
Scaling Up Stochastic Dual Coordinate Ascent

Kenneth Tran
Microsoft

one@kentran.net

Saghar Hosseini
University of Washington

saghar@uw.edu
Lin Xiao
Microsoft

lin.xiao@microsoft.com

Thomas Finley
Microsoft

tfinley@microsoft.com

Mikhail Bilenko
Microsoft

mbilenko@microsoft.com

ABSTRACT
Stochastic Dual Coordinate Ascent (SDCA) has recently
emerged as a state-of-the-art method for solving large-scale
supervised learning problems formulated as minimization
of convex loss functions. It performs iterative, random-
coordinate updates to maximize the dual objective. Due
to the sequential nature of the iterations, it is typically
implemented as a single-threaded algorithm limited to in-
memory datasets. In this paper, we introduce an asyn-
chronous parallel version of the algorithm, analyze its con-
vergence properties, and propose a solution for primal-dual
synchronization required to achieve convergence in practice.
In addition, we describe a method for scaling the algorithm
to out-of-memory datasets via multi-threaded deserializa-
tion of block-compressed data. This approach yields suffi-
cient pseudo-randomness to provide the same convergence
rate as random-order in-memory access. Empirical evalu-
ation demonstrates the efficiency of the proposed methods
and their ability to fully utilize computational resources and
scale to out-of-memory datasets.

1. INTRODUCTION
Efficient linear learning techniques are essential for train-

ing accurate prediction models in big-data business-critical
applications. Examples of such applications include text
classification, click probability estimation in online advertis-
ing, and malware detection. In these domains, dimension-
ality of representation induced by key predictive features is
very high: for word n-grams, user IPs, advertisement IDs,
and file signatures, many millions and billions of possible
values exist.

Despite high overall dimensionality, examples in such do-
mains are typically very sparse with few non-zero features
encoded directly or via feature hashing. This results in com-
putationally cheap prediction, making linear models a pop-
ular choice for high-throughput applications. For additional
accuracy gains, linear models can be extended via polyno-
mial expansions explicitly or implicitly [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c© 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783412.

While training linear models has been a well-studied area
of machine learning and optimization for decades, in recent
years, a number of advances in stochastic gradient methods
have considerably advanced the state-of-the-art. In particu-
lar, Stochastic Dual Coordinate Ascent (SDCA) has emerged
as a highly competitive algorithm due to its combination of
excellent performance on benchmarks, lack of learning rate
to tune, and strong convergence guarantees [19, 9, 22].

SDCA is a primal-dual optimization algorithm that re-
quires sequential random-order access to training examples.
The per-example iterative nature of the coordinate updates
effectively results in SDCA being a single-threaded in-memory
algorithm, which limits its scalability to very large train-
ing sets, and underutilizes modern hardware with commonly
available multiple CPU cores.

This paper addresses the problem of scaling SDCA to
modern multi-core hardware and large out-of-memory datasets.
First, we introduce a basic asynchronous parallelization scheme
for SDCA, A-SDCA, and prove that it retains the fast lin-
ear convergence guarantees of single-threaded SDCA to a
certain suboptimality level. We observe that a naive imple-
mentation of the algorithm routinely fails to achieve asymp-
totic convergence to optimal values due to lack of synchro-
nization between primal and dual updates, and propose a
modified version of the algorithm, Semi-asynchronous SDCA
(SA-SDCA), which periodically enforces primal-dual syn-
chronization in a separate thread, which empirically results
in convergence.

Our second contribution is a method for scaling SDCA to
out-of-memory datasets. Our approach departs from pre-
vious algorithms for out-of-memory learning that rely ei-
ther on repeated same-order streaming through examples,
or repeated iterations through individual blocks, neither of
which is suitable for SDCA. Instead, we propose a block-
compressed binary deserialization scheme that includes in-
dexing for random block access, while supporting random-
order within-block iteration. By offloading decompression
and disk I/O to separate threads, the proposed method pro-
vides efficient access to data in pseudo-random order, which
empirically is shown to provide similar convergence behavior
as truly random-order access.

We empirically demonstrate that proposed techniques re-
sult in significant speedups and full hardware utilization, as
well as the ability to train on out-of-memory datasets ef-
fectively. Extensive comparisons on multi-gigabyte datasets
demonstrate strong gains over existing state-of-the-art im-
plementations, setting a new high bar for large-scale super-
vised learning.

2. PRELIMINARIES
We consider regularized empirical loss minimization of lin-

ear predictors. Let x1, . . . , xn ∈ Rd be the feature vectors
of n training examples, and w ∈ Rd be a weight vector which
generates linear predictions wTxi for i = 1, . . . , n. In addi-
tion, let φi : R → R be a convex loss function associated
with linear prediction wTxi. Our goal is to minimize the
following regularized empirical loss

P (w) =
1

n

n∑
i=1

φi(w
Txi) +

λ

2
||w||22, (1)

where λ > 0 is a regularization parameter. This formula-
tion is used in many well-known classification and regres-
sion problems. For binary classification, each feature vec-
tor xi is associated with a label yi ∈ {±1}. We obtain
linear SVM (without the bias term) by using the hinge loss
φi(a) = max{0, 1−yia}, and regularized logistic regression is
obtained by setting φi(a) = log(1 + exp(−yia)). For linear
regression problems, each xi is associated with a response
yi ∈ R, and we use φi(a) = (a− yi)2.

Our methods described in this paper can be readily ex-
tended to work with a more general formulation, that is,
we can replace (λ/2)‖w‖22 with a general convex regularizer
g(w). For example, g(w) = λ‖w‖1 or g(w) = λ1‖w‖1 +
(λ2/2)‖w‖22. Details for handling such more general regu-
larizations can be found in [17]. Here we focus on the `2
regularization for clarity and simplicity.

The Stochastic Dual Coordinate Ascent (SDCA) solves a
dual problem of (1). More specifically, let φ∗i : R → R be
the convex conjugate of φi, i.e., φ∗i (u) = maxa(u ·a−φi(a)).
The dual problem is to maximize the dual objective

D(α) =
1

n

n∑
i=1

−φ∗i (−αi)−
λ

2

∥∥∥∥ 1

λn

n∑
i=1

αixi

∥∥∥∥2

2

. (2)

Notice that α ∈ Rn and each dual variable αi is associated
with a different example in the training set. At each iteration
of SDCA, a dual coordinate is chosen uniformly at random
and D(α) is maximized with respect to that coordinate while
the rest of the dual variables are not modified.

Let w? = arg minP (w) and α? = arg minD(α) be the
primal and dual optimal solutions respectively. If we define

w(α) =
1

λn

n∑
i=1

αixi, (3)

then w? = w(α?) and P (w?) = D(α?). We say the solu-
tion w ∈ Rd is εP -sub-optimal if the primal sub-optimality
P (w)− P (w∗) is less than εP .

2.1 Smoothness Assumptions
In this section, we introduce some typical smoothness as-

sumptions on the convex losses φi, and explain its implica-
tions for the dual function defined in (2). Throughout this
paper, we use ‖ · ‖ to denote the Euclidean norm ‖ · ‖2.

Definition 1. A function φi is called L-Lipschitz continuous
if there exists a positive constant L such that for all a, b ∈ R,

|φi(a)− φi(b)| ≤ L‖a− b‖. (4)

Definition 2. A function φi is (1/γ)-smooth if it is differ-
entiable and its derivative is (1/γ)-Lipschitz continuous, i.e.,

for all a, b ∈ R, we have

|∇φi(a)−∇φi(b)| ≤
1

γ
‖a− b‖. (5)

For convex functions, this is equivalent to

φi(a) ≤ φi(b) + (a− b)T∇φi(b) +
1

2γ
||a− b||2. (6)

If φi is (1/γ)-smooth, then its convex conjugate φ∗i is γ-
strongly convex (see, e.g., [8]). That is, for all u, v ∈ R and
s ∈ [0, 1], we have

−φ∗i (su+ (1− s)v) ≥ −sφ∗i (u)− (1− s)φ∗i (v)

+
γis(1− s)

2
||u− v||2. (7)

If φi is (1/γ)-smooth, then we define the condition number

κ :=
1

λγ
, (8)

which is a key quantity in characterizing the complexity of
optimization algorithms. For example, it is shown in [19]
that the number of iterations of the SDCA algorithm to
find a w ∈ Rd such that P (w) − P (w?) ≤ ε (with high
probability) is O((n+ κ) log(1/ε)).

2.2 Characterizing Sparse Datasets
Many popular machine learning problems are represented

by very sparse datasets. Specifically, in datasets where the
number of examples n and dimensionality d in problem (1)
can be very large, the number of non-zero elements in the
feature vectors xi ∈ Rd can be relatively small. Here we
give a formal characterization of sparse datasets, following
the model used in Hogwild! [13].

We can construct a hypergraph G = (V,E) representing
the sparsity patterns in the dataset. The hypergraph’s ver-
tex set is V = {1, . . . , d}, with each vertex v ∈ V denot-
ing an individual coordinate in the space of feature vectors
(Rd). Each hyper edge e ∈ E represents a training example,
which covers a subset of vertices indicating its nonzero co-
ordinates.Since |E| = n, we can also label the hyper edges
by i = 1, . . . , n.

Several statistics can be defined for the hyper graphs G.
The first one characterizes the maximum size of the hyper
edges, or number of non-zero elements in an example:

Ω := max
e∈E
|e|. (9)

The next one bounds the maximum fraction of edges that
covers any given vertex:

∆̃ :=
max1≤v≤n |{e ∈ E : v ∈ e}|

|E| , (10)

which translate into the maximum frequency of appearance
of any feature in the training examples. We also define

ρ :=
maxe∈E |{ê ∈ E : ê ∩ e 6= Ø}|

|E| , (11)

which is the maximum fraction of edges that intersect any
given edge, and can serve as a measure of sparsity of the
hypergraph.

Algorithm 1: A-SDCA (on each processor)

1 repeat
2 sample i ∈ {1, . . . , n} uniformly at random and let e

denote the corresponding hyper edge
3 read current state w and αi
4 ∆αi = arg max

∆αi

{
−φ∗i (−αi−∆αi)− λn

2
||w+ 1

λn
∆αixi||2

}
5 αi ← αi + ∆αi
6 for v ∈ e do
7 wv ← wv + 1

λn
∆αixi,v

8 end

9 until stop

3. PARALLELIZING SDCA
In this section, we first describe an asynchronous paral-

lel SDCA algorithm (A-SDCA) based on a shared mem-
ory model with multiple processors (threads). Convergence
analysis of A-SDCA shows that it exhibits fast linear con-
vergence before reaching a dataset-dependent suboptimality
level, beyond which it may not converge asymptotically to
the optimal parameter values. A study of the algorithm’s
empirical performance revealed that asynchronous updates
of primal and dual are problematic, leading us to derive a
semi-asynchronous SDCA technique (SA-SDCA), in which
periodic synchronization of the primal and dual variables
allow satisfying equation (3), and empirically result in con-
vergence to optimal values demonstrated in Section 5.

Suppose we have a shared-memory computer with m pro-
cessors (threads). Each processor has read and write access
to a state vector w ∈ Rd stored in shared memory. In the
A-SDCA algorithm, each processor follows the procedure
shown in Algorithm 1. In line 7, wv and xi,v denote the
components of weight vector w and training example xi, re-
spectively, indexed by v ∈ {1, . . . , d}.

When there is only one processor (thread), Algorithm 1
is equivalent to the sequential SDCA algorithm in [19]. For
multiple processors, each operation in Algorithm 1 can be
considered a local event that occurs asynchronously across
processors. In particular, the dual update computation in
line 4 of Algorithm 1 takes the bulk of computation time
during each loop execution, and may take each processor a
different amount of time to complete. As a result, when a
particular processor updates components of w in the shared
memory (lines 6-8), the component wv on the right-hand
side of line 7 may be different from the one read in line 3
(which was used to compute the update ∆αi). Despite this
asynchronicity, we assume the component-wise addition in
line 7 is atomic.

In order to analyze the performance of Algorithm 1, we
define a global iteration counter t = 0, 1, 2, We increase t
by 1 whenever some component of w in the shared memory
is updated by a processor. Thus, line 7 of Algorithm 1 can
be written as:

w(t+1)
v =

{
w

(t)
v + 1

λn
∆α

k(t)
i xi,v if v ∈ e

w
(t)
v otherwise

(12)

where k(t) denotes the time at which line 3 of Algorithm 1
was executed (with k(t) ≤ t). The formula (12) assumes the
operations in lines 6-8 of Algorithm 1 are indivisible (or si-
multaneous), when the global event counter t is incremented.

If this cannot be guaranteed in the implementation, we can
still analyze a modified version where the for loop in lines
6-8 is replaced by updating a single v ∈ e, picked randomly
from the set e (of nonzero feature coordinates).

In terms of the global counter t, computation of dual up-

date ∆α
k(t)
i in line 4 can be written as:

∆α
k(t)
i = arg max

∆αi

{
−φ∗i (−αk(t)

i −∆αi)−
λn

2
||wk(t)+

1

λn
∆αixi||2

}
.

We assume that dual variables remain fixed:

α
(t)
i = α

k(t)
i , for all i ∈ {1, . . . , n} and all t ≥ 0.

allowing the dual update in line 5 to be consistent:

α
(t+1)
i ← α

(t)
i + ∆α

k(t)
i = α

k(t)
i + ∆α

k(t)
i .

This requires that no more than one processor can work on
the same example i. It can be easily guaranteed by parti-
tioning the datasets into m subsets S1, . . . , Sm ⊂ {1, . . . , n},
and each processor p only works on random samples from
the local subset Sp, for p = 1, . . . ,m.

We assume that the lag between the read and write oper-
ations at each processor is bounded, i.e., there is a constant
τ such that

t− k(t) ≤ τ, for all t ≥ 0. (13)

Another assumption we make is that the updates ∆αi are
always bounded, i.e., there is a constant M > 0 such that

|∆α(t)
i | ≤M, for all i ∈ {1, . . . , n} and all t ≥ 0. (14)

Based on the above assumptions, the following theorem de-
scribes the behavior of the A-SDCA algorithm (see proof in
Appendix A):

Theorem 3. Suppose each loss function φi is convex and
(1/γ)-smooth, and we initialize the shared state by α(0) =

0 and w(0) = w(α(0)). Let the sequence of w(t) and α(t)

be generated by Algorithm 1, indexed by the global iteration
counter t. If

εP > K(n+ κ)(2 + n+ κ),

where κ = 1/(λγ) and

K =
ΩM2ρτ

n

(
2Ωρτ +

1 + 3λnγ

λn(1 + λnγ)

)
,

then we have E[P (w(T))−D(α(T))] ≤ εP whenever

T ≥ (n+ κ) log(
(n+ κ)(1−K(n+ κ))

εP −K(n+ κ) (2 + n+ κ)
).

Here τ and M are the constants in equations (13) and (14)
respectively, and Ω and ρ are the statistics of hypergraph as
defined in (9) and (11) respectively.

The theorem proves that the A-SDCA algorithm enjoys
a fast linear convergence up to suboptimality level K(n +
κ)(2+n+κ). This suboptimality level depends on the spar-
sity parameters Ω and ρ of the dataset, as well as the lag τ ,
which usually grows with the number of processors m.

With a single processor, when Algorithm 1 reduces to the
sequential SDCA method, there is no the lag between the
iteration counter: τ = 0. Consequently, K = 0 and theorem
yields the rate previously proven for sequential SDCA in [19].

In the multiple processor case, consider the typical setting
with λ ∼ 1/

√
n. Since the smoothness parameter γ can be

21 22 23 24 25 26

Effective number of passes

10-7

10-6

10-5

10-4

10-3

10-2

10-1
P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y
KDD 2010

1 threads

2 threads

4 threads

7 threads

21 22 23 24

Effective number of passes

10-4

10-3

10-2

10-1

P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y

KDD 2012

1 threads

2 threads

4 threads

7 threads

Figure 1: Performance of A-SDCA on two different datasets. Left: KDD 2010 data. Right: KDD 2012 data.
The datasets are summarized in Table 1. Log-log scale is used to illustrate the super-polynomial convergence
of sequential SDCA.

regarded as a constant, we have κ = 1/(λγ) ∼
√
n. In this

case, the suboptimality level scales as

K(n+ κ)(2 + n+ κ) ∼ (ΩMρτ)2n+ ΩM2ρτ
√
n

To make the result in Theorem 3 meaningful, we need the
suboptimality level be a small constant, which requires

Ωρτ = O(1/
√
n).

This condition can be satisfied by many sparse datasets.
When this condition is not satisfied, A-SDCA algorithm may
fail to converge to desired suboptimality gap, degrading gen-
eralization accuracy.

This is illustrated in Figure 1 that shows the performance
of A-SDCA on two large datasets. For the KDD 2010
dataset, convergence suboptimality gap degrades gracefully
when the number of threads (hence the lag τ) increases. For
the KDD 2012 dataset, increasing the number of threads
beyond one leads to convergence at a high suboptimal gap,
failing to improve after the first epoch.

Our analysis of empirical results revealed that the primary
reason that A-SDCA does not converge asymptotically to
the optimal solution is that, due to the asynchronous up-
dates, the following primal-dual relation does not hold in
general:

w(t) =
1

λn

n∑
i=1

α
(t)
i xi, (15)

which, by contrast, always holds in the sequential (1 thread)

case. As a result, we observe the update
∥∥w(t)− 1

λn

∑n
i=1 α

(t)
i xi

∥∥
not converging in the asynchronous case.

The above observation motivates us to propose a semi-
asynchronous SDCA method, SA-SDCA, described in Algo-
rithm 2, which is the primary contribution of this paper. We
solve the above problem by periodically forcing the synchro-
nization of the primal and dual variables to enforce their
correspondence in Eq. (15).

Note that in Algorithm 2, the synchronization thread that
computes wsync does not block the SDCA threads. Instead,
it consumes a dynamically-updated most-recent version of

Algorithm 2: Semi-asynchronous SDCA (SA-SDCA)

1. Run m SDCA threads to update weights and dual
vectors in shared memory per Algorithm 1.

2. Every k parallel epochs (k ×m effective epochs),
recompute wsync ← 1

λn

∑n
i=1 αixi in a separate

thread, and replace w in shared memory with wsync.

α during the computation of wsync, allowing full utilization
of CPU at all times. In experiments described in Section 5,
we observe nearly linear speed-ups and convergence in both
suboptimality gap and holdout-set error accuracy, empiri-
cally demonstrating the effectiveness of SA-SDCA.

4. OUT-OF-MEMORY SCALING
While the previous section has proposed an attractive

asynchronous parallelization of SDCA with strong theoret-
ical guarantees, the assumption of random access to exam-
ples implies that the dataset is sufficiently small to reside in
memory. The growth of modern industrial datasets to tens
of gigabytes and higher, however, invites a technique for ef-
ficiently providing high-speed random-order access to disk-
based datasets. This section introduces such a technique
based on decoupling the data input interfaces, and imple-
menting them for disk-based data with block-wise compres-
sion and indexing on top of multi-threaded, buffered I/O.

The basis for the proposed method is a block-compressed
binary format with indexing that provides random-order ac-
cess to blocks. Examples in the dataset are partitioned into
equal-sized blocks. Random-order block access is provided
by an offset table, with within-block random access provided
by upfront decompression of the block upon access.

The algorithm consumes data via an abstraction of an it-
erator over shuffled examples. This shuffling is not truly
uniform, as it involves two dependent levels on randomness:
blocks are read from disk in uniformly random order, fol-

lowed by random-order iteration over examples in the block.
Threading is orchestrated to coordinate reading compressed
blocks from disk with simultaneous decompression and with
consumption of examples by the learning algorithm.

Without compression this process is heavily I/O bound,
hence compression provides better balancing of available
CPU cores and disk throughput. Because I/O and decom-
pression threads do not perform floating-point computations,
on modern hyper-threaded hardware these threads do not
interfere with the training threads described in the previous
section.

Zlib compression [6] works well as it minimizes CPU costs
while achieving high compression rates for typical datasets.
Furthermore, we note that reduction in data size with com-
pression may result in file size that effectively leads to in-
memory reading due to disk caching.

The user chooses the count of examples per block when
writing the file. For performant shuffling, this choice should
ideally balance some practical considerations: blocks should
be large enough that seeks do not dominate I/O and com-
pute time, but small enough that decompressed blocks fit
within L3 cache, so that each access of an example in a
block is a cache hit.

We note that this approach of a block-partitioned dataset
shares motivation with earlier work on out-of-memory SVM
training [24]. Despite some similarities, there are two key
distinctions between approaches. First, the approach above
performs complete streaming pass over the data, whereas [24]
loads makes multiple passes over each block loaded into
memory. The second key difference that we are plugging
our shuffling example iterator into an existing SDCA learner
with a general data access interface, not proposing a new
learner coupled to a particular storage format. In contrast,
earlier work was centered around devising a novel block min-
imization framework that could perform SVM training when
only a subset of the dataset was available in memory at any
given time.

5. EXPERIMENTAL RESULTS
We present an experimental study of the proposed meth-

ods covering three areas:

• Effects of parallelizing SDCA on convergence

• Performance and convergence for out-of-memory train-
ing and impact of pseudo-shuffling

• Comparisons with leading linear learners.

All experimental results were obtained by optimizing the
logistic loss. For convergence analysis experiments, we used
L2 parameters (λ) that give best generalization accuracy
as measured on held-out test sets. Optimum loss values
were obtained by running single-threaded SDCA sufficiently
long for between-iterations improvement to be within single
floating point precision. For each setting, experiments were
repeated 5 times using different random seeds.

Datasets used in this section are summarized in Table 1.
We note that all datasets are multi-gigabyte in size and very
sparse. For KDD 2010 [21], we used the featurized version
on LibSVM website. For KDD 2012 [14] and Criteo [5],
we performed a random 90/10 train-test split on the pub-
licly available train sets (hosted by Kaggle), preprocessing
categorical features by hashing using 25 hash bits.

Dataset #Examples Dimension #Features

KDD 2010 19.3× 106 29.9× 106 0.6× 109

KDD 2012 33.6× 106 33.6× 106 1.4× 109

Criteo 41.8× 106 5.6× 106 1.5× 109

Table 1: Datasets summary. The #Features column
denotes the total number of non-zero features.

5.1 Convergence of SA-SDCA
In this section, we analyze empirical convergence and scal-

ing properties, as well as accuracy, of SA-SDCA. Experi-
ments were performed on a hyper-threaded machine with 8
physical cores, hence we investigated parallelization up to
7 threads, reserving one thread for loss computation and
periodic primal-dual syncing.

Figure 2 demonstrates that on sparse datasets, SA-SDCA
algorithm converges as quickly as the baseline sequential
SDCA for a given effective number of passes over data. AUC
curves on bottom-most sub-figures show that results with re-
spect to hold-out error mirror those for suboptimality, with
near-linear scaling for both with respect to the number of
threads.

5.2 Out-of-memory training
In next set of experiments, we investigate the effectiveness

of the technique proposed in Section 4 for out-of-memory
training. Figure 3 contains results for no shuffling (other
than once before training), uniform-random, and pseudo-
random shuffling, yielding several interesting observations.
First, we note that while pseudo-random shuffling’s con-
vergence rate lags that of true random shuffling, it signif-
icantly outperforms not shuffling while still allowing disk-
based training.

More importantly, per iteration, out-of-memory training
is actually faster computationally than standard in-memory
training. This is due to two reasons: first, for some datasets,
the block-compressed data reduced physical dataset foot-
print enough to be at least partially cached in memory by the
operating system, which reduces disk-access penalties after
the initial iteration. Second, block-based shuffling strategy
has better higher-level cache efficiency than the uniformly
random shuffling scheme, resulting in faster wall-clock per-
formance.

5.3 Comparison with Alternatives
In this subsection, we compare SA-SDCA with leading lin-

ear learning implementations detailed below. It is important
to emphasize that comparing different software implemen-
tations of learning algorithms is inherently difficult, and we
tried our best to ensure fairness. To this end, we ran a ran-
dom hyper-parameter search [3] for all competing algorithm
over 50 trials on a homogeneous cluster of nodes with 6-core
2.5GHz CPUs and 48GB of RAM (except for LibLinear as
noted below). The following learners were compared:

• LBFGS: a highly tuned implementation of limited-memory
BFGS [11], a batch quasi-Newton method, parallelized
over 5 threads, swept for memory size and convergence
tolerance;

• SGD1: an implementation of Stochastic Gradient De-
scent, highly tuned following [4], swept for initial learn-
ing rate and convergence tolerance;

21 22 23 24 25 26

Number of passes

10-7

10-6

10-5

10-4

10-3

10-2

10-1
P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y
KDD 2010

1 threads

2 threads

4 threads

7 threads

21 22 23 24 25 26

Number of passes

10-7

10-6

10-5

10-4

10-3

10-2

10-1

P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y

KDD 2012

1 threads

2 threads

4 threads

7 threads

0 100 200 300 400 500

Training time (s)

10-7

10-6

10-5

10-4

10-3

10-2

P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y

1 threads

2 threads

4 threads

7 threads

0 1000 2000 3000 4000 5000

Training time (s)

10-5

10-4

10-3

10-2

P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y

1 threads

2 threads

4 threads

7 threads

0 50 100 150 200 250 300

Training time (s)

0.844

0.846

0.848

0.850

0.852

0.854

0.856

0.858

A
U

C

1 threads

2 threads

4 threads

7 threads

0 1000 2000 3000 4000 5000 6000

Training time (s)

0.760

0.765

0.770

0.775

0.780

0.785

0.790

0.795

A
U

C

1 threads

2 threads

4 threads

7 threads

Figure 2: Convergence of SA-SDCA for different number of threads. Left: results on KDD 2010 data. Right:
results on KDD 2012 data. Top and middle: primal sub-optimality vs. effective number of passes and
training-time, bottom: area under ROC curve for holdout set. Log-log scale for top plots illustrates the
super-polynomial convergence rate of the SA-SDCA

• SGD5: asynchronous parallel SGD (Hogwild) with 5
threads, swept as SGD1;

• SDCA1: our sequential SDCA implementation, swept
for convergence tolerance;

• SDCA5: SA-SDCA with 5 threads, swept as SDCA1;

• LIBLIN: LibLinear toolkit [25] implementation of SDCA1,
swept by one of its authors on different hardware with
comparable characteristics;

• VW: Vowpal Wabbit [1] toolkit (SGD and L-BFGS),
swept per authors’ suggestions for number of passes,
initial learning rate (for SGD), and learning rate adap-
tation power.

For all methods, the same loss function (log-loss) and L2

regularization parameters were used. LBFGS and LIBLIN
required loading datasets into memory, while the rest were
streaming, with SGD1, SGD5, SDCA1, and SDCA5 using
the out-of-memory pseudo-shuffling described in section 4.
For each learner, we select top 20 AUC results, shown in Fig-

21 22 23 24 25

Number of passes

10-6

10-5

10-4

10-3

10-2

10-1
P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y
KDD 2010

No shuffling

Pseudo shuffling

True shuffling

21 22 23 24 25 26

Number of passes

10-6

10-5

10-4

10-3

10-2

10-1

P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y

KDD 2012

No shuffling

Pseudo shuffling

True shuffling

0 100 200 300 400 500 600 700

Training time (s)

10-6

10-5

10-4

10-3

10-2

10-1

P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Training time (s)

10-6

10-5

10-4

10-3

10-2

10-1

P
ri

m
a
l
su

b
-o

p
ti

m
a
lit

y

Figure 3: Convergence of SDCA for different shuffling options.

ure 4, with the right panel zooming into the top-performance
quadrant indicated by dotted lines in the left panel.

These results demonstrate that our baseline sequential
SDCA implementation is competitive with LibLinear, while
both outperform VW and L-BFGS. The difference confirms
that SDCA demonstrates faster convergence than primal
methods, and that dataset reshuffling between iterations is
essential for learning optimal parameters. The results also
show that SA-SDCA effectively speeds up sequential SDCA
by fully utilizing computing resources of modern multi-core
processors.

6. RELATED WORK
Recent attention to dual coordinate descent methods was

brought by [9], who have shown that they allow achieving
linear convergence rates for large-scale linear SVM prob-
lems. More generally, [19] proposed and analyzed SDCA
method for regularized risk minimization in which a sig-
nificantly better convergence rate than the commonly used
Stochastic Gradient Descent (SGD) methods was proven.
In related work, [16] proposed Stochastic Average Gradient
(SAG) method for smoothed convex loss functions, which
also achieves linear convergence while preserving the itera-
tion complexity of SGD methods, but also requires careful
selection of learning step size. In a more general setting, an
accelerated variant of SDCA was proposed in [20],with supe-
rior performance achieved for a sufficient condition number.

In order to addresses the problem of scaling these meth-
ods to modern multi-core hardware systems, a number of
synchronous parallel algorithms were introduced in recent
years, which assume distributed computation across multi-
ple nodes [15, 26, 26, 23]. In [7, 13, 12], the sparsity has been
utilized to develop asynchronous parallel coordinate descent
and stochastic gradient type algorithms. In particular, the
Hogwild! framework of [13] provided inspiration for the A-
SDCA algorithm in Section 3, from which our SA-SDCA
method is derived.

In both [13] and [12], it is assumed that there is a bound
on the lag between when a processor reads w and the time
when this processor makes its update to a single element of
w. Moreover, it was shown that a near-linear speedup on a
multi-core system can be achieved if the number of proces-
sors is O(n1/4). Despite this attention, very little work exists
on scaling up dual coordinate ascent. [18] have considered
the mini-batch approach, where updates are computed on
example subsets and aggregated collectively. Experimental
evaluation has shown that mini-batches slow down conver-
gence, inviting the use of either Nesterov acceleration or
approximate Newton step.

In more recent work, [10] have considered a data-distributed
variant of SDCA, named CoCoA, where a master node ag-
gregates updates computed by multiple worker machines on
local examples. Results reported in [10] on relatively small
datasets do not appear competitive, however. For RCV1, a
common text classification benchmark, CoCoA is reported
to take 300 seconds on an 8-node cluster to reach the pri-

0 1000 2000 3000 4000 5000

Run Time

0.80

0.81

0.82

0.83

0.84

0.85

0.86

A
U

C

KDD 2010

LBFGS: LBFGS using 5 threads

LIBLIN: LibLinear

SDCA1: Sequential SDCA

SDCA5: Semi-Async SDCA using 5 threads

SGD1: Sequential SGD

SGD5: Hogwild SGD using 5 threads

VW: Vowpal Wabbit

0 200 400 600 800 1000 1200 1400 1600 1800

Run Time

0.846

0.848

0.850

0.852

0.854

0.856

0.858

A
U

C

KDD 2010 - zoomed

0 1000 2000 3000 4000 5000 6000 7000 8000

Run Time

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

A
U

C

KDD 2012

0 500 1000 1500 2000 2500 3000 3500 4000

Run Time

0.780

0.785

0.790

0.795

0.800

A
U

C

KDD 2012 - zoomed

0 1000 2000 3000 4000 5000

Run Time

0.765

0.770

0.775

0.780

0.785

0.790

0.795

A
U

C

Criteo

0 500 1000 1500 2000 2500

Run Time

0.784

0.785

0.786

0.787

0.788

0.789

0.790

A
U

C

Criteo - zoomed

Figure 4: Comparison results. Left: Total run time (in seconds) and AUC of top 20 candidates from each
learner. Right: larger display of the dotted region in the left plots. Top: results on KDD 2010 data. Middle:
results on KDD 2012 data. Bottom: results on Criteo data.

mal sub-optimality of 10−4. In contrast, it takes the single-
threaded SDCA implementation that is our baseline approx-
imately 5 seconds to reach the same suboptimality level.

7. CONCLUSIONS AND FUTURE WORK
We have described, analyzed and evaluated two techniques

for scaling up Stochastic Dual Coordinate Ascent (SDCA)
to large datasets: asynchronous updates with primal-dual
synchronization, and pseudo-random iteration via indexed,
block-compressed serialization. Empirical results demon-
strate strong performance in comparison to existing state-
of-the-art software for linear learning. This work yields a
new state-of-the-art baseline for single-node linear learning,
and invites an investigation of combining the method with
distributed learning approaches. Further investigation into
pseudo-random access is another interesting direction for
further research, calling for theoretical analysis of conver-
gence implications of imperfect randomness, and investigat-
ing alternative designs, such as the use of quasi-random (low-
discrepancy) sequences, that could yield random-quality con-
vergence with even higher throughput.

8. ACKNOWLEDGMENTS
Authors wish to thank Wei-Sheng Chin for assistance with

computing LibLinear baseline results, and John Langford
and Paul Mineiro for Vowpal Wabbit hyper-parameter sug-
gestions.

9. REFERENCES
[1] A. Agarwal, A. Beygelzimer, D. J. Hsu, J. Langford,

and M. J. Telgarsky. Scalable non-linear learning with
adaptive polynomial expansions. In NIPS, 2014.

[2] A. Agarwal, O. Chapelle, M. Dud́ık, and J. Langford.
A reliable effective terascale linear learning system.
The Journal of Machine Learning Research,
15(1):1111–1133, 2014.

[3] J. Bergstra and Y. Bengio. Random search for
hyper-parameter optimization. The Journal of
Machine Learning Research, 13(1):281–305, 2012.

[4] L. Bottou. Stochastic gradient descent tricks. In
Neural Networks: Tricks of the Trade, pages 421–436.
Springer, 2012.

[5] O. Chapelle et al.
http://labs.criteo.com/downloads/2014-kaggle-display-
advertising-challenge-dataset.

[6] P. Deutsch and J.-L. Gailly. Zlib compressed data
format specification version 3.3. Technical report,
RFC 1950, May, 1996.

[7] J. Duchi, M. Jordan, and B. McMahan. Estimation,
optimization, and parallelism when data is sparse.
NIPS, pages 1–9, 2013.

[8] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals
of Convex Analysis. Springer, Berlin, 2001.

[9] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi,
and S. Sundararajan. A dual coordinate descent
method for large-scale linear svm. In Proceedings of
the 25th ICML, pages 408–415, 2008.

[10] M. Jaggi, V. Smith, M. Takác, J. Terhorst,
S. Krishnan, T. Hofmann, and M. I. Jordan.
Communication-efficient distributed dual coordinate
ascent. In NIPS, pages 3068–3076, 2014.

[11] D. C. Liu and J. Nocedal. On the limited memory bfgs
method for large scale optimization. Mathematical
programming, 45(1-3):503–528, 1989.

[12] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar.
An asynchronous parallel stochastic coordinate descent
algorithm. In Proceedings of the 31st ICML, 2014.

[13] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In In NIPS, 2011.

[14] Y. Niu, Y. Wang, G. Sun, A. Yue, B. Dalessandro,
C. Perlich, and B. Hamner. The tencent dataset and
kdd-cup’12. In KDD-Cup Workshop, 2012.

[15] P. Richtárik and M. Takáč. Distributed coordinate
descent method for learning with big data. arXiv
preprint arXiv:1310.2059, 2013.

[16] N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic
gradient method with an exponential convergence rate
for finite training sets. In NIPS. 2012.

[17] S. Shalev-Shwartz and T. Zhang. Proximal stochatic
dual coordinate ascent. arXiv:1211.2772, November
2012.

[18] S. Shalev-Shwartz and T. Zhang. Accelerated
mini-batch stochastic dual coordinate ascent. In NIPS,
pages 378–385, 2013.

[19] S. Shalev-Shwartz and T. Zhang. Stochastic dual
coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research,
14:567–599, 2013.

[20] S. Shalev-Shwartz and T. Zhang. Accelerated
proximal stochastic dual coordinate ascent for
regularized loss minimization. In Proceedings of the
31st ICML, pages 1–41, 2014.

[21] Stamper, Niculescu-Mizil, Ritter, Gordon, and
Koedinger. Bridge to algebra 2006-2007 - challenge
data set from kdd cup 2010 educational data mining
challenge, 2010.

[22] T. Suzuki. Stochastic dual coordinate ascent with
alternating direction method of multipliers. In
Proceedings of the 31st ICML, pages 736–744, 2014.

[23] T. Yang. Trading computation for communication:
Distributed stochastic dual coordinate ascent. In
NIPS, pages 629–637, 2013.

[24] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin.
Large linear classification when data cannot fit in
memory. ACM Transactions on Knowledge Discovery
From Data, pages 1–23, 2012.

[25] H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate
descent methods for logistic regression and maximum
entropy models. Machine Learning, 85(1-2):41–75,
2011.

[26] Y. Zhang, M. J. Wainwright, and J. C. Duchi.
Communication-efficient algorithms for statistical
optimization. In NIPS, pages 1502–1510, 2012.

10. APPENDIX
In this appendix, we sketch the proof of Theorem 3. The

proof mainly follows the framework in [19, 17], combined
with additional techniques for handling asynchronicity in
[13]. First, we need the following key lemmas, which we
prove in a longer report.

Lemma 4. Assume that each φ∗i is γ-strongly convex and
s ∈ [0, 1]. Then the sequence of w(t) and α(t) generated by

Algorithm 1 with α(0) = 0 satisfy

E[D(α(t+1))−D(α(t))] ≥ s

n
E
[
P (w(t))−D(α(t))

]
− 1

2λ
(
s

n
)2Ht+1

−ΩM2ρτ

n
(2Ωρτ +

1 + 2s

λn
),

where

H(t+1) =
1

n

n∑
i=1

(
||xi||2 −

γ(1− s)λn
s

)
E
[
(u

(t)
i − α

(t)
i)2

]
,

and −u(t)
i ∈ ∂φi(x

T
i w

(t)).

Moreover, the following observation is presented in [19]
and thus, it is presented here without proof.

Lemma 5. For all α, D(α) ≤ P (w∗) ≤ P (0) ≤ 1 and
D(0) ≥ 0.

The proof of our basic results stated in Theorem 3 relies
on the boundedness of the expected increase in dual objec-
tive from below by the duality gap. Lemma 4 implies that
the duality gap can be further lower bounded using dual
suboptimality and solved to obtain the convergence of dual
objective based on recursion. Note that since, φi is (1/γ) -
smooth, we can assume that there exist M ∈ R such that φi
is locally M

2
-Lipshitz continuous and subsequently we have

||∆α||2 ≤M . Moreover, φ∗i is γ - strongly convex and from
Lemma 4 we have

E[D(αt+1)−D(αt)] ≥ s

n
E
[
P (wt)−D(αt)

]
−

1

2λ
(
s

n
)2Ht+1 −

ΩM2ρτ

n
(2Ωρτ +

1 + 2s

λn
),

where Ht+1 = 1
n

∑n
i=1

(
||xi||2 − γ(1−s)λn

s

)
E
[
(uti − αti)2

]
.

By choosing s = λnγ
1+λnγ

∈ [0, 1], we have Ht+1 ≤ 0 and
subsequently

E[D(αt+1)−D(αt)] ≥ s

n
E
[
P (wt)−D(αt)

]
−

ΩM2ρτ

n
(2Ωρτ +

1 + 2s

λn
).(16)

Let εtD := D(α∗) −D(αt) ≤ P (wt) −D(αt) and thus we
have εtD − εt+1

D = D(αt+1) − D(αt). Therefore, by using
recursion on (16), we obtain

E[εtD] ≤ (1− s

n
)tE[ε0

D] +

ΩM2ρτ

n
(2Ωρτ +

1 + 2s

λn
)

t∑
i=0

(1− s

n
)i,

and (1− s
n

)t ≤ e−
s
n
t implies

E[εtD] ≤ e−
s
n
t +

ΩM2ρτ

n
(2Ωρτ +

1 + 2s

λn
)

t∑
i=0

e−
s
n
i. (17)

In addition, the last term o the right hand side of (17) can
be bounded using integral test as

t∑
i=0

e−
s
n
i ≤ 1 +

ˆ t

0

e−
s
n
xdx = 1 +

n

s
− n

s
e−

s
n
t,

which implies

E[εtD] ≤ ΩM2ρτ

n
(2Ωρτ +

1 + 2s

λn
)
(

1 +
n

s
− n

s
e−

s
n
t
)

+

e−
s
n
t. (18)

If it is desired to have E[εtD] ≤ εD then we need

e−
s
n
t +

ΩM2ρτ

n
(2Ωρτ +

1 + 2s

λn
)
(

1 +
n

s
− n

s
e−

s
n
t
)
≤ εD

or equivalently

K

(
1 +

1 + λγn

λγ

)
+

(
1−K 1 + λγn

λγ

)
e
− λγ

1+λγn
t ≤ εD,

where s = λnγ
1+λnγ

and

K =
ΩM2ρτ

n
(2Ωρτ +

1 + 3λnγ

λn(1 + λnγ)
).

Therefore, the dual problem sub-optimality is bounded by
εD if

t ≥ (n+
1

λγ
) log(

1−K(n+ 1
λγ

)

εD −K
(

1 + n+ 1
λγ

)).

Moreover, the duality gap can be presented as

E
[
P (wt)−D(αt)

]
≤ n

s
E[εtD − εt+1

D] +

M2

s

[
2 (Ωρτ)2 +

1 + 2s

λn
(Ωρτ)

]
≤ n

s
E[εtD] +

M2

s

[
2 (Ωρτ)2 +

1 + 2s

λn
(Ωρτ)

]
.(19)

Based on (18) and (19) we have

E
[
P (wt)−D(αt)

]
≤ (n+ κ)(e−

t
κ+n (1−K(n+ κ)) +

K(2 + n+ κ)),

where κ = 1/(λγ). Moreover, based on 1−K(n+ κ) < 0, if

K(n+ κ)(2 + n+ κ) ≤ εP ,

then we have

(n+ κ)(e−
t

κ+n (1−K(n+ κ)) +K(2 + n+ κ)) < εP ,

which implies we obtain a duality gap of at most εP when-
ever

t ≥ (n+ κ) log(
(n+ κ)(1−K(n+ κ))

εP −K(n+ κ) (2 + n+ κ)
).

