
How Practitioners Perceive the
Relevance of Software Engineering Research

David Lo
School of Information Systems

Singapore Management University
Singapore

davidlo@smu.edu.sg

Nachiappan Nagappan
Microsoft Research

Redmond, WA
USA

nachin@microsoft.com

Thomas Zimmermann
Microsoft Research

Redmond, WA
USA

tzimmer@microsoft.com

ABSTRACT
The number of software engineering research papers over the last
few years has grown significantly. An important question here is:
how relevant is software engineering research to practitioners in the
field? To address this question, we conducted a survey at Microsoft
where we invited 3,000 industry practitioners to rate the relevance
of research ideas contained in 571 ICSE, ESEC/FSE and FSE pa-
pers that were published over a five year period. We received
17,913 ratings by 512 practitioners who labelled ideas as essential,
worthwhile, unimportant, or unwise. The results from the survey
suggest that practitioners are positive towards studies done by the
software engineering research community: 71% of all ratings were
essential or worthwhile. We found no correlation between the cita-
tion counts and the relevance scores of the papers. Through a qual-
itative analysis of free text responses, we identify several reasons
why practitioners considered certain research ideas to be unwise.
The survey approach described in this paper is lightweight: on av-
erage, a participant spent only 22.5 minutes to respond to the sur-
vey. At the same time, the results can provide useful insight to con-
ference organizers, authors, and participating practitioners.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Measurement, Experimentation

Keywords
Software Engineering Research, Survey, Industry

1. INTRODUCTION
The number of published software engineering papers has been
growing over the past few years. For example, the number of papers
published in ICSE almost doubled in the last 5 years from 50 in
2009 to 99 papers in 2014. Other conferences in software engineer-
ing have observed a similar growth. Does this mean that the rele-
vance of software engineering has grown as well?

For any community, it is important to reflect on successes and fail-
ures and to assess if it is moving in the right direction. The Impact
project [1] by ACM SIGSOFT investigated if and in what areas,
software engineering research had an impact on practice. Areas that

were identified as part of the project included modern programming
languages, software configuration management, and inspections. In
addition to impact, other “health” aspects of software engineering
research have been analyzed such as the health of conferences [2]
or novel peer review models [3]. The question of impact and rele-
vance of software engineering research has been raised by practi-
tioners in industry, funding organizations, and researchers them-
selves. A complicating issue is that the actual impact of some re-
search in practice is often only known after many years. Research-
ers typically have to speculate what will have the most impact in
the future.

In this paper, we propose a lightweight technique to gather rapid
feedback on how practitioners perceive the relevance of software
engineering research. The process is as follows: as part of a survey,
present short summaries of research papers, which succinctly cap-
ture research ideas contained in them, to a panel of practitioners and
ask them to rate how important each research idea is for their work:
“In your opinion, how important are the following pieces of re-
search?” In the survey, participants can rate research as Essential,
Worthwhile, Unimportant, Unwise, or state “I Don’t Understand”.
To keep the time investment low for practitioners, we keep the sum-
maries short (shorter than an abstract) and limit the number of sum-
maries to be rated by each participant (by selecting a given number
of summaries randomly for each participant).

To demonstrate the feasibility of the technique, we invited 3,000
engineers in Microsoft to mark 571 research papers from five years
of the ICSE (2010-2014), ESEC/FSE (2009, 2011, 2013) and FSE
(2010, 2012) conferences. We received 17,913 ratings from 512
practitioners (response rate 17%). Such data can be used to empir-
ically answer several important questions to guide software engi-
neering research:

 How do (Microsoft) practitioners view software engineering
research as a whole?

 What research ideas do (Microsoft) practitioners consider to be
most important?

 Why (Microsoft) practitioners view some research ideas as un-
wise?

While the answers to these three questions may not generalize be-
yond the context of Microsoft engineers, they highlight the poten-
tial of what insight we can obtain if as a community we repeat this
experiment for other populations, e.g., with practitioners from mul-
tiple companies.

To be more specific, the answer to the first question could serve as
a health indicator, e.g., is software engineering research relevant
and does it remain relevant. The answer to the second question
could help researchers to prioritize their research efforts. And the
answer to the third question could help researchers avoid pitfalls
that can make research less appealing to practitioners.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

To be very upfront the goal of our study is to NOT rank papers
based on relevance. We do not intend or envision this paper to play
a role in ranking papers, which we think is contrary to the spirit of
fundamental research. Our goal is to provide a new perspective on
how to assess the perceived relevance of today’s software engineer-
ing research as viewed by practitioners.

This paper makes the following contributions:

1. We propose a survey-based framework to assess the relevance
of software engineering research by involving practitioners.

2. We present findings from a study with engineers at Microsoft
and point out opportunities on how to improve it with a com-
munity-wide effort.

3. We identify reasons why practitioners perceive certain high-
level research ideas as “Unwise”.

The remainder of this paper is structured as follows. First, we de-
scribe the experimental design of our study in Section 2. We then
describe the results of our study in Section 3. In Section 4, we dis-
cuss the implications of our results as well as limitations of our
findings. In Section 5, we describe related work. In Section 6, we
conclude the paper and describe our future work plans.

2. EXPERIMENTAL DESIGN
To help assess the relevancy of software engineering research, we
propose a framework which includes the following steps:

1. Select and summarize the papers of interest.
There are many possible ways that papers can be selected, for
example based on conferences (e.g., ICSE, ESEC/FSE, FSE),
based on topic (e.g., testing, program analysis), or based by
year.

The summarization step reduces each paper into a short text
summary of limited size. It is needed so that practitioners can
understand the paper well enough to provide feedback, without
the need to spend much time to understand the technicalities.
Rather, they should be able to focus on how the research idea
can help their day-to-day activities.

2. Select the participants.
It is important to select a representative set of participants for
the survey. Practitioners typically have different needs depend-
ing on their roles (developers, testers, etc.) and it is important
to capture the viewpoints of a diverse set of practitioners.

The number of participants to invite depends on several factors:
Assuming we have P papers to rate, and we want each paper to
receive R ratings on average, we require P x R ratings. Each
participant can rate K papers and the expected response rate to
a survey is S. Then we need to invite (P x R) / (K x S) practi-
tioners to the survey.

3. Run the survey and collect feedback.
The following information can be collected as part of a survey:
demographics, the ratings of the papers, as well as additional
feedback to follow up on previous responses.

4. Analyze the data.
The responses can be analyzed using a set of metrics. For free
form answers, qualitative techniques such as open card sort can
be used.

Several of the above decisions (summaries instead of abstract, a
random paper selection for each participant) were made with the
goal to keep the time investment low for practitioners.

2.1 Paper Selection and Summarization
We selected full research track papers published in the ICSE,
ESEC/FSE, and FSE conferences during a time period of 5 years.
This includes 184 papers from the meetings of ESEC/FSE and FSE
(2009-2013), and 387 papers from ICSE (2010-2014), for a total of
571 papers. We believe that this is a representative sample of soft-
ware engineering research as ICSE, ESEC/FSE, and FSE are gen-
eral conferences as opposed to specialized conferences such as IS-
STA for testing to ICSME for maintenance and evolution. We did
not include journal publications because they often extend previous
conference papers.

As participants would not have the time to read long abstracts or
the entire paper itself, we created for each paper a short descriptive
summary that contains the key ideas of the paper. The first author
read the abstract of each paper and constructed a summary (a few
sentences) to capture the gist of the paper. If the abstract was un-
clear, the first author also downloaded and read the paper.

To improve the paper summaries, the second author verified the
quality of the initial summary created by the first author and pro-
vided suggestions for improvement. After these suggestions were
incorporated into an updated summary, we piloted the summaries
to a small set of practitioners to get their feedback as suggested by
Kitchenham and Pfleeger [4]. We further improved our summaries
based on the practitioners’ feedback.

2.2 Participant Selection
We selected full time employees of Microsoft as participants whose
job roles included development, test, and program management.
For the selection, we followed Kitchenham and Pfleeger’s [4] ad-
vice on the need to understand whether the respondents had enough
knowledge to answer the questions in an appropriate manner. For
this, we restricted the people invited to participate in the survey to
people in technical roles (no sales or marketing employees).

With P=571 papers, R=30 ratings per paper, K=40 ratings per par-
ticipant, and response rate of S=0.15 (estimated based on response
rates from previous surveys), we estimated the number of practi-
tioners that we need to invite to be 2,855, which we rounded up to
3,000. We then randomly picked 3,000 full time employees from
the Microsoft employee database who were working in technical
roles. Since Microsoft has more employees working in develop-
ment roles, the random selection naturally has a higher proportion
of participants working in development roles than participants
working in the test and program management roles.

Respondents were anonymous, but as a thank you for the partici-
pants’ time, they could enter their name (separate from their survey
responses) into a raffle of three $75 Amazon gift certificates at the
end of the survey.

2.3 Feedback Elicitation
In order to elicit feedback from a wide range of participants in a
scalable way, we used an online survey. We designed the survey
such that participants required as little effort as possible to complete
it, e.g., it was self-contained and included all relevant information.
We limited the response types to numerical, Likert-scale, and short
free form answers as suggested by Kitchenham and Pfleeger [4].
The survey we used within Microsoft is shown in Figure 1 (see our
technical report [5] for the full survey).

We piloted the survey with a small set of practitioners to get their
feedback and improve the survey.

We captured the following information as part of the survey:

Demographics. (answers were required):

 Primary work area: Development, Test, Program Manager,
Other

 Role: Individual contributor, Lead, Architect, Manager, Exec-
utive, Others

 Experience in years (decimal value)
 Major in Computer Science (Boolean value)
 Has advanced (i.e., postgraduate) degree (Boolean value)

Collecting some basic information about the participants allowed us
to break down the results by groups, e.g., developers, testers, etc.

Ratings of research ideas (see Figure 1.a). For each participant, we
randomly selected 40 papers from the collection of 571 papers. At
least one paper had to be rated to complete the survey.

We then present summaries of those papers to the participants and
ask them to rate how important each paper is for their work: “In
your opinion, how important are the following pieces of research?”
Following the rating categories used by Begel and Zimmermann
[6], participants can label a research idea as: “Essential”, “Worth-
while”, “Unimportant”, “Unwise”, and “I Don’t Understand”. The
last category was included to address the diverse background of
participants—not all participants will understand all technologies.

We chose to ask the question “In your opinion, how important are
the following pieces of research?” to allow practitioners to provide
feedback based on their personal experience. We decided not to ask
about the willingness to adopt because other research has shown
that adoption depends on many different factors (social, cultural,
and educational factors, exposure, and many more [7] [8]), which
are often external to the actual research. A reliable assessment of
the adoptability would require a significant time commitment by
practitioners. Lastly, adoption also heavily depends on the type of
research, e.g., tools and techniques are adopted differently than say
empirical studies.

Follow-up: Rational behind specific ratings (see Figure 1.b). One
limitation of ratings is their inability to capture reasons why partic-
ipants viewed a certain research idea in a particular way. To capture
the reasons behind some ratings, we included follow-up questions.

More specifically, if there was one or more summaries that a par-
ticipant labeled as “Unwise”, we randomly selected one of those
summaries and asked participants to elaborate the reasons why they
felt that the high-level research idea was unwise to pursue. Partici-
pants could enter free text to express their thoughts; the follow-up
question was optional.

2.4 Data Analysis
We compute several statistics to characterize the overall perspec-
tives that practitioners have on software engineering research. We
measure the proportion of ratings that are Essential (best response),
Essential or Important (positive feedback), or Unwise (worst re-
sponse), respectively. More formally, let E, W, Ui, and Uw denote
the number of essential, worthwhile, unimportant, and unwise rat-
ings received.

 E-score: The percentage of ratings that are “Essential”

E-score ൌ
ܧ

ܧ ൅ܹ ൅ ܷ݅ ൅ ݓܷ

 EW-score: The percentage of ratings that are “Essential” or
“Worthwhile”.

EW-score ൌ	
ܧ ൅ܹ

ܧ ൅ܹ ൅ܷ݅ ൅ ݓܷ

 U-Score: The percentage of ratings that are “Unwise”

U-score ൌ
ݓܷ

ܧ ൅ܹ ൅ܷ݅ ൅ ݓܷ

The statistics can be computed for different groups, e.g., all ratings,
ratings by certain demographics, ratings for specific conferences,
or ratings for individual papers.

Figure 1. Some questions in our survey. On the first page of the survey, we asked for demographics and rating of

research ideas (Figure 1.a). On the second page, we asked a follow-up question to gather additional qualitative
free text feedback, when participants rated a research idea as “Unwise” (Figure 1.b)

To group the reasons why research ideas were selected as unwise,
we use an open card sort [9]. Card sorting is widely used to create
mental models and derive taxonomies from data. Our card sort con-
sisted of two phases: in the preparation phase, we create one card
for each response to the follow-up question to why a research idea
is unwise. In the execution phase, cards are sorted into meaningful
groups with a descriptive title. Our card sort was open, meaning we
had no predefined groups; instead, we let the groups emerge and
evolve during the sorting process. By contrast, a closed card sort
has predefined groups, which is typically used when the themes are
known in advance. All three authors jointly sorted the cards.

3. RESULTS
We invited 3,000 randomly selected practitioners who were work-
ing in a technical role to take the survey; 512 participants respond
(response rate 17%). Among the participants, 291 (56.8%) of them
work as developers, 87 (17.0%) as testers, and 102 (19.9%) as pro-
gram manager. The participants collectively provided 17,913 rat-
ings. Each paper was rated by 16 to 47 participants (since we ran-
domly picked papers to show to survey respondents the number of
ratings per papers follows a hypergeometric distribution). 217 par-
ticipants rated at least one paper as “Unwise”, 173 of them (79.7%)
provide their reasons for a randomly selected paper. Of the ratings,
2,745 (15.3%) were “I Don't Understand”, which demonstrates the
need of having a way for participants to not provide a rating if they
don’t have enough knowledge or context to assess a research idea.

To show the potential of practitioner feedback, we consider three
questions:

1. How relevant is software engineering research in the practi-
tioner’s perspectives? (Section 3.1)

2. What are highly rated research topics that practitioners deem
essential? (Section 3.2)

3. What are the reasons why practitioners consider certain re-
search topics to be unwise? (Section 3.3)

3.1 Relevance of Software Engineering Research
Figure 2 shows the percentage of ratings across the various catego-
ries for different demographics:

 all participants (All),
 participants that are developers (Dev),
 participants that are testers (Test),
 participants that are program managers (PM),
 participants with low experience, which we define as the 25%

with the least experience in years (ExpLow)
 participants with medium experience (ExpMed),
 participants with most experience, which we define as the 25%

with the most experience in years (ExpHigh),
 participants with advanced degree (Adv),
 participants without advanced degree (NonAdv),
 participants with CS degree (CS),
 participants without CS degree (NonCS),
 participants who are individual contributors (IC), and
 participants who are managers (Mgr).

Figure 2. Percentage of ratings of various demographics.

Figure 3. Relevancy scores from 2010-2014 (ICSE)

Figure 4. Relevancy scores from 2009-2013 (ESEC/FSE, FSE)

0%

20%

40%

60%

80%

100%

All Dev Test PM ExpLow ExpMed ExpHigh Adv NonAdv CS NonCS IC Mgr

R
at
in
gs

Demographics

Essential Worthwhile Unimportant Unwise

0%

20%

40%

60%

80%

100%

2010 2011 2012 2013 2014

R
at

in
g

s

Essential Worthwhile Unimportant
Unwise EW-Score

0%

20%

40%

60%

80%

100%

2009 2010 2011 2012 2013

R
at

in
g

s

Essential Worthwhile Unimportant
Unwise EW-Score

From the figure we can observe that all demographics give more
“Essential” and “Worthwhile” ratings as compared to “Unim-
portant” or “Unwise”. The EW-score for all participants is 71%,
and the E-score is 20%. This is an encouraging finding as it shows
that practitioners do value work done in the software engineering
research community. However, it also shows that there is room for
improvement.

We observed several differences between the demographics (all
statistically significant at a p-level of 0.001):

 Testers were more positive about the relevance of software en-
gineering research (EW-score of 76%, E-score of 23%) than
developers or program managers.

 As experience increased, participants were more critical and
considered more studies as unimportant as well as less studies
as essential. For the participants with low experience (Ex-
pLow), the EW-score is 75% and the E-score is 23%; in con-
trast, for participants with high experience (ExpHigh), the EW-
score drops to 64% and the E-score to 14%.

 Participants who were in Management roles (Mgr) were more
critical than individual contributors (IC). They had an EW-
score of 68% and E-Score of 18%.

We did not observe any statistically significant difference in ratings
between participants with and without advanced degree. Similarly,
there was no statistically significant difference between partici-
pants with and without CS degree.

In addition to demographics, we can break down relevance scores
by conference and year. This can help organizers to ensure that the
conference program matters for practitioners. Figures 3 and 4 show
the changes in the relevance scores for papers published in ICSE,
ESEC/FSE, and FSE in the last 5 years. Over time, the EW-scores
are close to or above 70%, which shows that the practitioners who

we surveyed found that the majority of software engineering re-
search presented at ICSE, ESEC/FSE, and FSE worthwhile to be
pursued.

We also notice that except for a drop for ESEC/FSE and FSE from
2009 (EW-score of 79%) to 2011 (EW-score of 70%), the scores
for ICSE, ESEC/FSE, and FSE are relatively stable. This shows the
health of the conference series in general is good along the years. It
would be great if their health could improve further in the years
ahead.

Monitoring health of conferences is one example of how the ap-
proach in this paper could be used. A conference could poll a rep-
resentative set of practitioners (or attendees for that matter) every
year to see if relevance scores of the conference are improving and
to ensure that the presented work matters for practitioners.

3.2 Highly Rated Research Ideas
Table 1 highlights the ten paper summaries rated the highest by the
512 participants in our survey. The papers are sorted in terms of
their E-score scores (descending), followed by EW-scores (de-
scending), followed by U-scores (ascending). Among the top-10
summaries, at least half of the respondents agreed that the work is
essential. These papers cover a diverse set of topics including im-
proving system performance, debugging tools, adaptive systems,
testing multithreaded programs, and collaboration conflict detec-
tion, among others. Some readers may be surprised with summary
P10 about a new algorithm for Bayesian inference over probabilis-
tic programs. This idea had a high number participants choosing “I
don’t understand”, which suggests that it may be a specialized topic
that is highly relevant to some participants but not to the ones who
are unfamiliar with the topic.

Table 1. Highly rated research ideas. Total is the number of people who rated a paper and did not select “I Don’t Understand”

 Paper Summary Total E-Score EW-Score U-Score
P1 An approach to help developers identify and resolve conflicts early during collaborative

software development, before those conflicts become severe and before relevant changes
fade away in the developers' memories.

39 0.62 0.85 0.00

P2 Technique that clusters call stack traces to help performance analysts effectively discover
highly impactful performance bugs (e.g., bugs impacting many users with long response
delay).

30 0.60 1.00 0.00

P3 Symbolic analysis algorithm for buffer overflow detection that scale to millions of lines of
code (MLOC) and can effectively handle loops and complex program structures.

29 0.55 0.97 0.03

P4 Automatic generation of efficient multithreaded random tests that effectively trigger
concurrency bugs.

29 0.55 0.90 0.03

P5 Debugging tool that uses objects as key abstractions to support debugging operations. Instead
of setting breakpoints that refer to source code, one sets breakpoints with reference to a
particular object.

29 0.55 0.90 0.03

P6 Technique to make runtime reconfiguration of distributed systems in response to changing
environments and evolving requirements safe and being done in a low-disruptive way
through the concept of version consistency of distributed transactions.

31 0.55 1.00 0.00

P7 A new technique that not only detects leaks, but also points developers to the locations where
the underlying errors may be fixed.

25 0.52 1.00 0.00

P8 An approach which automatically prevents database deadlocks which happen when a
database is being accessed by multiple database-intensive applications which hold locks to
different tables.

34 0.50 0.94 0.00

P9 A technique to engineer applications with a self-healing layer for service-oriented systems
that dynamically reveals and fixes interoperability problems.

30 0.50 0.93 0.03

P10 A new algorithm for Bayesian inference over probabilistic programs, based on data flow
analysis techniques from the program analysis community to deal with loops. Inference
refers to the process of calculating the posterior distribution specified by the probabilistic
program.

14 0.50 0.79 0.00

In addition, we ranked summaries by the job role (developer, tester,
and program manager). We required a paper summary to be rated
by at least five people to be included in a role-specific ranking. We
show the list of top-5 papers for each role in our technical report
[5]. We made the following observations:

 Developers are highly interested on improving system perfor-
mance, detecting collaboration conflicts, debugging tech-
niques, and detecting concurrency bugs.

 Testers are highly interested in system monitoring, adaptive
systems, finding linkages between bug reports to the fixing
commits, and lightweight verification tools.

 Program managers are highly interested in a diverse set of top-
ics including building agile teams, team awareness, software
product line construction, bug finding, and debugging tools,
among others.

Figure 5 shows a boxplot of the distribution of EW-scores com-
puted on a per paper basis. We can observe that practitioners rate
most papers favorably. For the majority of papers the EW-score is
higher than 0.5. Again we can observe that testers are more positive
than developers and program managers.

These findings can direct research into areas that are considered to
be relevant by practitioners.

3.3 Reasons Why (Certain) Research is Con-
sidered “Unwise”
In a few cases (3.4% of all votes), practitioners rated research ideas
as “Unwise”. In those cases, we asked a follow-up question for why
respondents think the research idea is unwise.

To identify common reservations, we took the responses and clus-
tered them into groups. We performed an open card sort [9] to cre-
ate the groups. First we printed each response on a card, we then
discussed the comments and iteratively sorted them into groups.
Our card sort identified eight categories that are discussed below.
We ignored cards that contained no rationale (“Doesn’t sound wise
to me”) or when participants rejected an idea solely because it was
not using Microsoft technology (“I think we should focus on Win-
dows First”).

A tool is not needed. This group consists of comments where the
practitioner perceived a tool as not useful to their daily work, e.g.,
the tool cannot help make their tasks being performed easier or with
higher quality. The respondent deemed the current state-of-practice
good enough and believed that no additional support is necessary.

“The tool that would result would not be something I would use
or can imagine anyone else using”

“I don’t know how it could be used for daily work”

“I don’t believe that a framework will make the design and
maintenance of such systems any easier”,

“The proposed tool is already available in the form of TFS or
SharePoint list”

An empirical study is not actionable. The practitioners perceived
that the subject analyzed by an empirical study was not relevant
and/or the findings of the study were deemed to be not actionable
or of little benefit.

“I wouldn’t expect anything actionable or relevant to come out of
this study”

“I don’t see what’s the value to study the difference between these
two development (methodologies)”

“Don’t see any need for this study since enough is known about
common fallacies of this type”,

“Don’t know why there would be any benefit of knowing the an-
swer to the proposed question”, etc.

Generalizability issue. Practitioners criticized that a study was
limited to a few systems and findings found by analyzing these sys-
tems might not be applicable to real systems that matter to them.

“Empirical study on this platforms may not be reusable on oth-
ers”

“Case study for a project is always less useful than researching
around a topic. Lessons learned from one project can be very spe-
cific to this project”

“Might want to consider bugs in same applications over different
platforms”

“Developers are not alike”

A subcategory of generalizability was scalability. Practitioners
deemed a technique to be unlikely to cope with the size, complex-
ity, and variability that characterize systems that practitioners are
working on.

“I don’t see this being used for large-scale systems”

“The set of software update that needs testing is not a small num-
ber and new software updates happen almost every week. And it is
not the same set of software installed by different users”

“Energy consumption characteristics will vary from device to de-
vice and over time”

“From past attempts: - too many states
– too many false positives”

“For a complex program, there will be too much info, and the
developer will not be able to understand”

“As the complexity of the bug goes up, the solution may or may
not go up”

Cost outweighs benefit. Practitioners deemed the cost of using and
maintaining a particular tool to be higher than the benefit gained by
using the tool.

“Development cost of this approach will overkill the gain it
gives”

“Huge time investment for little return”

“I believe the cost of implementing and maintain such a solution
would be greater than the cost of developers fixing bugs manually”

Figure 5. Distribution of EW-scores per paper

“I have experience with similar systems and I’ve never seen one
where I thought they were of net-value”

Questionable assumptions about inputs or conditions. Practi-
tioners deemed a particular input/condition crucial towards the suc-
cess of a research might not hold in practice.

“The whole research assumes that there are requirement docu-
ments and design documents in software development… which is
false in most software projects nowadays”

“Such a tool makes it easier for people to focus on test coverage
& state coverage. Which doesn’t really help detect bugs”

“Description is often not filled correctly. hence it is unwise to rely
on it”

“Analyzing documentation written by humans seems inherently
risky. Engineers are not known for writing good documentation, and
I suspect that will only get worse as we accelerate our deliverables”

Disbelief in a particular technology or methodology. Some prac-
titioners had strong disbelief in a particular technology or method-
ology on top of which a research work is based.

“I don’t believe in design patterns, force fitting something into a
pattern is not wise”

“UML is half dead!”

“Multi-threading is to be avoided at all cost”

“I don’t think UML is a good tool to use in the development pro-
cess”

Another solution/problem seems better/more important. Prac-
titioners believed that it is better to work on an alternative solu-
tion/problem that will also solve the need addressed by some re-
search work.

“Not sure if this is the best or the easiest way to find new uses.
Usually I look at forums/books/tools for that”

“Making yet another language isn’t really solving anything. In-
stead, give me more functionality within my language and/or give
me tools to do these types of things”

“Better organization of how Linux is packaged and distributed
would solve this issue without the need of deep analysis and investi-
gations”

“I don’t think natural language is that important. Instead helping
users find the keywords or tags is should be the focus”

Proposed solution has side effects. Practitioners perceived that
although a research work can solve a problem, it might cause other
problems as side effects.

“It seems that there could be potentially disastrous results if the
automation does not fix the issue it detects correctly. It could induce
laziness or uncaring attitude of developers, e.g., ‘it doesn’t matter if
we introduce bugs, the repair app will fix them’”

“Design Patterns … derive their flexibility at the expense of com-
prehensibility of the interacting parts of a system”

“This approach can introduce “false” exception / bug conditions,
increasing the cost and time to market, while introducing the oppor-
tunity to over engineer the code”

“Specific techniques to rank devs can lead to devs not working
together and lower productivity/morale”

“Drag and drop solutions have always seemed to me as a quick
and easy way to write inefficient code”

”It can easily lead to group think with our competition. We need
to think outside the box, not just copy”

4. DISCUSSION
We discuss several aspects of this work: the relationship between
citation counts and perceived relevance (Section 4.1), the cost of
practitioner feedback (Section 4.2), how feedback could be inte-
grated into conferences (Section 4.3), and limitations of this work
(Section 4.4).

4.1 Citation Count vs. Perceived Relevance
We analyzed the relationship between citation counts and the prac-
titioner’s perspectives as captured by E-, EW-, and U-scores. Cita-
tion counts are often used in academia as a measure of importance
and impact. For the analysis, we used the citation counts from
ESEC/FSE 2009 and ICSE 2010. We collected the citation counts
from Google Scholar on Aug 18, 2014. We ignored more recent
instances of the conferences because citations need time to be built
up. It would be unfair to compare papers from ICSE 2014 with pa-
pers from ICSE 2010 as authors had four more years to read and
cite work from ICSE 2010.

Figure 6 shows scatter plots between citations received by papers
published in ESEC/FSE 2009 and ICSE 2010 with their relevance
scores computed from practitioners’ ratings. From the regression
lines, we find that the number of citations is not necessarily posi-
tively correlated with the three relevance scores. We also computed
Spearman correlations. The correlation between the citation count

(a) E-score (a) EW-score (c) U-score

Figure 6. Citation count vs. relevancy scores (ESEC/FSE 2009 and ICSE 2010)

and E-score is –0.07 with a p-value of 0.53 (not significant); the
correlation between the citation count and EW-score is –0.13 with
a p-value of 0.23 (not-significant); the correlation between the ci-
tation count and U-score is 0.04 with a p-value of 0.73 (again not
significant). Thus, we can conclude that there is no correlation be-
tween the citation count and relevance scores of papers.

 Some papers were cited only a few times, but practitioners consid-
ered the work to be solving a problem that is essential to their needs.
To illustrate such cases, Table 2 shows the top-5 studies that were
favored by practitioners but less so by academia and vice versa. To
get this list, we divided the rank of a paper based on citation counts
with the rank based on E-scores. Papers favored by academia have
high citation counts and relatively low E-scores and for papers fa-
vored by practitioners vice versa.

The absence of a correlation shows that the relevance scores intro-
duced in this paper add extra information to the assessment of re-
search that cannot be captured by citation counts.

4.2 Fast, Lightweight, and Inexpensive
Assessment of Perceived Relevance
We want to stress that the survey-based approach presented in this
paper is a fast, lightweight, and inexpensive way to assess perceived
relevance of research ideas and to collect feedback.

Most participants of our survey responded within the first 3 days.
We closed the survey after 8 days and collected more than 17,913
ratings. This process is faster than a typical conference review pro-
cess that can take 1-3 months.

Surveys with Likert-scales are a lightweight way to collect feed-
back. The survey tool used for this study (SurveyGizmo.com) pro-
vides optimized views for mobile devices which gives participants
the freedom to take the survey at any time they like, for example,
while waiting in line for lunch. The Fatigue and the Accessibility
scores [10] of the survey were estimated to be low by the survey
tool.

The cost of running the survey is also low: Summarizing the papers
and implementing the survey took approximately 80 hours. The 512
survey participants took 22.5 minutes on average1 to complete the
survey (for a total of 192 hours). Setting up the analysis framework
for the survey took another 40 hours. The monetary cost were a
license of the survey tool (Enterprise Plan, 1 month) for $199 and
3 Amazon gift certificates as incentive to participate in the survey
(each $75; total $225).

We would like to emphasize that survey-based practitioner feed-
back as proposed in this paper is different and by no means meant
to replace the work of program committees (PCs). In addition to
checking papers for relevance, PC members must check papers for
many other criteria such as originality, presentation, correctness,
etc. This requires reading the full paper, a larger time commitment,
and often travel to a physical PC meeting to discuss papers with
other experts in person.

4.3 Towards Feedback-Driven Conferences
We believe that embedding practitioner feedback into conferences
(and maybe even journals) can provide great value to the software
engineering community.

For example, this could work as follows:

1. The Program Committee (PC) reviews the submitted papers
and selects the accepted papers.

2. After notification, the Authors of each paper provide a short
summary that is used in the survey. While this is extra work, in
return the authors would get feedback from practitioners.

An alternative is to ask the PC members to provide a summary
and have the Authors validate the summary.

3. The summaries are then used to for the survey that is sent to the
Practitioners.

To increase the representativeness, the survey should be sent to
multiple companies, or even better, a representative panel of
industry practitioners (covering different companies and parts
of the software industry) who are willing to regularly provide
feedback on software engineering research.

We recommend using a similar scale as in our survey. Instead
of following only for research ideas that were rated as Unwise,
we suggest to have a feedback option for any research idea. In
addition, the survey should provide a way for the Practitioner
to trace back a research idea to the actual paper after they have
completed the survey.

Such a survey design has advantages for many stakeholders:

 Conference organizers can use the practitioner feedback to as-
sess the perceived relevance of their conference for industry.
They can monitor the scores over time (as illustrated in Section
3.1 for ICSE and FSE) and take steps to increase the relevance,
driven by actual data. The survey can also serve as publicity for

Table 2. Top studies favored by academia and practitioners

FAVORED BY PRACTITIONERS

A new technique that not only detects leaks, but also points developers
to the locations where the underlying errors may be fixed.

A technique to engineer applications with a self-healing layer for ser-
vice-oriented systems that dynamically reveals and fixes interoperabil-
ity problems.

A technique to monitor if a system fulfils its requirements expressed as
probabilistic properties (e.g., performance, reliability, safety, and avail-
ability requirements) at runtime

Automatically detecting security vulnerabilities in client-side self-con-
tained components that interact with one another.

Failure to release unneeded system resources results in resource leaks,
which can lead to performance degradation and system crashes. The
paper presents a new tool that performs static analysis to find code that
causes resource leaks in Java programs.

FAVORED BY ACADEMIA

Empirical study on whether the bug fixes recorded in these historical
datasets is a fair representation of the full population of bug fixes.

Technique to verify the correctness of a family of programs in a soft-
ware product line against a set of properties.

Empirical study of using software defect data from one project to pre-
dict defects in another project.

A graph model based on Markov chains, which captures bug tossing
history, to better assign developers to bug reports

Over 30 years ago, the preprocessor cpp was developed to extend the
programming language C by lightweight metaprogramming capabili-
ties. The paper describes a study that analyzes 40 C projects to investi-
gate how cpp preprocessor is employed to implement variability.

1 The survey tool records start and end times of people taking the survey,
the average time to complete the survey was 22.5 minutes. (When compu-
ting the average we ignored durations longer than two hours because par-
ticipants likely got interrupted and completed the survey at a later point in
time.)

the conference and possibly attract extra attendees if done be-
fore the conference.

 Authors can take the (text-based) feedback to improve their re-
search and make it more relevant to practitioners if they want.
They also get additional visibility for their work.

 Practitioners get an overview of the latest research, which sev-
eral participants appreciated in our study, e.g., “Thanks for that
summary, it is actually interesting by itself”, or “Reading
through just the titles was a fascinating read – some really in-
teresting work going on!”

We believe that the approach introduced in this paper is an effective
means to help reduce the gap between practitioner needs and soft-
ware engineering research efforts. Lastly feedback does not have to
be limited to practitioners. A conference could survey its attendees
to get a sense how happy they were with the paper selection.

4.4 Limitations
We acknowledge the following limitations of findings presented in
this paper. The limitations could easily be addressed through a com-
munity-driven move to feedback-driven conferences.

The statistics reported in this work depend on the summaries that
were created by ourselves. We have followed a process to help im-
prove the quality of the summaries that we generated. It is possible
that some participants had poor understanding of some of the sum-
maries. To reduce the impact of this issue, we included an “I Don’t
Understand” option in the survey and ignored responses marked as
such. Note summaries are needed because it is not practical to ask
survey participants to read entire papers and many abstracts are not
concise enough. Ideally summaries would be created by the authors
of the papers and/or PC members as outlined in the previous sec-
tion.

The findings in this paper are based on practitioner feedback from
one company. We acknowledge that perspectives of practitioners
in other companies and/or industries such as automotive, aerospace,
or banking may be different. As we discussed in Section 4.3, ideally
the survey would be send to a representative panel of practitioners.
Even though the statistics and insights in this paper come only from
one company, we believe that they are still useful because we sur-
veyed a large number of practitioners (more than 500) with diverse
backgrounds. While some projects are larger in size at Microsoft,
most development practices in the company are adapted from the
general software engineering community and also used outside Mi-
crosoft. Microsoft is a large organization that produces a wide range
of software and hardware products such as operating systems,
productivity software, web browsers, video games, search engines,
game consoles, tablets, phones, and many more. Technical employ-
ees at Microsoft come from many different schools, countries, with
many different cultural backgrounds and we argue that they are thus
highly representative of developers all over the world [11].

In this work, we focused on assessing research work’s perceived
relevancy in the eyes of Microsoft engineers. Perceived relevancy
does not mean that a research work will be adopted by practitioners.
In the survey we did not ask developers to answer whether they are
willing to adopt a research idea. Asking about adoption assumes the
availability of tools, which is not always the case, e.g., for empirical
papers. In addition, adoption typically depends on different factors,
e.g., social, culture, education, exposure, and many more [7] [8],
which often are external to the actual research. These issues make
it difficult for developers to provide objective assessments of the
adoptability. In reality, an actual decision whether a research con-

tribution can be adopted would require a significant time commit-
ment by practitioners. With this work and the question about rele-
vance, we wanted to explore lightweight feedback techniques.

5. RELATED WORK
Related work falls into three areas: papers related to the SIGSOFT
Impact Project, retrospective studies, and attempt to rank the soft-
ware engineering community.

ACM SIGSOFT Impact Project. Our work is partly inspired by
the Impact project performed by ACM SIGSOFT. The goal of the
project is to assess the importance of software engineering research
among the practitioners. This is done by “a series of studies and
briefings, each involving literature searchers and, where possible,
personal interviews” [1]. Several research studies under the Impact
project has resulted in a number of publications including:

 Ryder and Soffa investigated how exception handling is used
today and traced back current state-of-the-practice to studies in
software engineering that helped shape the current state-of-the-
practice [12].

 Ryder et al. analyzed modern programming languages and doc-
umented past studies in software engineering and programming
languages that have impact on features in these modern pro-
gramming languages [13].

 Estublier et al. investigated how software configuration man-
agement systems have evolved along the years and the impact
of research performed in universities and industries [14].

 Clarke and Rosenblum reported the historical development of
runtime assertion checking and described how it has been used
in some industries as reported in a number of publications [15].

 Emmerich et al. investigated a number of successful middle-
ware technologies and showed that findings in the research
community have impact on the development of these technol-
ogies [16] [17].

 Rombach et al. investigated successes in the practice of soft-
ware inspections, reviews, and walkthroughs and reported how
these have been impacted by software engineering research
[18].

Studies under the Impact project looked at the current state-of-the-
practice and documented how this state-of-the-practice has been af-
fected/influenced by previously done research work. Different from
these studies, in our work we are interested in a complementary
approach for evaluating a research work early, based on its poten-
tial to address developers need when it matures in the future. Rather
than starting with the state-of-practice and looking back, in this
work, we start with the state-of-research and look forward to see if
these studies can potentially impact how developers do things in
the future. Both the retrospective Impact project and our future
looking project are important pieces of information to assess the
health of software engineering research.

Retrospective Studies in Software Engineering. Lavallée and
Robillard performed a restrospective study by systematically
reviewing existing studies in the field of software process
improvement [19]. They obtained a set of research papers to review
from representative venues that publish software process
improvement studies, grouped these papers, and reported their
findings. Other systematic review studies, for example on fault pre-
diction [20], analyzed papers published in an area over several
years to review the current state-of-the-art. These papers neither
spanned research topics nor did they use practitioner input on the
relevance of papers.

Misirli et al. shared their experience in deploying software analytics
solutions, in particular effort estimation and defect prediction
solutions, in the industry by interviewing 12 practitioners and
obtaining their feedback [21]. Other work has focussed on how
practitioners perceived specific software enginerring concepts such
as coupling [22], bad smells [23], and productivity [24]. Our study
investigates a wider range of topics and involves a much larger
number of practitioners.

Ranking Studies. Ranking schemes like the work published in the
Journal of Systems and Software [25] [26] ranked individuals and
institutions based on their publications in various venues (typically
several journals). The ranking did not account for any views from
practitioners. Similarly, Ren and Taylor [27] provided a ranking of
organizations and individuals using papers published in two jour-
nals (TSE and TOSEM) and two conferences (ICSE and FSE)
where all papers were weighted similarly. Ren and Taylor summa-
rized the various steps in the ranking process as follows (quoted
directly from source): “1) Choose a field, 2) Select representative
publication venues for the field, and, optionally assign a weight to
each venue, 3) Set the time range for consideration, 4) Assign a
score to each published paper, possibly biased by the venue’s
weight, 5) Divide the score among multiple authors if the paper has
more than one author, 6) Sum the scores for each scholar and each
institution, and finally, 7) Rank the scholars and institutions based
on sums of their scores” [27].

Our study is significantly different from these ranking studies, our
goal is not to rank papers but to understand the perceived relevance
of the research ideas to the broader practitioner community to help
advance the state-of-the-art in software engineering research. The
ranking of papers discussed above has also been subject to criticism
[28].

6. CONCLUSION
In this paper, we proposed to collect practitioner feedback through
surveys as a fast and lightweight way to get input on what matters
for industry. Such data can help conference organizers to assess and
improve the relevance of their meetings, authors to improve their
research, and practitioners to discover the latest software engineer-
ing research. As a proof-of-concept, we performed such a survey at
Microsoft. We invited 3,000 practitioners working in various tech-
nical roles to provide feedback on software engineering research.
From 512 engineers (response rate 17%), we received in total
17,913 ratings and 173 comments on research ideas. We used this
data to assess the health of software engineering research, identify
important research topics, and common reservations against re-
search results. Our experiment at Microsoft suggests that practi-
tioners are generally positive to studies done by the software engi-
neering research community - 71% of all ratings were positive - but
there is room for improvement.

The next step for this work is to replicate our feedback surveys in
other companies based in various countries. This is important to get
a broader view on software engineering research (not just from one
company), as relevance of research ideas could vary by domain and
geography. Replicating the surveys for open source developers is
important too as they often have a different motivation than practi-
tioners in the commercial software industry.

As part of the replication, we believe that there is an opportunity
(and need) to assemble a representative panel of practitioners who
are willing to provide feedback to software engineering research.
Panels are often used in market and user research for surveys. A
requirement for such a panel would be that it includes practitioners

from different companies, domains, countries, genders, etc. at rep-
resentative proportions. Once assembled, the panel could also be
used for other research surveys.

Lastly, we are interested in repeating the survey by partnering with
conference organizers on an ongoing basis to have industry-acces-
sible, vetted, 1-5 sentences summaries of SE research papers, which
can then be rated by a wide range of practitioners to assess the rel-
evance of papers at the conference. Repeating this process regularly
will help improve the relevance of software engineering research in
the years to come.

7. ACKNOWLEDGMENTS
Thanks to everyone who responded to our survey and to Tom Ball,
Christian Bird, Prem Devanbu, Miryung Kim, Emerson Murphy-
Hill, Andreas Zeller, and the anonymous ESEC/FSE reviewers for
providing feedback on this work.

REFERENCES

[1] L. J. Osterweil, C. Ghezzi, J. Kramer and A. L. Wolf, "
Determining the Impact of Software Engineering Research
on Practice," IEEE Computer, vol. 41, no. 3, pp. 39 - 49,
March 2008.

[2] B. Vasilescua, A. Serebrenik, T. Mens, M. G. v. d. Brand
and E. Pek, "How healthy are software engineering
conferences?," Science of Computer Programming, vol. 89,
pp. 251-272, September 2014.

[3] L. Briand and A. van der Hoek, "Insights and Lessons
Learned from Analyzing ICSE 2014 Survey and Review
Data," Luxembourg, 2014.

[4] B. A. Kitchenham and S. L. Pfleeger, "Personal Opinion
Surveys," in Guide to Advanced Empirical Software
Engineering , Springer, 2008, pp. 63-92.

[5] D. Lo, N. Nagappan and T. Zimmermann, "Appendix to The
Health of Software Engineering Research," Microsoft
Research. Technical Report. MSR-TR-2014-119. Available
at: http://research.microsoft.com/apps/pubs/?id=228247,
Redmond, WA, 2014.

[6] A. Begel and T. Zimmermann, "Analyze This! 145
Questions for Data Scientists in Software Engineering," in
ICSE, 2014.

[7] S. Xiao, J. Witschey and E. R. Murphy-Hill, "Social
influences on secure development tool adoption: why
security tools spread.," in CSCW'14: Proceeding of the
Conference on Computer Supported Cooperative Work,
2014.

[8] J. Witschey, O. Zielinska, A. Welk, E. Murphy-Hill, C.
Mayhorn and T. Zimmermann, "Quantifying Developers’
Adoption of Security Tools," in ESEC/FSE'15: Proceedings
of joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Bergamo, Italy,
2015.

[9] D. Spencer, Card Sorting: Designing Usable Categories,
Rosenfeld Media, 2009.

[10] SurveyGizmo.com, Survey Diagnostics,
http://surveygizmov4.helpgizmo.com/help/article/link/diag
nostics.

[11] Microsoft, Global Diversity and Inclusion,
http://www.microsoft.com/about/diversity/en/us/default.as
px.

[12] B. G. Ryder and M. L. Soffa, "Influences on the design of
exception handling ACM SIGSOFT project on the impact
of software engineering research on programming language
design," ACM SIGSOFT Software Engineering Notes, vol.
28, no. 4, July 2003.

[13] B. G. Ryder, M. L. Soffa and M. and Burnett, "The impact
of software engineering research on modern progamming
languages," ACM Trans. Softw. Eng. Methodol., vol. 14, no.
4, pp. 431-477, October 2005.

[14] J. Estublier, D. Leblang, A. Hoek, R. Conradi, G. Clemm,
W. Tichy and D. Wiborg-Weber, "Impact of software
engineering research on the practice of software
configuration management," ACM Trans. Softw. Eng.
Methodol., vol. 14, no. 4, pp. 383-430, Oct 2005.

[15] L. A. Clarke and D. S. Rosenblum, "Historical Perspective
on Runtime Assertion Checking in Software Development,"
SIGSOFT Software Eng. Notes , vol. 31, no. 3, pp. 25-37,
May 2006.

[16] W. Emmerich, M. Aoyama and J. Sventek, "The Impact of
Research on Middleware Technology," SIGSOFT Softw.
Eng. Notes , vol. 32, no. 1, pp. 21-46, Jan 2007.

[17] W. Emmerich, M. Aoyama and J. Sventek, " The Impact of
Research on the Development of Middleware Technology,"
ACM Trans. Softw. Eng. Methodol., vol. 17, no. 4, pp. 1-48,
Aug 2008.

[18] D. Rombach, M. Ciolkowski, R. Jeffery, O. Laitenberger, F.
McGarry and F. Shull, "Impact of research on practice in
the field of inspections, reviews and walkthroughs: learning
from successful industrial uses," ACM SIGSOFT Software
Engineering Notes, vol. 33, no. 6, pp. 26-35, Nov 2008.

[19] M. Lavallée and P. N. Robillard, "The impacts of software
process improvement on developers: A systematic review,"
in ICSE, 2012.

[20] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell,
"A Systematic Literature Review on Fault Prediction

Performance in Software Engineering," IEEE Trans. Softw.
Eng, vol. 38, no. 6, pp. 1276-1304, 2012.

[21] A. T. Misirli, B. Caglayan, A. Bener and B. Turhan, "A
Retrospective Study of Software Analytics Projects: In-
Depth Interviews with Practitioners," IEEE Software, vol.
30, no. 5, pp. 54-61, Sept-Oct 2013.

[22] G. Bavota, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk
and A. D. Lucia, "An empirical study on the developers'
perception of software coupling," in ICSE '13: Proceedings
of the 2013 International Conference on Software
Engineering, 2013.

[23] F. Palomba, G. Bavota, M. Di Penta and R. Oliveto, "Do
They Really Smell Bad? A Study on Developers' Perception
of Bad Code Smells," in ICSME'14: International
Conference on Software Maintenance and Evolution, 2014.

[24] A. N. Meyer, T. Fritz, G. C. Murphy and T. Zimmermann,
"Software developers' perceptions of productivity," in FSE
2014: Proc of the Intl. Symposium on Foundations of
Software Engineering, 2014.

[25] W. Wong, T. Tse, R. Glass, V. Basili and T. Chen, "An
Assessment of Systems and Software Engineering Scholars
and Institutions (2002-2006)," Journal of Systems and
Software, vol. 82, no. 8, pp. 1370-1373, 2009.

[26] W. Wong, T. Tse, R. Glass, V. Basili and T. Chen, "An
assessment of systems and software engineering scholars
and institutions (2003-2007 and 2004-2008)," Journal of
Systems and Software, vol. 84, no. 1, pp. 162-168, 2011.

[27] J. Ren and R. N. Taylor, "Automatic and versatile
publications ranking for research institutions and scholars,"
Commun. ACM , vol. 50, no. 6, pp. 81-85, 2007.

[28] D. L. Parnas, "Stop the numbers game," Commun. ACM ,
vol. 50, no. 11, pp. 19-21, 2007.

