
DART: Dropouts meet Multiple Additive Regression Trees

K. V. Rashmi Ran Gilad-Bachrach

Department of Electrical Engineering and Computer Science

UC Berkeley

Machine Learning Department

Microsoft Research

Abstract

MART (Friedman, 2001, 2002), an ensemble
model of boosted regression trees, is known
to deliver high prediction accuracy for di-
verse tasks, and it is widely used in prac-
tice. However, it suffers an issue which we
call over-specialization, wherein trees added
at later iterations tend to impact the predic-
tion of only a few instances, and make negli-
gible contribution towards the remaining in-
stances. This negatively affects the perfor-
mance of the model on unseen data, and also
makes the model over-sensitive to the con-
tributions of the few, initially added tress.
We show that the commonly used tool to ad-
dress this issue, that of shrinkage, alleviates
the problem only to a certain extent and the
fundamental issue of over-specialization still
remains.

In this work, we explore a different approach
to address the problem that of employing
dropouts, a tool that has been recently pro-
posed in the context of learning deep neural
networks (Hinton et al., 2012). We propose a
novel way of employing dropouts in MART,
resulting in the DART algorithm. We evalu-
ate DART on ranking, regression and classifi-
cation tasks, using large scale, publicly avail-
able datasets, and show that DART outper-
forms MART in each of the tasks, with a sig-
nificant margin. We also show that DART
overcomes the issue of over-specialization to
a considerable extent.

Appearing in Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2015, San Diego, CA, USA. JMLR: W&CP volume 38.
Copyright 2015 by the authors.

1 Introduction

Ensemble based algorithms have been shown to
achieve high accuracy for a number of machine learn-
ing tasks (Caruana and Niculescu-Mizil, 2006). For
ensembles to achieve better accuracy than the individ-
ual predictors that they are made of, these predictors
need to be accurate but uncorrelated (Breiman, 2001).
This helps to increase the accuracy of the model by re-
ducing the sensitivity to specific features or instances
that might exist in the individual predictors (Breiman,
2001; Hinton et al., 2012). While some classes of en-
semble algorithms such as random forests (Breiman,
2001) learn each predictor in the ensemble indepen-
dently, boosted ensemble algorithms such as AdaBoost
(Freund and Schapire, 1995) and MART (Friedman,
2001, 2002)1 iteratively add each predictor.

Boosting algorithms add predictors that focus on im-
proving the current model, and this is achieved by
modifying the learning problem between iterations.
While this guarantees that the added predictor is dif-
ferent than the ones in the ensemble, the new predic-
tors typically focus on a small subset of the problem
and hence do not have a strong predictive power when
measured on the original problem. This increases the
risk of adding models that over-fit specific instances.
This is a well-known problem in the context of boost-
ing (Freund, 2001) as well as in MART, which is an en-
semble of boosted regression trees. Here, trees added
at later iterations tend to impact the prediction of only
a few instances, and they make negligible contribution
towards the prediction of all the remaining instances.
This, in turn, can negatively impact the performance
of the algorithm on unseen data by increasing the ca-
pacity of the model without making significant im-
provement in its training error. This also makes the
model over-sensitive to the contributions of the few,

1This algorithm is known by many names, including
Gradient TreeBoost, boosted trees, and Multiple Additive
Regression Trees (MART). We use the latter to refer to
this algorithm.

489

DART: Dropouts meet Multiple Additive Regression Trees

initially added tress. We call this issue of subsequent
trees affecting the prediction of only a small fraction of
the training instances over-specialization. We discuss
this issue in greater detail in Section 2 with an example
from a regression task on a real-world dataset.

The most common approach employed to combat the
problem of over-specialization in MART is shrink-
age (Friedman, 2001, 2002). Here, the contribution of
each new tree is reduced by a constant value called the
shirnkage factor. As we will see in Section 2, shrink-
age does help in reducing the impact of the first trees,
nevertheless, however, as the size of the ensemble in-
creases, the problem of over-specialization reappears.

In this work, we explore a different approach to address
the issue of over-specialization in MART. We propose
employing dropouts, a tool that has been recently pro-
posed in the context of learning deep neural networks
(Hinton et al., 2012). In neural networks, dropouts
are used to mute a random fraction of the neural con-
nections during the learning process. Therefore, nodes
at higher layers of the network cannot rely on a few
connections to deliver the information needed for the
prediction. This method has contributed significantly
to the success of deep neural networks for many tasks
including, for example, object classification in images
(Krizhevsky et al., 2012).

The technique of dropouts has been used successfully
in other learning models (Maaten et al., 2013; Wang
and Manning, 2013), for example, in logistic regression
(Wager et al., 2013). In these cases, dropouts are used
to mute a random fraction of the input features during
the training phase. In the context of ensemble of trees,
this approach makes them similar to the approach em-
ployed by random forests for diversification (Breiman,
2001), wherein each tree in the ensemble is learned (in-
dependently) using a different random fraction of the
features.

In this paper, we propose a novel way of employ-
ing dropouts for ensemble of trees: muting complete
trees as opposed to muting features.2 We employ
this approach in MART and call the resulting al-
gorithm DART. We evaluate DART on three differ-
ent tasks: ranking, regression and classification, using
large scale, publicly available datasets. Our results
show that DART outperforms MART and random for-
est in each of the tasks, with significant margins (see
Section 4). We note that both MART and random for-
est are known to be highly successful models for many
learning tasks (Caruana and Niculescu-Mizil, 2006),
for example, the winners of the ‘Yahoo! learning to
rank’ challenge employed a MART model (Chapelle

2Muting trees and muting features can be done at the
same time and indeed we do this in our experiments.

and Chang, 2011). Therefore, it is both surprising
and encouraging that we can squeeze out even higher
accuracy out of MART. One of the reasons for the im-
proved performance of DART is that it addresses the
issue of over-specialization and results in more bal-
anced contribution from all the trees in the ensemble
(see Section 2).

2 Overcoming the Over-specialization
in MART

As we briefly discussed in Section 1, boosting, in par-
ticular the MART algorithm, suffers from the issue
of over-specialization: trees added at later iterations
tend to impact the prediction of only a few instances,
and make negligible contribution towards the predic-
tion of all the remaining instances. In this section,
we will demonstrate this issue and the impact of using
dropouts as employed in DART through an example
from a regression task on the CTSlice data (see Sec-
tion 4.2 for a description of the dataset and the task).
We note that similar observations were made on the
other datasets used in the evaluation (Section 4) as
well.

Figure 1 presents the average contribution of the trees
in the ensemble, where the average contribution of a
tree T is defined to be |Ex [T (x)]| with the expecta-
tion taken with respect to the training data. We can
see that the MART algorithm (without using shrink-
age) starts with a single tree that makes significant
contribution and the rest of the trees add negligible
contributions. We observed that even if we replace
the term |Ex [T (x)]| with Ex [|T (x)|], the first tree has
orders of magnitude larger contribution than the rest
of the trees in the ensemble. This behavior is inherent
in the algorithm: if one would add a constant value
to all the labels in the training data, only the first
tree will get modified (with this constant value added
to all its leaves) and the rest of the trees will remain
with a small contribution to the model. Therefore,
in a sense, the first tree learns the bias of the prob-
lem while the rest of the trees in the ensemble learn
the deviation from this bias. This makes the ensemble
very sensitive to the decisions made by the first tree.
This can be seen in Figure 2 as well, which depicts a
few trees in the ensemble trained by different meth-
ods for the above mentioned task. We can see that
the MART algorithm (without using shrinkage) adds
trees that make negligible contribution to the overall
prediction for most of the data points as indicated by
the large yellow leaves in the first column.

As discussed briefly in Section 1, shrinkage (Friedman,
2001, 2002) is the most common approach employed to
combat the issue of over-specialization. Since shrink-

490

K. V. Rashmi, Ran Gilad-Bachrach

Figure 1: The average contribution of the trees in the ensemble for different learning algorithms (the graph
presents the absolute value of the average). The shrinkage factor used is 0.1.

age reduces the impact of each tree by a constant value,
the first tree cannot compensate for the entire bias of
the problem. We can see the impact of this strat-
egy in Figure 1 as well as in Figure 2. We observe
that the contribution of later trees do drop, but at a
much slower rate than in the case where shrinkage is
not used. For example, while the contribution of the
100th tree in MART without shrinkage is about 15 or-
ders of magnitude smaller than the contribution of the
first tree, this factor in MART with shrinkage drops to
“only” 4 orders of magnitude. In figure 2 we see that
the large yellow leaves, representing the fact that a
tree “abstains” on many of the instances, appear later
in the ensemble. As we can see, the differences in the
contributions from the trees in the ensemble are more
gradual when shrinkage is used, nevertheless they are
still notable.

Now, let us see the effect of using dropouts as employed
in DART. The last column in Figure 2 depicts trees
learned by the DART algorithm. First, compared to
MART and MART with shrinkage, we see that trees
specialized at a significantly slower rate as indicated
by the much slower emergence of large yellow leaves.
This can be seen in Figure 1 as well, where we see
that the expected contribution of the trees added in
later iterations do not drop much.3 Therefore, the
sensitivity to the contribution of the individual trees is
drastically reduced. At the same time, unlike random
forest, DART continues to learn trees to compensate
for the deficiencies of the existing trees in the ensemble.
It, however, does so in a controlled manner to strike a
balance between diversity and over-specialization. We
will see in Section 3 that both MART and random

3Linear regression on this data suggests that there
might be a slow decline in the average contribution of the
tress at a rate of 0.0003.

forest can be viewed as extreme cases of the DART
algorithm.

3 Description of the DART Algorithm

We start our presentation with the MART algorithm
as the foundation on which DART builds. MART can
be viewed as a gradient descent algorithm (Friedman,
2001): at every iteration, MART computes the deriva-
tive of the loss function for the current predictions and
adds a regression tree that fits the inverse of these
derivatives to the ensemble. More formally, the input
to the algorithm includes a set of points and their la-
bels, (x, y), where the points x are in some space X
and the labels y are in a label space. The algorithm
also takes as input a loss generating function which
is tuned to the task at hand (for example, regression,
classification, ranking, etc.). Using the loss generat-
ing function and the labels, the algorithm defines the
loss for every point x, Lx : Y 7→ R where Y is the
prediction space, typically the reals. For example, if
the task is regression then the loss may be defined as
Lx(ŷ) = (ŷ − y)2 where y is the true label of x.

At every iteration, let the current model be denoted
by M : X 7→ Y and M(x) denotes the prediction of
the current model for point x. Let L′x (M(x)) be the
derivative of the loss function at M(x). MART cre-
ates an intermediate dataset in which a new label,
−L′x (M(x)), is associated with every point x in the
training data. A tree is trained to predict this inverse
derivative and added to the ensemble as a step in the
inverse direction of the derivative (in order to minimize
the loss).

The choice of the loss makes the MART algorithm
applicable to a variety of learning tasks. As dis-
cussed earlier, the squared loss is used for regression

491

DART: Dropouts meet Multiple Additive Regression Trees

Index MART without Shrinkage MART with Shrinkage DART

1

100

200

400

1000

Figure 2: Examples of trees in the ensemble for the regression task on CT slice dataset (Section 4.2). Each
column represents a different learning algorithm (MART (without shrinkage), MART+shrinkage, and DART).
Each row represents a different index in the ensemble: 1st, 100th, 200th, 400th and 1000th tree in the ensemble.
In each tree, the size of nodes is proportional to the percentage of the instances that reach this node. The color
gradient of leaves represent the range of values where green stands for the positive extreme, yellow for zero, and
red for negative extreme.

492

K. V. Rashmi, Ran Gilad-Bachrach

tasks. The logistic loss function is used for classifi-
cation tasks. Here, the loss function is defined to
be Lx(ŷ) = (1 + exp (λyŷ))

−1
where λ is a parame-

ter. For ranking tasks, the loss function would de-
pend on the relative ordering of the points in the pre-
dicted ranking. In our evaluation (Section 4) for rank-
ing tasks, we use the definition of the LambdaMart
method (Burges, 2010). The main idea here is to di-
rectly define the gradient of the loss function:

L′x (M(x)) :=
∑
x′

s (x, x′)λ

1 + exp (λ (M(x)−M(x′)))

where λ is a parameter and s (x, x′) is the NDCG loss
that results from reversing the order of the points x
and x′, and the summation is over all the points which
relate to the same query. See Burges et al. (2007) for
more details.

As discussed in Section 1 and Section 2, the gradient-
descent style boosting that MART employs may lead
to over-specialization, and a common approach em-
ployed to address this issue is to use shrinkage. Under
this method, MART operates as described above when
learning the new tree in every iteration. However, be-
fore adding this newly learned tree to the ensemble,
its leaf values are reduced in magnitude by multiply-
ing them with a constant value in (0, 1). Shrinkage
helps in alleviating the problem of over-specialization
to a certain extent as we observed in Section 2.

We now move on to describing the DART algorithm,
which is presented as Algorithm 1. DART diverges
from MART at two places. First, when computing the
gradient that the next tree will fit, only a random sub-
set of the existing ensemble is considered. Let us say
that the current model M after n iterations is such
that M =

∑n
i=1 Ti, where Ti is the tree learned in

the i’th iteration. DART first selects a random sub-
set I ⊂ {1, . . . , n} and creates a model M̂ =

∑
i∈I Ti.

Given this model, it learns a regression tree T to pre-
dict the inverse derivative of the loss function with
respect to this modified model by creating the inter-

mediate dataset
{(
x,−L′x

(
M̂(x)

))}
.

The second place at which DART diverges from MART
is when adding the new tree to the ensemble where
DART performs a normalization step. The rationale
behind the normalization step is that the new trained
tree T is trying to close the gap between M̂ and the
optimal predictor, however, the dropped trees are also
trying to close the same gap. Therefore, introducing
both the new tree and the dropped trees will result in
the model overshooting the target. Furthermore, as-
suming that the number of trees dropped from the en-
semble to create I that result in the model M̂ is k, the
new tree T has roughly k times larger magnitude than

each of the individual trees in the set of dropped trees.
Therefore, DART scales the new tree T by a factor of
1/k such that it will have the same order of magnitude
as the dropped trees. Following this, the new tree and
the dropped trees are scaled by a factor of k/(k+1) and
the new tree is added to the ensemble. Scaling by the
factor of k/k+1 ensures that the combined effect of the
dropped trees together with the new tree remains the
same as the effect of the dropped trees alone before
the introduction of the new tree.

As seen in Figure 1 and Figure 2, DART reduces the
problem of over-specialization. Therefore, it can be
viewed as regularization where the number of trees
dropped controls the amount of regularization. On
one extreme, if no tree is dropped, DART is no differ-
ent than MART. On the other extreme, if all the trees
are dropped, the DART is no different than random
forest. Therefore, the size of the dropped set allows
DART to vary between the “aggressive” MART mode
to a “conservative” random-forest mode.

There are many ways to select the trees to be dropped.
In the experiments reported here, we have employed
what we call the Binomial-plus-one technique. In this
technique, each of the existing trees in the ensemble is
dropped with a probability pdrop. However, if no tree
was selected to be dropped using the above binomial
selection, a single tree is selected uniformly at random
to be dropped. Therefore, at least one tree will be
dropped at each iteration.

If pdrop is set to a very small value, the random se-
lection boils down to simply dropping a single tree in
each round. We have experimented with this mode as
well, and we denote this mode by defining pdrop to be
ε in the evaluation results presented in Section 4.

4 Evaluation

We evaluated DART for three different tasks: ranking,
regression and classification. For each of the tasks,
we used large scale, publicly available datasets. In
our evaluation, we compare DART to MART with dif-
ferent shrinkage factors. Furthermore, since random
forests (RF) can be considered as an extreme case of
DART, we compare to this algorithm as well whenever
applicable.

4.1 Ranking

MART is commonly used for ranking tasks. For ex-
ample, in the Yahoo! learning to rank challenge, the
winners employed boosted trees (Chapelle and Chang,
2011) based on the LambdaMart method (Burges,
2010). We introduced dropouts as explained in Sec-
tion 3 into LambdaMart and tested it on the MSLR-

493

DART: Dropouts meet Multiple Additive Regression Trees

Parameter MART DART

Shrinkage 0.05, 0.1, 0.2, 0.4 -

Dropout rate - ε, 0.015, 0.03, 0.045

Number of trees 100

Leaves per tree 40

Loss function parameter 0.2,0.4,0.6,0.8,1,1.2

Fraction of features scanned per leaf 0.5, 0.75, 1.0

Table 1: Parameter values scanned for the ranking task.

algorithm Shrinkage Dropout Loss function parameter Feature fraction NDCG@3

MART 0.4 0 1.2 0.75 46.31

DART 1 0.03 1.2 0.5 46.70

Table 2: NDCG scores for MART and DART on the ranking task. For NDCG scores, higher is better.

Algorithm 1 The DART algorithm

Let N be the total number of trees to be added to
the ensemble
S1 ← {x,−L′x (0)}
T1 be a tree trained on the dataset S1

M ← {T1}
for t = 2, . . . , N do

D ← the subset of M such that T ∈ M is in D
with probability pdrop

if D = ∅ then D ← a random element from M
end if
M̂ ←M \D
St ←

{
x,−L′x

(
M̂(x)

)}
Tt be a tree trained on the dataset St

M ←M ∪
{

Tt

|D|+1

}
for T ∈ D do

Multiply T in M by a factor of |D|
|D|+1

end for
end for
Output M

WEB10K dataset.4 This dataset contains ∼ 1.2M
query-URL pairs for 10K different queries and the task
is to rank the URLs for each query according to their
relevance using the 136 available features.

The dataset is partitioned into five parts such that 60%
of the data is used for training, 20% is used for val-
idation, and 20% for testing. We scanned the values
of various parameters for both algorithms by training
on the training data and comparing their performance
on the validation data. We selected the best perform-
ing models based on their scores on the validation set,
and applied them to the test set to obtain the reported
results. The different parameters scanned are summa-
rized in Table 1. For each of the parameter combi-
nations experimented, we computed the NDCG score
at position 3 and used this as the metric for selecting
the parameter values. NDCG (Burges et al., 2005) is
a common metric used to evaluate web-ranking tasks.
Moreover, the loss functions used were designed to op-
timize this metric (Burges, 2010).

Table 2 presents the main results for the ranking task.
DART gains ∼ 0.4 NDCG points over MART. More-
over, when checking the NDCG scores at positions 1
and 2 we see significant gains as well (0.2 points gain
in position 1 and 0.38 points gain in position 2). To
put this observed improvement in perspective, in the
Yahoo! learning to rank challenge, the gap, in terms of
NDCG, between the winners and the team who ranked
5th was 0.35 points (Chapelle and Chang, 2011).

4http://research.microsoft.com/en-us/projects/
mslr/default.aspx

494

K. V. Rashmi, Ran Gilad-Bachrach

Parameter MART DART Random Forest

Shrinkage 0.05, 0.1, 0.2, 0.3, 0.5 - -

Dropout rate - ε, 0.01, 0.025, 0.05, 0.1, 0.2 -

Fraction of instances 1.0 1.0 0.25, 0.5, 0.75, 1.0

used per tree

Number of trees 25, 50,100,250,500,1000

Leaves per tree 50,100,250,500,1000 50,100,250,500,1000 50,100,250,500,1000

Fraction of features 0.05,0.1,0.2,0.4, 0.05,0.1,0.2,0.4, 0.01,0.025,0.05,0.1,0.2,0.4,

scanned per leaf 0.8,1.0 0.8,1.0 0.5,0.8,1.0

Table 3: Parameter values scanned for the regression task. The parameter values that yielded the lowest loss
under each algorithm are highlighted.

Ensemble size 25 50 100 250 500 1000

MART 35.13 31.79 30.92 30.07 29.76 29.28

DART 32.50 30.50 29.66 28.14 28.11 27.98

Random Forest 32.76 33.21 32.88 32.36 32.66 32.33

Table 4: L2 error of optimal parameter combinations for DART, MART and random forest on the regression
task for various ensemble sizes. DART outperforms MART and random forest for all the ensemble sizes tested
(the best result for every ensemble size is boldfaced).

4.2 Regression

To test the merits of using dropouts for regression
tasks we have used the CT slices dataset (Graf et al.,
2011) available at the UCI repository (Bache and Lich-
man, 2013). This dataset contains 53500 histograms
created from CT scans of 74 individuals. The task is
to infer the location on the axial axis where the im-
age was taken from. Each image is represented as a
386 dimensional feature vector. We scanned values for
various parameters involved and these are summarized
in Table 3. We have used 10 fold cross validation to
compare the algorithms. The folds were selected such
that either all the images of an individual are in the
train set or all of them are in the test set.

The evaluation results for the regression task are pre-
sented in Table 4. For every ensemble size, the best
DART model, outperformed both the best MART and
the best RF models. We observed that DART outper-
forms MART and RF even when DART is restricted
to drop only a single tree in every iteration (that is the
dropout rate is ε).

Furthermore, we observed that RF requires large trees
to achieve low losses. For example, when the tree sizes
are limited to 50 and 100 leaves, the best RF model
achieved a loss of 44.48 and 36.29 respectively. On the

other hand, MART and DART achieve their lowest
loss values with trees comprising only 50 leaves.

4.3 Classification

The performance of DART on classification tasks was
evaluated using the face detection (fd) dataset from
the Pascal Large Scale Learning Challenge.5 This
dataset contains 30x30 gray scale images and the goal
is to infer whether there is a face in the image or not.
We used the first 300K examples for training, the next
200K examples for validation and the next 200K ex-
amples for testing. The parameters scanned for this
task are summarized in Table 5.

We used the validation set to select the best perform-
ing parameters for the MART, DART and random for-
est models and evaluated them on the test set. Ta-
ble 6 presents the results for the classification task.
Both MART and DART achieve the highest accu-
racy with ensembles of 250 trees. Although the dif-
ference in accuracies is small, it is statistically signif-
icant (P < 0.0001), since the two models disagree on
1106 predictions on the test set and the MART model
gets only 481 of them right while the DART model

5http://largescale.ml.tu-berlin.de/
instructions/

495

DART: Dropouts meet Multiple Additive Regression Trees

Parameter MART DART Random Forest

Shrinkage 0.2, 0.3, 0.4, 0.5 - -

Dropout rate - ε, 0.015, 0.03, 0.045 -

Fraction of instances per tree 1.0 1.0 0.25, 0.5, 0.75, 1.0

Number of trees 50, 100, 250, 500, 1000 50, 100, 250, 500, 1000 50, 100, 250, 500, 1000

Leaves per tree 40 40 50, 100, 250, 500, 1000

Loss function parameter 0.2, 0.3, 0.4, 0.5 0.2, 0.3, 0.4, 0.5 -

Fraction of features per leaf 0.5, 0.75, 1.0 0.5, 0.75, 1.0 0.5, 0.75, 1.0

Table 5: Parameter values scanned for the classification task. The parameter values that yielded the highest
accuracy under each algorithm are highlighted.

Ensemble size 50 100 250 500 1000

MART 0.9687 0.9699 0.9707 0.9704 0.9695

DART 0.9676 0.9692 0.9714* 0.9693 0.9699

Random Forest 0.9627 0.9629 0.9629 0.9630 0.9628

Table 6: Accuracies on the test set for DART, MART and random forest on the face-detection classification task
for various ensemble sizes. The results are comparable between DART and MART: while MART “wins” on 3
out of the 5 different ensembles sizes, however, the best model is a DART model.

gets 625 of them correct. The main difference between
the models is in their recall where MART has a recall
rate of 0.665 while DART has a recall rate of 0.672.
This is a significant difference for this dataset due to
its highly skewed nature: only ∼ 8.6% of the instances
are labeled positive. Random forest exhibits lower ac-
curacy for this task.

In our experiments, random forest did not compare
well against MART or DART. Since MART and ran-
dom forest are the two extremes of the DART algo-
rithm, it serves us to show that the optimal point be-
tween these two extremes is not trivial.

5 Conclusions

Dropouts (Hinton et al., 2012) have been shown to im-
prove the accuracies of Neural Network models signif-
icantly. On the other hand, Multiple Additive Regres-
sion Trees (MART) (Friedman, 2001; Elith et al., 2008)
have been found to be the most accurate models for
many tasks (Caruana and Niculescu-Mizil, 2006), most
notably the web ranking task (Chapelle and Chang,
2011). Motivated by the observation that MART adds
trees with significantly diminishing contributions, we
hypothesize that dropouts can provide efficient reg-
ularization for MART and propose the DART algo-
rithm. Our experiments show that this is indeed the

case: trees in the ensemble created by DART con-
tribute more evenly towards the final prediction, as
shown in Figure 1. In addition, this results in consid-
erable gains in accuracies for ranking, regression and
classification tasks.

This study opens the door to several future directions.
For example, using the same technique proposed in
this work, it is possible to introduce dropouts in other
models such as AdaBoost (Freund and Schapire, 1995).
The simplicity of these models may allow us to improve
our understanding of dropouts. Another direction is
to further tune the DART algorithm by experiment-
ing different ways of selecting the dropped set and the
normalization techniques. Furthermore, the even con-
tribution of the trees in DART may allow using it
for learning tasks with drifting targets. This can be
achieved, for example, by periodically dropping a sub-
set of the existing trees and learning new trees, with
new data, to replace them.

Acknoledgments

This research was conducted while the first author was
an intern at the machine learning department at Mi-
crosoft Research.

496

K. V. Rashmi, Ran Gilad-Bachrach

References

Kevin Bache and Moshe Lichman. UCI machine learn-
ing repository, 2013. URL http://archive.ics.

uci.edu/ml.

Leo Breiman. Random forests. Machine learning, 45
(1):5–32, 2001.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
Learning to rank using gradient descent. In Proceed-
ings of the 22nd international conference on Ma-
chine learning, pages 89–96. ACM, 2005.

Christopher JC Burges. From ranknet to lambdarank
to lambdamart: An overview. Learning, 11:23–581,
2010.

Christopher J.C. Burges, Robert Ragno, and Quoc
Viet Le. Learning to rank with nonsmooth cost func-
tions. NIPS07, 19:193, 2007.

Rich Caruana and Alexandru Niculescu-Mizil. An
empirical comparison of supervised learning algo-
rithms. In Proceedings of the 23rd international con-
ference on Machine learning, pages 161–168. ACM,
2006.

Olivier Chapelle and Yi Chang. Yahoo! learning to
rank challenge overview. In Yahoo! Learning to
Rank Challenge, pages 1–24, 2011.

Jane Elith, John R Leathwick, and Trevor Hastie. A
working guide to boosted regression trees. Jour-
nal of Animal Ecology, 77(4):802–813, 2008. ISSN
1365-2656. doi: 10.1111/j.1365-2656.2008.01390.x.
URL http://dx.doi.org/10.1111/j.1365-2656.

2008.01390.x.

Yoav Freund. An adaptive version of the boost by
majority algorithm. Machine learning, 43(3):293–
318, 2001.

Yoav Freund and Robert E Schapire. A desicion-
theoretic generalization of on-line learning and an
application to boosting. In Computational learning
theory, pages 23–37. Springer, 1995.

Jerome H Friedman. Greedy function approximation:
a gradient boosting machine. Annals of Statistics,
pages 1189–1232, 2001.

Jerome H Friedman. Stochastic gradient boosting.
Computational Statistics & Data Analysis, 38(4):
367–378, 2002.

Franz Graf, Hans-Peter Kriegel, Matthias Schu-
bert, Sebastian Pölsterl, and Alexander Cavallaro.
2d image registration in ct images using radial
image descriptors. In Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI
2011, pages 607–614. Springer, 2011.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

Laurens Maaten, Minmin Chen, Stephen Tyree, and
Kilian Q. Weinberger. Learning with marginal-
ized corrupted features. In Sanjoy Dasgupta
and David Mcallester, editors, Proceedings of
the 30th International Conference on Machine
Learning (ICML-13), volume 28, pages 410–418.
JMLR Workshop and Conference Proceedings, 2013.
URL http://jmlr.csail.mit.edu/proceedings/

papers/v28/vandermaaten13.pdf.

Stefan Wager, Sida Wang, and Percy Liang. Dropout
training as adaptive regularization. In Advances in
Neural Information Processing Systems, pages 351–
359, 2013.

Sida Wang and Christopher Manning. Fast dropout
training. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pages
118–126, 2013.

497

