods are sensitivarttors in
the other function. Fortunately, all that is needed to cxirtieis is

a slight modification. Simply put, we fig, to some integer value
and then iterate back and forth between the two methods. ,Then
p1 andAcq¢(t) converge to some values dependent on the fixed
and we calculate the log-likelihood of the resulting inéetfunc-
tions. We do this for all reasonable integer valuepgfand we
choose the one with the optimal log-likelihood. Algorithngites
the pseudocode.

Algorithm 1 Model Parameter Inference

Initialize Acet (), PFinatr PFinats Lmas
for po =1 = pmas do
Initialize p1
while not convergedio
p1 < Solution to Eq. 12 usingz, Acxt (t)
Aezt(t) < Solution to Eq. 10 using+, p2.
end while
L « Log-Likelihood Acst (%), p1, p2)
if £L> Lmae then
Lomaz < L
pjlcinal < p1
p?inal <~ P2
end if
end for
Aczt(t) < Solution to Eq. 10 SN} a1 PFinai-

Practical considerations.Since we infer the event profile. .+ (t)

in non-parametric form, the number of parameters in the inode
could potentially scale with the time duration of the comagwe
would have to solve fol..:(¢;) for each node’s infection time
t;). This can be prevented, however, by predetermining a set of

times {tm}mf only at which the event profile will be inferred.
Then, \.z+(t) between these set times can be approximated using
linear interpolation. In practice, we us@d = 20, and we set each

tm at the time in whichy; of the infections with the contagion
have occurred. Doing this not only makes the runtime comstan
with respect to the duration of the contagion, it also spegdthe
algorithm in general at the price of only a negligible deseea
accuracy.

The algorithm scales linearly with the number of nodes that r
ceived at least one exposure. All nodes that received orgrmei
exposures and no internal exposures, however, are etfgciilen-
tical and can be grouped into a single term for both the evexfil@
inference and the exposure curve inference. Thereforeaictipe
the runtime scales linearly with the number of nodes thatived
at least one internal exposuyree. the union of outgoing neighbor-
hoods for all infected nodes. For most real world social ok,
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Figure 3: Experiments on synthetic data. (a)-(e) The model fi
ted to a synthetic contagion on a scale-free network with 7879
nodes. The internal hazard function is\:.+(¢t) = ¢, which in-
duces a Raleigh (unimodal) distribution for the internal expo-
sure propagation time. Given just the number of infections &)
our model is able to infer all of (b)-(e). (f)-(j) The model fit
ted to the same network but with the internal hazard function
Aint(t) = 1, which induces a power law distribution for the
internal exposure propagation time.

this implies the runtime scales slightly more than lineavlth re-
spect to the number of infections.

We can infer the model parameters for most contagions well in
side a minute. A large portion of real-world contagions i ou
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Figure 4: The model fitted to a single contagion representing
URLSs related to the Tucson, Arizona shootings. The green ver
tical lines designate when four distinct developments reted to
the shooting event occurred.

dataset infects about 50-100 nodes, and rarely did theitdgor
take more than 10 seconds to converge. For larger contagioms
infecting thousands of nodes, the runtime was 5-10 minutes.

In all, we used the algorithm to fit the model to more than 18,00
real contagions and hundreds of synthetic contagions, antewer
encountered convergence issues.

4. EXPERIMENTS

With our model well-defined and with an algorithm for infer-
ring its parameters, we now apply it to real as well as syitthet
data. First, to establish the accuracy of the parameterenée
algorithm, we fit our model to synthetic data. This allows dior
rect comparison of ground-truth to inferred parameters.e¥én-
ine a specific real-world case study to better illustratentoziel.
Lastly, we run a series of large-scale experiments on thegamee
of Twitter URLs. The model reveals the underlying dynamits o
information emergence on Twitter.

4.1 Experiments with synthetic data

To test accuracy of the model parameter inference algorithen
run a series of experiments on simulated data.

For each experiment, we first generate a large synthetiengef
tial attachment network. We then choose values/far), Ace: (),
andX\;:(t). Atthe start of the experiment, all nodes are uninfected.
Then, using a small discrete time st&g we march forward in
time, and external exposures are sent to each node withlglidpa
ezt (t) - At. If @ node becomes infected, it will transmit exactly
one exposure to each of its outbound neighbors, and the twte e
outbound exposure takes to propagate is governexd,hyt) - At.
With each exposure a node receives, we sample a binary random
variable with biag)(z) to determine whether the node will become
infected upon that exposure. Once the experiment is compted
algorithm is given a set of node infection times, the undedyet-
work, andXin¢(t), and its task is to infen(z) andAez:(t).

Baselines. We compared our algorithm against common sense
baselines. For inferring(z), we used the baseline of assuming
internal exposures propagate immediately, and that albsxes
originate internally. Calculating(z) at each exposure coumf,
then boils down to counting the fraction of times a node bexom
infected immediately after;, of its neighbors become infected.
Note this is exactly the method of inferringx) used in [24]. The
baseline for inferringh\.+(t) uses the number of infections that
occur for each unit of time in which none of the node’s neigkbo
were previously infected. We refer to these infections dsrexsl
infections. Since an externally infected node, by definitizas no
infected neighbors, we know with certainty that all expesuthe
node received came from the event profile. Therefore, theahrr



of external infections over time should be indicative of #rgval
of external exposures over timeg., the event profile. This, how-
ever, only provides ahape(but not the scale) of the event profile,
because without knowledge of the exposure cuyiee), we do not
know how many exposures it takes to typically cause an iitfiect
Thus, the scale of the baseline.:(t) is usually 1 to 2 orders of
magnitude larger.

Experimental results. We ran many different combinations of net-
work topologies, exposure curves, event profiles, andriatdraz-
ard functions. Overall, we ran over 100 different combioiadi on
networks of 75k+ nodes, and the algorithm not only perforoced
sistently well but also did significantly better than theddaes. We
included the results of two such experiments in Fig. 3.

For the first experiment, our algorithm is given a network and
the data on Figure 3(a). Based only on this information, @&hke
to infer data shown in Figures 3(b) to 3(e). These figures-llu
trate various aspects of the inferred profile of the extenflalence,
i.e., the event profile, and exposure curve against the grouria tru
and the baselines. For the event profile, not only is the safale
the baseline off by several orders of magnitude, but it alaogs
the peak of the event profile far too early. On the other hamel, t
event profile inferred using our algorithm very closely petsithe
scale, shape, and the occurrence of the profile peak to tkeatext
that the difference between the ground truth and inferredtepro-
file is negligible. The situation is the same for inferring tbx-
posure curve in Fig. 3(e). The inferredx) almost exactly fits
the ground truth, whereas the baseline overestimates fiusere
curve by more than 50%.

For the second experiment (Fig. 3(b)-3(j)), we used a vecyipe
liar zig-zag ground-truth external influence profile (Fi¢o)3, but
the observations are still the same — our model was able &v inf
all the quantities almost exactly. The event profile infeeeshown
in Fig. 3(i) is very accurate. It resolves each of the 10 peakdle
the baseline, besides being orders of magnitude off in soalg
detects 4 peaks. We infefx) almost exactly, as shown in Fig. 3(j).

Note that even though we test the algorithm on synthetic data
the fact that the model works well is not at all trivial. In pen-
lar, from the model fitting point of view the effects of intatrand
external influence are confounded and the model estimatimep
dure needs to separate them out. In particular, consideotiteast
in the performance of the baseline approaches and the mopos
model. Overall, these experiments demonstrate the robssstof
the model and allow us to move to the experiments on real data.

4.2 Experiments Using Real Data

We now fit our model to a real data from the Twitter network.
We study the emergence of URLs on the Twitter network. URLs
emerge by Twitter users mentioning them in their tweeto(tgh
tweeting or re-tweeting). Thus, URLs correspond to coratag)i
posting a tweet mentioning a particular URL correspondsitma
fection event.

Twitter dataset. To apply our model to a real-world information
diffusion network, we collectedompleteTwitter data for January
2011, which consists of 3 billion tweets. We focus on URL4 tha
have been tweeted by at least 50 users as our contagionsdgf stu
(we found that contagions smaller than 50 infections didprot
vide robust enough statistics). For URLs that were shodene
unshortened them and treated all URLSs that point to the sagse w
address as one contagion. We restricted our focus to URLRichw
we could classify as written in English. To do this, we exteac
natural text from the HTML of the URLs and then used a charac-
ter sequenced-based classifier to determine their landéhgeé/e

also removed URLSs that demonstrated blatant spamming leghav
In all, this resulted in 18,186 different URLSs.

We constructed the network over which these URLs propagate
as follows. First, we took the union of all users that tweeatd
least one of these URLs. Then, for each user in this set we used
the Twitter API to extract a list of the users that they follawhen
one user follows another, he/she can see all of their twigeiside
URLSs that they post, and it is through this relationship tat-
tagions spread on Twitter. In all, this created a 1,087,08&en
subgraph with 103,112,438 edges. We focus our study on URLs a
they clearly emerge due to external events.

For the internal hazard function:(¢), empirical analysis indi-
cates thab,.. (t) = 214, wheret is in hours, is a suitable choice.
This implies that the distribution of lag time between irifens and
exposures follows a power law with an exponent of 1.14.

A case study of the influence of external eventsWe start our
investigations on real data with an illustrative case stlusing in-
formation diffusion, we aim to detect a sequence of extezmahts
that presumably caused bursts of activity on the Twittewnsit.

We examined the Tucson, Arizona shooting on Jan@&ltyin
which 6 people were killed and 14 others were injured, andregno
the injured was U.S. Congresswoman Gabrielle Giffords. r&he
were four key developments related to this event: (1) thetsho
ing occurs (Jan. 8, 10:10am), (2) the Westboro Baptist Ghurc
announces plans to protest at the funerals of the victims (9a
9:15am), (3) Arizona Governor Jan Brewer signs emergergig-le
lation blocking the protest. (Jan. 11, 9:24am), and (4) afiran
“Get Well Soon” card is formed for Gabrielle Giffords thatqmte
can sign (Jan. 12, 6pm).

We collected all URLs that were tweeted at least 50 times that
contained the word “Giffords.” We then gathered them intngle
contagion. Given that we aggregated four separate sulestae
would expect that when we fit our model to the observed daga, th
event profile would coincide with developments related toréal-
world event. Indeed this is the case as shown in Fig. 4.

The results of the model applied to the contagion are shown in
Fig. 4. Additionally, the time of each of the 4 developmerdted
above is represented as a vertical green line in Fig 4(a) ntulel
clearly detects all four developments: each of them is ¥atio by
a spike in the event profile within 10 hours. For the seconddero
velopments, the spikes in the event profile are immediatso Al-
teresting is how the baseline event profile differs from tloslet’s.
For example, immediately after the 3rd developmeést, (vhen the
governor passed a new law) the model infers two spikes.dn(t)
whereas the baseline records only one. In response to tHeeliagy
passed, many different groups began organizing countéesiso
to prevent the Westboro Baptist Church from interferinghwitie
funerals. This created a second influx of URLs from sources ex
ternal to Twitter (Facebook groups, news sites, etc.), Wwhias
completely missed by the baseline.

Evaluation using Google Trends. As a global alternative eval-
uation method we also performed the experiment where we ex-
tracted a set of mainstream media articles for which we walesta
identify a single keyword¥V that adequately describes theenq,
swine flu for a BBC article on “Increase in Northern Irelandrssv
flu cases”). For eachl’, we then queried Google Trends to ob-
tain the number of worldwide search traffic of qué#y over time.
This served as a proxy for the activity of the external souite
compared the L2 distance between the inferred event prafile a
the Google Trends ground-truth. Overall, we found that oadeh
gives 30% relative improvement in the L2 distance of theriafe
event profile when compared to the naive event profile esitmat



External influence of different news categoriesWe now proceed

to an aggregate analysis of event profiles and external imfuef
different category of news. We identified 9 news sites that&p
the article’s category within the URL. All together, we idiied
1,929 URL's belonging to 11 different news categories. Wenth
fit our model each URL and infer the event profile as well as the
exposure curve. For each news category, we then calculaged t
averagep; which is the maximum probability of infection for the
exposure curveps which is the number of exposures at which the
URL is most infections, the duration or lifetime over whidiet
event profile was inferred, and the number of expected tatare
nal exposures each node receives from the URL's event.

The results are displayed in Table 2. The average valyg of
was 0.0013p, was 3.21, the average duration of the contagions
was 65.69 hours, and the average fraction of external iofect
was 23.94%. In the first column, we show the maximum probabil-
ity of infection for the exposure curve. Notice that Entamaent,
Business, and Health appear to be the most infectious, whritre
Education, and Travel are the least infectious. This seedason-
able as news articles about topics such as Art or Educatiocvibe
less likely to be retweeted compared to Entertainmentlastidhe
second column describes upon which exposure the URL is most i
fectious. World News, which is more time sensitive, reaahes-
imum infectiousness earlier compared to other topics. rAsteser
has received more thamn exposures, the probability of infection
decreases, so it makes sense that these topics, which bateime
evant as time passes, reach this point sooner. Contrasuitis
a topic like Art that is naturally less temporally sensitivaddi-
tionally, we learn that topics with a smalles tend to have shorter
duration, and topics with a larges tend to have infections appear
over a longer interval of time. Intuitively this makes seasdopics
related to events (World, Business) get “old” sooner.

Lastly, the last column shows on average what percent of-expo
sures came from external sources versus from within thearktw
Politics appear to be the most externally driven topic, e/Ehter-
tainment is the most internally driven. This consistentwtiite fact
that the 22 of the top 30 users followed on Twitter are eniteeta.

Global characteristics. The distributions for both the; and p.
exposure curve parameters inferred across the entire URiseta
can be found in Figures 6(a), 6(b). Interesting is for how toe
values ofp; were inferred, with a mode on the order of .0005. This
implies that the people, at least Twitter users, are vergctge
about the ideas they adopt. Additionally, most of the irddip,
parameters were small, wigh = 1 being the most common. Re-
call that a smallep, implies that the probability of infection begins
to decrease with additional exposures sooner, and fromvihisee
evidence that users quickly fatigue of most diffusing cgiaas.
Next, for each URL, we went through every user that was in-
fected one by one. For each user, we plotted the order oftiafec
of the user in relation to all other infections versus thetitm of
expected exposures the user received from internal squncdshe
results can be found in Figure 6(c). This plot demonstratesit-
teresting time dynamics at play. On average, the first fewsume
infected almost purely externally, but then there is a surgeter-
nal exposures. As a result, the early infections are laigédynally
driven, but as the contagion continues to spread the ioiesiare
driven more and more by external influences. This initiagsun
internally driven infections is also evident in the aggtegaexpo-
sure curve, shown in Fig. 5. Upon each infection, the expecte
number of exposures the user has received is recorded adédliv
by the inferred value op.. This value shows how far along the
node was in the exposure curve when the infection occurmadl, a

the apex of the exposure curve occurs when it is equal to 1. As
one might expect, there is a high density of infections ategr

at the apex. What is interesting, however, is that theress al
dense group of infections happening early in the exposuneat

low probabilities. This group is almost exclusively pogath by
internally infected users.

Finally, for each URL we calculated the expected number of ex
posures each user received during the emergence of the URL an
what fraction of these exposures came from an external soxe
eraging across all URLs, we found that 71% of all exposureseca
from internal sources within the network, while the othep@6f
the exposures were external. We find this 29% to be signifeaaht
clear evidence that external effects cannot be ignored.

5. CONCLUSION

Emergence of information has traditionally been solely ated
as a diffusion process in networks. However, we identified dmly
around 71% of URL mentions on Twitter can be attributed te net
work effects, and the remaining 29% of mentions seem to béalue
the influence of external out-of-network sources. We thexsemt
a model in which information can reach a node via the linkdef t
social network or through the influence of external sourokg-
plying the model to the emergence of URLSs in the Twitter nekwo
demonstrated that our model can be used to infer the shape of i
fluence functions as well as the effects of external sourceth®
information diffusion in networks. We should emphasizet thar
model does not only reliably capture the external influende ds
a consequence, also leads to a more accurate descriptioa &l
network diffusion process.

For future work it would be interesting to relax the assumpti
of uniform activity of the external source across all nodéshe
network. Incorporating our model into methods for ideritify
“influencers” in networks [18, 5, 9] might be fruitful. Curry,
phenomena we are observing are clearly taking place in ggtge
Ultimately, it will be interesting to pursue more fine-grathanaly-
ses as well, understanding how patterns of variation atethed bf
individuals contribute to the overall effects that we olser
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