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ABSTRACT
Attribute synonyms are important ingredients for keyword-
based search systems. For instance, web search engines, rec-
ognize queries that seek the value of an entity on a specific
attribute (referred to as e+a queries) and provide direct an-
swers for them using a combination of knowledge bases, web
tables and documents. However, users often refer to an at-
tribute in their e+a query differently from how it is referred
in the web table or text passage. In such cases, search en-
gines may fail to return relevant answers. To address that
problem, we propose to automatically discover all the al-
ternate ways of referring to the attributes of a given class
of entities (referred to as attribute synonyms) in order to
improve search quality. The state-of-the-art approach that
relies on attribute name co-occurrence in web tables suffers
from low precision.

Our main insight is to combine positive evidence of at-
tribute synonymity from query click logs, with negative ev-
idence from web table attribute name co-occurrences. We
formalize the problem as an optimization problem on a graph,
with the attribute names being the vertices and the pos-
itive and negative evidences from query logs and web ta-
ble schemas as weighted edges. We develop a linear pro-
gramming based algorithm to solve the problem that has
bi-criteria approximation guarantees. Our experiments on
real-life datasets show that our approach has significantly
higher precision and recall compared with the state-of-the-
art.

1. INTRODUCTION
Keyword-based search systems often need to understand

synonyms that people use to refer to both entities and at-
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Figure 1: Example search results for e+a queries

tributes in order to return the most relevant results. While
discovering entity synonyms has been a common topic of
research [10, 24], the problem of attribute synonym has so
far received little attention. The lack of attribute synonyms
often limits the efficacy of keyword search systems.

In the following, we will use web search engine as a con-
crete example to illustrate the importance of attribute syn-
onyms in keyword search, although its importance clearly
extends beyond web search engine (e.g., for database key-
word search and other types of schema search [9]).

Web search engines now answer certain types of queries
directly using structured data and other sources [17, 23, 30].
For instance, for the query {barack obama date of birth},
both Bing and Google show the answer “August 4, 1961”
prominently above its regular results. The above query is
an example of an important class of web queries where the
user specifies the name of entity and the name of an attribute
and seeks the value of that entity on that attribute [30]. We
refer to them as entity-attribute queries or “e+a” queries in
short.

Web search engines answer many e+a queries using a cu-
rated knowledge base containing entities and their values on
various attributes. It has been recognized that these knowl-
edge bases have low coverage of tail entities and attributes
[17, 28]. For example, Google does not answer the query
{number of english speakers in china} using their knowledge
base, because it likely does not have that attribute for the
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Figure 2: Two step framework for attribute synonyms

entity class Country. Such queries are answered using web
tables and text passages as they cover the long tail of en-
tities and attributes [17, 30]. For example, Google answers
the above query using a web table as shown in Figure 1(a).

Users often refer to an attribute in their e+a query differ-
ently from how it is referred in the web table or text passage.
In such cases, search engines will fail to return relevant an-
swers. For example, if the user asks for {english literacy
rate in china} (where ‘english literacy rate’ may be an alter-
nate way of referring to ‘% english speakers’), Google fails
to return the above answer as shown in Figure 1(b).

To address this problem, we propose to automatically dis-
cover all the alternate ways of referring to the attributes of
a given class of entities. We refer to these alternative at-
tribute names as attribute synonyms.1 Like previous works
on attribute extraction, we perform synonym discovery for a
given class of entities [17, 18, 20, 21]. For example, our ap-
proach can discover that ‘english literacy rate’ is a synonym
of ‘% english speakers’ for the entity class Country. With
this knowledge, the search engine will be able to return the
relevant web table for the above query.

We adopt a two-step framework: attribute name extrac-
tion and attribute synonym discovery. Given an entity class
and some entity instances of that class, the first step ex-
tracts all attribute names for that class from sources like
query click log and web table corpus. The second step then
identifies synonyms among all such attribute names. Figure
2 shows an example input and output of the two steps for
the class Person.

Attribute name extraction has been studied extensively in
prior works [17, 18, 20, 21]; we use a variant of those tech-
niques in this paper. On the other hand, attribute synonym
discovery has received little attention in the literature, and
is the focus of this paper. We briefly describe two baseline
techniques for synonym discovery and their limitations; a
more detailed discussion can be found in Section 6.
• Thesaurus: We consider a pair of attribute names as syn-
onyms if they occur as synonyms in a manually compiled
thesaurus like Wiktionary [5] or Merriam-Webster [2]. The
limitation of this approach is that synonymity of attribute
names often depend on the entity class (e.g., “megapixels”
and “mp” are synonyms of “resolution” only for the class
Camera); the thesaurus is context-independent and hence
does not contain such synonyms.

1 Whenever we refer to synonyms in this paper, we refer to at-
tribute synonyms as opposed to other types of synonyms like en-
tity synonyms.
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• ACSDb: Cafarella et al. leverages the attribute name
correlation statistics (called ACSDb) computed from a large
corpus of web tables to compute attribute synonyms [9].
The main positive evidence of synonymity this approach uses
is based on the fact that synonymous attribute names are
likely to co-occur with the similar context attributes in web
table schemas. Our experiments show that such positive
evidence is often inadequate as many non-synonyms also co-
occur with same attributes. This results in low precision.
Main insights: We propose to derive positive evidence of
synonymity from the query click logs of a web search engine.
Users often issue e+a queries to the search engine. Also,
there are many pages on the web that contain information
about entities and their attributes (we refer to them as e+a
pages). For example, http://www.birth-death.com contains
millions of e+a pages with birth date, death date and zo-
diac sign information of famous people. E+a queries click
on e+a pages as they contain the desired information. Fig-
ure 3 shows some examples of e+a queries, e+a pages and
clicks. Consider an entity e and two attribute names a1 and
a2 of the given class. Our key insight is that if a1 and a2
are synonyms, users will issue queries {e+a1} and {e+a2}
(where “+” denotes string concatenation) and click on the
same pages; this is because both queries seek the same infor-
mation and the same pages contain that information. For
example, in Figure 3, {bill gates dob} clicks on the same page
(http://www.birth-death.com/-bill-gates) as {bill gates date
of birth}. Since we are given a set of entities, we can further
aggregate the positive evidence for a pair of attribute names
across all the entities.

However, the positive evidence from query alone is not
adequate, because e+a pages often contain information on
multiple attributes of an entity. For example, each page on
http://www.birth-death.com contains information on birth
date, death date and zodiac sign of a person. Thus, a page
clicked by {bill gates date of birth} will also be clicked by
{bill gates zodiac sign} as shown in Figure 3. Even if we are
given a set of entities, this happens for all or many of the
entities. This approach will likely produce “zodiac sign” as
a synonym of “date of birth”.

To overcome the above limitation, we complement the
positive evidence from the query click logs with negative
evidence derived from web tables. In particular, because two
attributes that co-occur frequently in same web tables are
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unlikely to be synonyms (e.g., it would be meaningless to in-
clude both “dob” and “date of birth” in the same table), we
use attribute co-occurrence in tables as negative evidence.

Lastly, we observe that attribute synonyms in the context
of an entity class are transitive, which is a useful constraint
to further improve synonym discovery. The main technical
challenge we address is to formulate a principled problem
that can effectively utilize both positive and negative evi-
dences, while also leveraging the global transitivity property.
Contributions: Our main contributions are as follows:
• We formalize the attribute synonym discovery problem as
a holistic optimization problem on a graph with weighted
edges. Our problem formulation effectively combines posi-
tive and negative signals from web tables and query logs, and
optimize globally taking into account synonym transitivity
observed by class-specific attribute synonyms.
•We develop a linear program-based algorithm for the opti-
mization problem, and we formally show that the proposed
algorithm has bi-criteria approximation guarantees.
• We study a variant of the attribute synonym discovery
problem, namely attribute synonym discovery with anchors,
where the goal is to find synonyms of a given set of distinct
attributes. This can be used to discover attribute synonyms
for an entity class in a knowledge base, or any given web ta-
ble. We propose an algorithm to solve this problem variant.
•We perform extensive experiments on diverse entity classes
(Section 5), and draw signals from a large-scale query click
log from the Bing search engine as well as corpus of 50 mil-
lion web tables. Our experiments show that our approaches
(i) discover attribute synonyms with high precision and re-
call, (ii) significantly outperforms the thesaurus lookup ap-
proach and the ACSDb approach proposed in [9].

2. PRELIMINARIES AND FRAMEWORK
We first introduce the definitions of entity class and in-

stances, query log and web table corpus. We then present
the two-step framework of attribute name extraction and
attribute synonym discovery.

2.1 Definitions
Entity class and instances: We assume that the entities
of the world are organized into classes (e.g., Country, Per-
son). We perform attribute synonym discovery for a given
entity class. We assume a set of entity instances of the par-
ticular class to be provided as input. For example, the entity
instances can be obtained from a knowledge base.
Query log: The query click log collects the click behavior
of millions of web searchers over a long period of time. We
use two years’ worth of click logs from Bing. We assume the
query log Q to contain records of the form (q, u, cid) where
q is a query string, u is a web document, represented by its
unique url, and cid is a unique click-id. We say a query q is
a co-clicked query (or simply co-click) of a query q′ if q and
q′ click on the same url.
Web table corpus: The web tables corpus T contains all
the HTML tables extracted from the web. We use a corpus
of 50 million tables extracted from a part of Bing’s web
crawl. Each web table T ∈ T has (i) a schema ST which is
an ordered list of column names [h1, h2, ..., hn] and (ii) a set
of subject entities ET which are the values in the “subject
column” of the table [26]. One or more of the column names
can be empty strings. A single site often have many tables
with the same schema; we retain a schema only once per url

Matching Patterns

a e
e a
e’s a
a in e
a of e
a for e

Table 1: Example e+a query patterns

domain in order to prevent a single schema swamping the
co-occurrence statistics [9].

2.2 Two-step Framework
We adopt a framework consisting of two steps:

Step 1: Attribute name extraction: Given an entity
class and a set E of instances of that class, this step extracts
all the attribute names for that class. We use a variant of
prior techniques for this step [17, 18, 20]. We identify e+a
queries in the query log containing one of the input entities.
Such queries typically follow one of the patterns listed in
Table 1. For each such query, we extract the attribute name
from the remainder of the query. For example, if “barack
obama” is an input entity, the query {barack obama date
of birth} matches the query pattern and hence we extract
“data of birth” as a candidate attribute name.

However, the candidates so generated often contain many
noisy non-attributes. For example, for the entity “barack
obama”, there are many queries like {barack obama news}
or {barack obama twitter}, where “news” and “twitter” do
not correspond to attribute names.

We eliminate such non-attribute names by applying two
simple but effective filtering techniques:
• Web Table Column Name Filtering: We first identify the
web tables containing entities of the given class. We do this
by checking for sufficient overlap of the entities in its subject
column with the set E of input entities. In our experiments,
we use a threshold of 4 overlapping entities. We can then
use column names of these tables to filter out non-attribute
candidates. For example, we can accept only those candi-
date attribute names that occur as a column name in these
tables. This will filter our candidates like “news” and “twit-
ter” as they are unlikely to be column names in web tables.
Other options include accepting candidate attribute names
that approximately match table column names.
• Question Pattern Filtering: Since users often use ques-
tion style queries to ask for certain attribute of an entity
(e.g., {when was barack obama born}), such question pat-
terns are also useful attribute synonyms (e.g., “when born”).
Because such question patterns typically do not occur as
columns names in web tables, we additionally include candi-
date attributes matching predefined question patterns. For
example, we accept candidate names that begin with “how”,
“what”, “who”, “when”, “where”, “which”, etc.
Step 2: Attribute Synonym Discovery: This step iden-
tifies the synonyms using the attribute names extracted from
the step above. For example, as shown in Figure 2, given
the extracted attribute names {date of birth, income, home-
town, salary, birthplace, when born, birth date, pay, birth-
day, tax, dob, earnings, birth place, zodiac sign}, this step
might identify the following sets of synonyms: {date of birth,
birth date, birthday, dob, when born}, {income, earnings,
salary, pay}, {birth place, home town, hometown, birth-
place}, {zodiac sign} and {tax}. This synonym discovery
step is the main focus of this work, which we will discuss in
the rest of this paper.
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3. ATTRIBUTE SYNONYM DISCOVERY
In this section, we discuss the second step of our frame-

work, which is to discover synonyms given valid attribute
names (from step 1). We will first describe how we build
an attribute-similarity graph to model the likelihood of syn-
onymity, and then discuss our holistic optimization formu-
lation that finds synonyms using the graph.

3.1 Attribute Similarity Graph
Given all attributes of an entity class, we model these at-

tributes and their similarity relationships as a graph, where
each vertex corresponds to an attribute, and each edge repre-
sents the similarity relationship between a pair of attributes
for synonymity (Figure 4(a) shows one such graph, which
will be discussed in detail).

To compute similarity relationship between any two at-
tributes, we combine positive similarity signals derived from
query logs, and negative similarity signals from web tables.
We will describe these two signals next in turn.
Positive Similarity: To determine what attributes are
likely to be similar, we leverage the rich user interactions
in the query logs. Search engine users often use different
ways to seek for the same attribute-level information, and
ultimately click on the same pages with the desired infor-
mation. For example, users searching for {bill gates date of
birth} and {bill gates dob} often click on the same pages
(e.g., http://www.birth-death.com/-bill-gates, as shown in
Figure 3).

Let q(e, a) be an e+a query with entity e and attribute
a. In general, if q(e, ai) and q(e, aj) co-click on a similar set
of pages, then ai and aj are more likely to be synonyms.
We use this intuition to determine the positive similarity
between two attributes.

Let Q = {(q, u, cid)} be the query logs where each entry
has a triple consisting of a user query q, a page url u, and a
unique query-url click-id cid. We can write the multi-set of
pages clicked by query q as M(q):

M(q) = {u|(q, u, cid) ∈ Q}

Let PosSim(ai, aj |e) be positive similarity of ai, aj for a
given entity e that we need to compute, we observe that the
similarity of the multi-set of pages clicked by q(e, ai) and
q(e, aj) is often a good proxy. Namely

PosSim(ai, aj |e) = Sim(M(q(e, ai)),M(q(e, aj)) (1)

where Sim can be any similarity function for two multi-
sets. For example, we can instantiate Sim as Cosine similar-
ity, Jaccard similarity, or distributional metrics like Jensen-
Shannon distance, etc. We use Cosine for positive similarity
in this work.

Since we are give a set of entities E as input, we can further
aggregate the similarity of ai and aj across all input entities.

PosSim(ai, aj |E) =
1

|E|
∑
e∈E

(PosSim(ai, aj |e)) (2)

This aggregation generates a robust signal of positive simi-
larity between ai and aj , especially when given a large set of
entities (e.g., all entities of a class from knowledge base). For
simplicity we will omit E and simply write PosSim(ai, aj)
when E is clear from the context.

Example 1. We use the example in Figure 3 to illustrate
positive similarity. For simplicity suppose all query-url click
edges are of frequency 1. Suppose we want to compute the
positive similarity of a1 = “date of birth” and a2 = “dob”.
Let entity e = “abraham lincoln”, then the two e+a queries
are q(e, a1) = {abraham lincoln date of birth}, q(e, a2) =
{abraham lincoln dob}, and the multi-set of pages clicked by
the two queries are M(q(e, a1)) = {P1, P3}, M(q(e, a2)) =
{P1}. Using Equation (1) and Cosine similarity, we can
compute PosSim(a1, a2|e) = 0.7, or the similarity of “date
of birth” and “dob” given “abraham lincoln” is 0.7.

Similarly, let entity e′ = “bill gates”, we can compute
PosSim(a1, a2|e′) = 1, because M(q(e′, a1)) = {P2}, and
M(q(e′, a2)) = {P2}. Averaging across these two entities
using Equation (2), we have PosSim(a1, a2) = 0.85.

While page co-click information provides valuable posi-
tive signals, we observe that in reality the same page often
contains information about different attributes, rendering
co-click positive similarity inadequate for high quality syn-
onyms. For instance, page P1 in Figure 3 contains a variety
of attribute information for the same person. As a result,
not only are queries with attributes“dob”and“date of birth”
clicking on these pages, but also queries with attributes such
as “zodiac sign”. Since “zodiac sign” and “date of birth” also
share co-clicks they will generate non-trivial positive simi-
larity scores.

One approach to mitigate this effect is to identify these
overly-broad pages (e.g., Wikipedia page) and discard them.
Empirically we discard pages that are frequently clicked by
entity-only queries e ∈ E (e.g., “bill gates”), as well as pages
that are clicked by a significant fraction of distinct attributes
for the entity class. Such pages are likely to be overly generic
and unsuitable for positive score computation.

While this page-filtering approach alleviates the problem
of noisy signals from page co-click to some extent, it does
not fully address it. We introduce another set of negative
signals obtained from web tables to help synonym discovery.
Negative Similarity: We observe that a pair of true syn-
onyms will rarely co-occur as column names in the same web
table schema, since it would be useless to duplicate identi-
cal columns in a single table (e.g., “dob” and “date of birth”
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are unlikely to co-occur in the same table). Utilizing this
observation, we derive negative signals if attributes ai and
aj co-occur sufficiently frequently as column names in same
tables.

We use the standard point-wise mutual information (PMI)
to measure the strength of correlation. Let p(a) denote the
fraction of those tables containing a as a column name, and
p(ai, aj) be the fraction of tables containing both ai and
aj as column names. The PMI score between ai and aj is
defined as follows.

PMI(ai, aj) = log
p(ai, aj)

p(ai)p(aj)
(3)

A positive PMI score indicates that the co-occurrence is
more frequent than coincidence, which is a strong negative
evidence indicating that the two attributes are unlikely to
be synonyms. On the other hand, negative PMI score in
this case does not necessarily give much positive evidence
for synonymity. We thus use PMI as negative signal only
when it is positive, defined as follows.

NegSim(ai, aj) = min (−PMI(ai, aj), 0)

Combining positive and negative similarities: We use
both positive and negative similarity scores via a simple lin-
ear combination.

wij = βPosSim(ai, aj) + (1− β)NegSim(ai, aj) (4)

Here wij denotes the combined similarity score of attributes
ai and aj . A parameter β is used to weight the relative
importance of the two components. Empirically we use β =
0.5, which produces good quality results in our experiments
(Section 5).

With the combined similarity score, we can now com-
pletely model the relationship between attributes as a graph.

Definition 1. Attribute-similarity graph. We use a
graph G = (V,E) to model attribute similarity, where each
vertex vi ∈ V corresponds to an attribute ai, and each edge
eij ∈ E has a weight wij as defined in Equation (4) to rep-
resent the similarity between attributes ai and aj .

Example 2. Figure 4(a) shows an example of the attribute-
similarity graph computed for the entity class Person. Each
vertex corresponds to an attribute, and the edge represents
the combined similarity. We omit the exact edge weights in
the graph for simplicity, but use edges with red crosses to in-
dicate negative edges (the two attributes co-occur frequently
in same web tables), and solid edges for positive edges if
the two attributes have significant query log co-clicks. There
are no edges between attribute pairs if they have insignifi-
cant positive co-click similarity and insignificant web table
co-occurrence.

3.2 Holistic optimization for attribute synonyms
Edge-based synonyms vs. cluster-based synonyms.

Given the attribute-similarity graph, a natural approach is
to generate synonyms by finding pairs of attributes that
have high similarity scores. This is equivalent to edges in
the attribute-similarity graph, and we call this edge-based
synonyms.

In practice, however, this edge-based approach suffers due
to sparse and noisy web data. First, due to query log spar-
sity, certain synonymous attributes may not share enough

co-clicks. Attribute “dob” and “birth date” in Figure 4(a),
for instance, do not have enough co-clicks, and an edge-based
approach will miss out on such pairs. Furthermore, because
the log is often noisy, certain non-synonym attributes may
have high co-click similarity. For example, “birthday” has
high co-click similarity with “hometown” as in Figure 4(a)
(thus the edge between them). An edge-based approach will
mistake such pairs as synonyms.

The key problem here is that the edge-based approach
only looks at local edge information between a pair of at-
tributes at a time. We can in fact exploit a global property,
that attribute synonyms for a given entity class is generally
transitive, defined as follows.

Property 1. Synonyms are transitive, if both of the fol-
lowing two hold true for any distinct ai, aj , ak ∈ A:

(1) if ai is a synonym of aj, aj is a synonym of ak, then
ai and ak must be synonyms; and

(2) if ai is a synonym of aj, but aj is not a synonym of
ak, then ai and ak must not be synonyms.

We emphasize that transitivity does not hold in general for
other types of synonyms without a specific context. For ex-
ample, an ambiguous term like “mp” can have synonyms like
“military police”, “member of parliament”, or “mega-pixels”,
etc. Imposing transitivity would require all these expanded
forms to be synonyms, which is clearly not true. As such,
commercial entity-synonyms offerings like Bing Entity Syn-
onym API [1] do not assume transitivity and makes predic-
tions only on a per-pair basis, which is effectively edge-based
synonyms.

However, transitivity does hold in almost all cases for at-
tribute synonyms, mainly because the meaning of attributes
are unambiguous given the context of an entity class. For
example, for Camera, even short abbreviated attributes like
“mp” is unambiguously referring to “mega-pixels”.

Because of transitivity, we can actually produce cluster-
based synonyms, by grouping different synonyms of the same
attribute together into clusters. Exploiting this property
allows us to optimize globally across all attributes, instead
of making local decisions one pair at a time. This often leads
to better predictions, as shown in the example below.

Example 3. We revisit the example in Figure 4(a). Al-
though “dob” has low direct similarity with the input attribute
“birth date” (thus no edge between them), it does have high
similarity with “date of birth”, which in turn has high sim-
ilarity with attribute “birth date”. If we look at the graph
globally and enforce transitivity, we may predict “dob” and
“birth date” as synonyms despite their low co-click similarity
(thus mitigating data sparsity).

Similarly, even though “birthday” has co-clicks with “home-
town”, because we know “hometown” and “birthplace” are highly
likely to be synonyms, and “birthplace” and “birthday” are
highly unlikely to be synonyms (due to web table co-occurrence),
we may no longer predict ‘birthday” and “hometown” as syn-
onyms because of transitivity (thus mitigating noise in data).

Using cluster-based synonyms, we can produce clusters of
attributes as synonyms. For example using the attribute-
similarity graph in Figure 4(a), we can produce clusters like
the one in Figure 4(b). Note that although we would like
to produce clusters, standard clustering techniques are not
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suitable for this specific problem (Section 6 has more discus-
sions on this). We develop a holistic optimization problem
formulation for this task of attribute synonym discovery.

Holistic global optimization. Given that we want to
output clusters of attribute synonyms to exploit transitivity,
we can define our problem as follows.

Definition 2. (Attribute Cluster Discovery). Given
the attribute-similarity graph G = (V,E), we want to find
a disjoint partitioning of V , denoted as S = {S1, . . . , Sm},
such that each cluster contains the attribute synonyms of
a unique attribute, and no two clusters correspond to the
same attribute.

Given that there are many possible partitionings, we need
to determine which partitioning is more desirable by defining
the “quality” of clusters of attributes. A natural approach
is to use the sum of all edges weights inside the cluster. Let
g(S) be the sum-of-all-pair score defined as follows:

g(S) =
∑

vi,vj∈S,i6=j

wij (5)

We can then simply aggregate the sum of g(S) scores
across all clusters as our objective function, or

∑
Si∈S g(Si).

Intuitively, this quality score measures the overall similarity
of all attributes within a cluster. This is a suitable met-
ric, because given transitivity, a true synonym should have
some positive pairwise similarity with most attributes in the
same cluster. Thus including a synonym in the right cluster
will likely improve our quality metric, leading us to the right
cluster for attributes. On the other hand, incorrectly includ-
ing a non-synonym will introduce negative similarity with
most attributes in the cluster, reducing the quality score.
As a result, by maximizing this objective function we are
likely to find high quality synonym clusters.

Notice that by computing quality scores as sum-of-all-
pairs in clusters, we have implicitly factored in transitivity
as part of our objective function.

With this objective function, we can write the synonym
discovery problem as the following optimization problem:

(MAX-AP) max

m∑
i=1

g(Si) (6)

s.t. Si ∩ Sj = ∅,∀i 6= j (7)
m⋃
i=1

Si = V (8)

While this formulation is intuitive, there are two short-
comings. First, this is a fixed optimization problem can be
solved once to produce only one set of attribute clusters,
without offering the flexibility to tweak for a desired level
of precision and recall. In practice, we often need to trade-
off precision and recall depending on the requirement of an
application. The second is a technical reason that this par-
ticular formulation is difficult to optimize, as shown in the
following theorem using a reduction from Independent Set.

Theorem 1. The MAX-AP problem described above is
NP-hard. Furthermore, the cluster quality score cannot be
approximated within a factor of |V |1−ε for some fixed ε > 0,
unless P = NP .

With these considerations in mind, we slightly change
the formulation as follows. Instead of using the all-pair-
similarity g(S), we differentiate between positive edge scores
g+(S) and negative edge scores g−(S), namely

g+(S) =
∑

vi,vj∈S,i6=j,wij>0

wij (9)

g−(S) =
∑

vi,vj∈S,i6=j,wij<0

wij (10)

Intuitively, g+(S) and g−(S) represent the sum of all pos-
itive edge scores and all negative edge scores in a cluster S,
respectively, and they sum up to the original quality score
g+(S) + g−(S) = g(S). The score in g+(S) is similar to
our original quality score g(S) where a higher value is more
desirable; while g−(S) measures the sum of “undesirable”
edges inside S.

In principle, we would like to maximize g+(S) while mini-
mize g−(S), but these are conflicting goals. As clusters grow
in size, both g+(S) and g−(S) will monotonically increase.
A larger g+(S) typically means that more synonyms are cap-
tured, thus better recall. At the same time the precision is
likely to suffer as g−(S) increases. So we try to maximize
g+(S) while limiting g−(S) to some pre-determined level,
using the following formulation.

(MAX-CS) max

m∑
i=1

g+(Si) (11)

s.t.

m∑
i=1

g−(Si) ≤ t (12)

Si ∩ Sj = ∅, ∀i 6= j (13)
m⋃
i=1

Si = V (14)

Note that we use g+(S) as the new objective function and
g−(S) as a new constraint. This can be loosely interpreted
as we want to maximize recall, while controlling the loss
in precision to a certain limit. The parameter t used in
constraint (12) limits total g−(S), which essentially gives us
a “knob” to trade-off precision and recall.

We use the following example to illustrate MAX-CS.

Example 4. We revisit the example shown in Figure 4(a).
Assume for simplicity all positive (solid) edges are of weight
+1, and all negative (crossed) edges are of weight -1.

Let us first consider the case where our precision threshold
t has t = 0 in Equation (12). This ensures that no negative
edges can be ever included in any clusters produced. Given
that we need to maximize Equation (11), which sums all
intra-cluster positive edges, the best set of clusters possible
are depicted in Figure 4(b), namely, we have 5 attributes in
the “birth date” cluster (with a g+(Si) score of 6 since there
are 6 edges), 4 attributes in the “income” cluster (score 4),
3 in “birth place” (score 3), and two other singleton clusters,
“tax” and “zodiac sign”. It can be verified that this solution
has a score of 13 as defined in Equation (11), and is in fact
the optimal solution to MAX-CS with t = 0.

Suppose we change the threshold to t = 1 instead, which
allows us to include one negative edge inside a cluster. It
can be verified that the best solution is to merge the “birth
date” cluster with the “income” cluster (which will include
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one more intra-cluster edge between “birthday” and “birth
place” compared to the previous solution), to produce a total
score of 14 as defined in Equation (11). As can be seen
here, higher t tends to produce results with lower precision
(but with higher recall).

Although the MAX-CS formulation captures what we need,
this problem is also hard as shown in the following theorem.

Theorem 2. The MAX-CS optimization problem described
above is NP-hard.

In order to better solve this problem, we change the formu-
lation using standard metric embedding methods as follows.
We introduce a new set of binary variables, dij ∈ {0, 1}, to
represent the distance between any two vertices vi and vj
with i < j, and i, j ∈ [n], where distance 0 indicates that
vi and vj are in the same cluster, and 1 otherwise. We can
transform MAX-CS to the following problem MAX-ECS.

(MAX-ECS) max
∑
wij>0

(1− dij)wij (15)

s.t.
∑
wij<0

(1− dij)wij ≤ t (16)

dij + djk >= dik, ∀i < j < k (17)

dij ∈ {0, 1}, ∀i < j (18)

Note that using the change of variables described above,
the objective function in Equation (15) and the budget con-
straint in Equation (16) directly correspond to Equation (11)
and Equation (12) in MAX-CS, respectively. Furthermore,
the triangle inequality in Equation (17) ensures that for any
feasible solution to MAX-CS, we will have a corresponding
feasible solution to MAX-ECS, and the same is true also in
the other direction. This guarantees that MAX-ECS has the
same optimal solution as MAX-CS.

We can further define MIN-ECS as the loss minimization
version of MAX-ECS, by changing the objective function as
follows.

(MIN-ECS) min
∑
wij>0

dijwij (19)

s.t.
∑
wij<0

(1− dij)wij ≤ t (20)

dij + djk >= dik, ∀i < j < k (21)

dij ∈ {0, 1}, ∀i < j (22)

Using MIN-ECS, we can design an LP-based algorithm
with bi-criteria approximation guarantees. The algorithm
works as follows. We first replace the integral variables dij
with fractional variables dij , and replace the corresponding
integrality constraint in Equation (22) with fractional con-
straints dij ∈ [0, 1]. This gives us a linear program, which
we can solve optimally using standard LP-solvers in polyno-
mial time, and obtain optimal fractional solutions denoted
by d

∗
ij .

We then apply the classical region growing technique [7,

15, 16, 25] to round the resulting fractional solution d
∗
ij into

an integral solution without losing too much in quality. This
procedure is described in Algorithm 1.

In Algorithm 1, we start by solving the fractional MIN-
ECS for d

∗
ij . We then initialize the set of unassigned vertices

U as V . We iteratively pick a random vertex vi from U . Let

Algorithm 1 LP to approximate MIN-ECS

Region Grow (Attribute-similarity graph G = (V,E))
solve the LP of fractional MIN-ECS for G
initialize an unassigned set of vertices U = V
initialize result set B = ∅
while U 6= ∅ do

randomly pick vi ∈ U , r = 0
while cutwgt(b(i, r)) > cln(n+ 1)vol(b(i, r)) do

r = r + ∆r
end while
U = U \ b(i, r)
B = B ∪ b(i, r)

end while
return B as the set of vertex clusters

b(i, r) denotes the ball of radius r around vertex vi, which
is defined as the union of all vertices vj whose distance to vi
is within radius, or b(i, r) = {vj |vj ∈ U, dij <= r}. Let the
cut of a ball b be the set of positive edges with one endpoint
in b. The sum of weights of such cut edges is denoted as
cutwgt(b). Lastly, let the volume of a ball vol(b(i, r)) be
the sum of weighted distance of positive edges belonging to
the ball. For a positive edge with both endpoints vj and vk
in the ball, it contributes djkwjk to vol(b(i, r)). For an cut
edge (vj , vk) where dij < r, it contributes wjk(r − djk) to
vol(b(i, r)). In addition, an intial volume F

n
is included in

each ball, where F =
∑
vi,vj∈V wijdij .

For the randomly picked vertex vi, we use vi as the center
of a ball and iteratively increase the radius r, until cutwgt(b(i, r))
<= cln(n + 1)vol(b(i, r)), at which point we stop, remove
all vertices covered by b(i, r) from U , and add b(i, r) as a
newly created synonym cluster to our result set B. We iter-
ate with this ball-growing process until all vertices in U are
exhausted. Note that in the output B, synonym clusters for
all attributes have already been created naturally.

This approach has a ( 1
c
O(log(n)), c) bi-criteria approxi-

mation guarantee. This means that if f∗ is the optimal ob-
jective value of the loss-minimizing MIN-ECS given a budget
t as in Equation (20), then Algorithm 1 can find a solution
with an objective value no more than 1

c
O(log(n))f∗ while

violating the given budget t by at most a factor of c.

Theorem 3. Algorithm 1 is a ( 1
c
O(log(n)), c) bicriteria

approximation algorithm to MIN-ECS.

We prove this result using techniques similar to ones first
developed in [7, 25]. We omit details of the proof here due
to space limitations. A proof of this theorem can be found
in the full version of this paper.

4. ATTRIBUTE SYNONYM DISCOVERY WITH
ANCHORS

An interesting variant of the problem is to discover syn-
onyms for a few known attributes, with the knowledge that
these are distinct attributes (i.e., they are not synonyms
to each other). This corresponds to the natural scenario
of discovering synonyms for a given web table, or a given
knowledge base, where the user may only be interested in
finding synonyms for the attribute names present in that
table/knowledge-base. We call these given attributes an-

chors, and term this problem Attribute Synonym Discovery
with Anchors.

1435



Definition 3. (Attribute Cluster Discovery with An-
chors). Given the attribute-similarity graph G = (V,E),
and anchor attributes As = {a1, . . . , am} ∈ V for which
synonyms need to be discovered, compute a disjoint set of
attributes {S1, . . . , Sm} such that cluster Si contains all at-
tribute synonyms of ai, ∀i ∈ [m].

For conciseness, we will simply refer to this problem as the
anchored variant, and the problem discussed in Section 3 as
the general attribute-synonym problem when the context is
clear.

Example 5. Suppose there is a table with entities {Abra-
ham Lincoln, Barack Obama, Bill Gates}, and the set of col-
umn names is {date of birth, place of birth}, which are input
anchor attributes in our problem. The output only consists
of synonyms for these two anchor attributes and disregards
other attributes.

While this anchored problem variant is very similar to our
general attribute synonym problem in Section 3, there are
subtle differences that make this anchored variant different.

First, in the anchored variant, all attributes in the anchor
set As are known to be distinct attributes and cannot be syn-
onyms. This effectively introduces constraints to our prob-
lem, by forcing anchors into different clusters. Compared
to the general attribute-synonym problem, such constraints
can potentially allow us to produce clusters of higher quality
(e.g., in the general problem, an algorithm may confuse be-
tween “date of birth” and “place of birth” by thinking that
they are synonyms. This will not happen if they or their
synonyms are provided as anchors). The new constraints
induced by anchors, however, do make the problem more
difficult to solve in a technical sense.

Second, since the goal here is to only find synonyms for the
anchor set As, as opposed to all attributes in the universe,
the objective function will also change to reflect this focus,
which also provides opportunities of finding better synonyms
for a targeted attribute set.

4.1 Optimization formulation
We use the same attribute-similarity graph G = (V,E)

described before, and also use the positive similarity score
g+(S) (Equation (9)), and negative similarity score g−(S)
(Equation (10)) defined for a cluster as in the general at-
tribute synonym problem.

Given an anchor set As = {a1, . . . , am}, we can define the
anchored variant as the following optimization problem.

(MAX-ACS) max

m∑
i=1

g+(Si) (23)

s.t.

m∑
i=1

g−(Si) ≤ t (24)

ai ∈ Si, ∀i ∈ [m] (25)

Si ∩ Sj = ∅,∀i 6= j (26)

Si ⊂ V, ∀i (27)

In this anchored problem variant, we only care about syn-
onym clusters for anchor attributes, as reflected in the ob-
jective function. Notice that a new subset constraint in
Equation (27) replaces the partitioning constraint in Equa-
tion (14) used in the general problem MAX-CS.

The problem is unfortunately intractable and inapprox-
imable under reasonable complexity assumptions. Further-

Class Example Entities

building sears tower, space needle, . . .
disease bronchitis, diabetes, flu, . . .
organisation microsoft, oracle, google, . . .
person tom hanks, bill gates, . . .
country india, canada, mexico, . . .
celestial object mars, moon, jupiter, . . .
education institution stanford university, . . .
chemical compound glucose, gypsum, galena, . . .

Table 2: Input Classes and Example Entities

Class Cluster Example Output Attribute Synonyms

1 salary, annual income, pay, ...
2 height, how tall, how tall is, ...

person 3 contact, email address, how to contact, ...
4 race, nationality, what ethnicity is, ...
5 how rich is, worth, networth, ...
1 what are the symptoms, symptoms, sign, ...
2 how to cure, how do you treat, ...

disease 3 cause, how do you get, what causes, ...
4 prevention, how to prevent, ...
5 definition, what is, ...
1 phone no, what is the phone number, ...
2 ticker, symbol, stock symbol, ...

organisation 3 jobs, employment, ...
4 headquarters, hq, ...
5 contact, contact info, ...

Table 3: Example Output Synonym Clusters

more, we could not apply the rounding technique used in
MAX-CS and MAX-ECS for the general problem to the
MAX-ACS problem in a similar manner, because of the con-
straints induced by anchors require no two anchors be as-
signed to the same cluster, which makes the optimization
problem more difficult to solve.

In light of these, we propose the following method to op-
timize MAX-ACS. First, we assign each anchor to a cluster,
so that each cluster initially has only one vertex in it. Then
for each unassigned attributes, we check for each attribute-
cluster combination, to find the pair that provides the most
score gain in g+(S), without violating the budget t in g−(S).
After enumerating all such pairs, we assign the attribute
with the best score gain to the corresponding cluster. We
repeat this process until we cannot find an attribute to as-
sign without violating budget t. The resulting clusters are
output as synonyms. Due to space constraints, more dis-
cussion of this algorithm and its pseudo-code can be found
in the full version of this paper.

5. EXPERIMENTS

5.1 Experimental Setup
We evaluate our system using 8 different entity classes,

representing a diverse range of entities. These classes and
their sample entities are listed in Table 2. The sample en-
tities are obtained from Bing’s knowledge base, Satori [4],
which is an in-house knowledge base developed in Microsoft
that is conceptually similar to knowledge bases like Free-
base [8] or YAGO [22].

We discover attribute synonyms mainly leveraging query
logs and web tables. Specifically, we use two-years’ worth of
query logs from Bing, and 50 million web tables extracted
from a recent snapshot of Bing’s index [29] to compute sta-
tistical similarity scores.

5.2 Attributes Synonym Discovery Evaluation
In order to give readers some concrete ideas of synonyms

produced by our approach, in Table 3 we list top 5 clusters
produced by our Algorithm 1 for the attribute synonym dis-
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covery problem. As can be seen from the table, there are
many interesting synonyms discovered for a wide variety of
attributes, and many of them are in fact non-trivial (e.g.,
“salary”, “pay”, “annual income”, etc.).

To quantitatively evaluate the quality of result clusters
produced, we need to manually label synonyms produced
as either true synonyms or false positives. Since some en-
tity classes have hundreds of attribute clusters, manually
labeling them exhaustively are very expensive. For this ex-
periment we manually label the top 5 output clusters that
have the highest number of attributes for each class tested.
This results in a total of 1356 synonym pairs labeled across
all entity classes tested.

For each synonym cluster, we compute the precision p, as
# true synonyms in cluster
# total attributes in cluster

, and report an average precision over
that of all produced clusters. We also report recall using the
average number of true synonyms in these clusters, instead
of the standard relative recall, since in some cases we could
not be sure that all possible synonyms of an attribute have
been exhaustively enumerated.

We compare the following methods for attribute synonyms.
• HolisticOpt (Holistic optimization): This method
uses our holistic optimization formulation MAX-CS, and ex-
ecutes our linear-program based algorithm (Algorithm 1),
which has bi-criteria approximation guarantees for loss min-
imization. We use the Enterprise version of Microsoft Solver
Foundation 3.1 [3] to solve the associated LP.
• T-Link (QL+WT) (Thresholding with link-based
clustering, using query logs and web tables): This cor-
responds to an approach that uses query logs and web tables
to build attribute-similarity graph in the exact same way as
HolisticOpt. However, instead of using our optimization for-
mulation, this approach simply uses thresholds to determine
what attribute pairs (edges) are synonyms, and then apply
transitivity using link-based clustering (single-link in this
case) to determine synonym clusters. Since it operates on
the exact same graph as HolisticOpt, the comparison with
HolisticOpt will reveal the usefulness of Algorithm 1.
• T-Link (QL only) (Thresholding with link-based
clustering, using query logs only): This is the same as
T-Link (QL+WT), except that instead of using both query
logs and web tables to build attribute-similarity graph, this
approach uses only the query logs. So comparing this with
T-Link (QL only) will shed some light on the usefulness of
the negative signals derived from web tables.
•Thesaurus (Thesaurus-based Lookup): Given a ground
truth cluster of attribute synonyms, we look up synonyms
in Wiktionary [5] for each attribute in the cluster. We then
apply transitivity (single-link) to all pairs so discovered to
produce result clusters.
• ACSDb [9] (WebTable-based Synonym Finder): In
the context of the pioneering work on harvesting web ta-
bles [9], the authors discussed an interesting approach that
uses context attributes for synonym finding. While attribute
synonyms is not the focus of [9], this approach is nevertheless
relevant and we implemented the algorithm using 50 million
web tables extracted from a part of Bing’s index.

In order to study the precision and recall trade-off, we vary
different parameters used by these algorithms and evaluate
cluster quality (e.g., we vary precision threshold t for Holis-
ticOpt and edge-score threshold for T-Link).

The precision-recall results of all methods are shown in
Figure 5. As we can see, the proposed HolisticOpt approach
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Figure 5: Results for general attribute synonyms

clearly outperforms all alternatives. On average, it discov-
ers over 5 synonyms per cluster for top clusters with high
precisions.

T-Link (QL+WT) has the second best performance, but
clearly lags behind HolisticOpt. Recall that it works on
the exact same graph as HolisticOpt, this demonstrates the
effectiveness of our proposed algorithm, that not only has
approximation guarantess, but also good empirical perfor-
mance. T-Link (QL only) performs significantly worse com-
pared to T-Link (QL+WT), showing that the negative sig-
nals from web tables are actually very useful since the query
click logs are often quite noisy.

The Thesaurus approach is shown as a dot on the top-left
corner of Figure 5. On average it only recovers 0.75 synonym
per cluster but does have very high precision. This is ex-
pected, as it is a manually curated approach that is unlikely
to have false-positives. However, because Thesaurus uses
general dictionary without considering the specific context
of the class of entities, it fails to return synonyms specific to
the entity class. For instance, it does not output “etiology”
for attribute “cause” in the “disease” class. This shows the
recall limitation of a static dictionary-based approach.

The performance of ACSDb is not very satisfactory for
the cases we tested. Our observation is that its main pos-
itive signals derived from table context attributes (if both
attributes a and b co-occur with c often then they are likely
synonyms) are often not a positive evidence reliable enough
for synonymity. The query co-clicks signals we use appear
to be more robust, and our global optimization formulation
also helps to improve performance.

Class Precision Average # Synonyms

building 0.967 3.4
disease 1 4.2

organisation 0.942 6
person 0.88 5.6
country 0.93 7.56

celestial object 0.9 4.2
education institution 0.835 4.8
chemical compound 0.96 6.2

Table 4: Quality of Top 5 Clusters

We now drill down to results for each class tested. Table 4
shows average precision and recall across the top 5 clusters
for each class. As we can see, precision is consistently high
across all cases, and a good number of synonyms are gener-
ated per cluster in all the cases (typically 4-6). This shows
that our proposed approach is effective for different classes
of entities.

5.3 Attribute Synonym with Anchors
We also experimentally evaluate our approach discussed

in Section 4 for the anchored problem variant.
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Class Anchors Example Output Attribute Synonyms

date of birth birth date, birthdate, dob, birthday
person income earnings, annual salary, pay

profession job, career
cause how do you get, etiology, what causes

disease symptoms sign, what are the signs
treatment how to treat, how to cure, therapy

ticker stock symbol, what is the symbol
organization ceo leadership, president

headquarters hq, location, head quarters

Table 5: Example Anchors and Synonym Output
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Figure 6: Results for attribute synonyms with anchors

For this anchored variant, we randomly select 3 common
attributes from each entity class as given anchor attributes,
and label other predicted synonyms as true synonyms or
not. Sample input anchors and output synonyms are shown
in column 2 and column 3 of Table 5, respectively.

We also compare our approach HolisticOpt, with alter-
natives including T-Link (QL+WT), T-Link (QL only),
Thesaurus, and ACSDb.

Figure 6 shows the precision/recall results when varying
parameters. HolisticOpt again has the best performance,
and the general trend observed in this graph is consistent
with that observed in Figure 5. We note that the per-
formance gap between HolisticOpt and T-Link based ap-
proach narrows. This is partly because when evaluating
precision/recall relative to a given attribute, the evaluation
becomes local, such that using local information is almost
as good as global optimization, partially erasing the benefit
of our holistic optimization formulation.

6. RELATED WORKS
While there are no research efforts exclusively focusing on

the problem of attribute synonyms, a number of prior works
discuss intuitive methods for finding attribute synonym in
the context of other problems. For example, Cafarella et al.
propose the novel idea of using web table schemas to com-
pute attribute synonyms [9]. Their approach is based on the
observation that (i) synonymous attributes are unlikely to
appear together in the same schema (ii) synonyms are likely
to co-occur with the same context attributes with similar
frequencies. Our experiments show that in some cases this
technique has low precision. We believe this is mainly be-
cause the context-based positive signal (i.e., (ii) above) is of-
ten inadequate, because many non-synonyms also co-occur
with same attributes. For example, we find “gender” and
“date of birth” co-occur with a similar set of attributes (e.g.,
“name”, “country”, “zodiac sign”), yet the two attributes al-
most never co-occurs in the same schema; hence, this tech-
nique outputs “gender” and “date of birth” as synonyms. In
comparison, our query-click-based approach uses more reli-
able positive signals and a global optimization formulation
that produces high-quality synonyms.

Biperpedia [17] studies the important problem of large-
scale attribute name extraction. The authors touch upon
the related issue of attribute synonyms and discuss a sim-
ple supervised approach, but state that the topic warrants
in-depth studies. Their supervised approach uses as the
main ingredient a query-expansion-related feature (the set
of related queries suggested). The main differences of their
method and our method are two-fold. First, their approach
is a supervised ML approach that requires expensive man-
ual labeling, whereas our approach is unsupervised that does
not require labels. Second, the query-expansion feature used
is in fact often derived from query co-clicks [13], thus simi-
lar to our query log based positive signals. Our experiments
show that query-log alone is often inadequate, combining
query-logs, web tables and transitivity in a principled global
optimization achieves the best performance.

The related problem of discovering entity synonyms has
been extensively studied, e.g., [10, 11, 12, 19, 24], where
techniques such as documents co-occurrence [24], document
contexts similarity [19], and query co-click [10, 12] are used.
It is not straightforward to apply these techniques to at-
tribute synonyms. For example, users typically do not issue
attribute-only queries, and techniques in [10, 12] are thus
not directly applicable.

Dicitionary look-up (e.g., Wiktionary [5] or Merriam-Webster
[2]) is a valid approach for attribute synonyms. For exam-
ple, Wiktionary lists “dob” and “birth date” as synonyms
of “data of birth”. However, attribute synonyms are often
specific to an entity class. For example, “etiology”, “cause”
and “what triggers” are synonyms only for the class medical
conditions. A thesaurus lookup is static and does not adapt
to the context, and is thus insufficient.

There is also a long line of work on the important problem
of attributes name extraction [6, 14, 17, 20, 21, 27], where
techniques used include linguistic pattern (“what is the a of
e”?) and query patterns (“the a of e”), etc. The attribute
names generated by these approaches can be used as input
by our attribute synonym discovery (we in fact use a vari-
ant of these techniques), and is thus complementary to the
problem studied here.

Although in our problem of synonym discovery, we need to
produce clusters as output, standard clustering techniques
such as single-link, average-link, correlation clustering, etc.,
are not suitable. For example, single-link enforces transi-
tivity blindly without carefully optimizing for pair compat-
ibility, which results in poor performance as shown in our
experiments. Correlation clustering is also not suitable for
this specific application, because its formulation does not of-
fer flexible tradeoff of precision and recall, and its objective
function mixes precision and recall qualities, making holistic
optimization difficult.

7. CONCLUSION
In this paper, we study the problem of automatic dis-

covery of attribute synonyms. We present a novel solution
that leverages the power of query click logs and millions of
web tables, and optimizes synonym decisions globally, with
approximation guarantees. Our experiments show that our
approach is significantly better than alternative methods.

Our work can be extended in multiple directions. We only
leverage web table schema information in this work; utilizing
column values may present intersting opportunites. Evalu-
ating the impact of attribute synonyms on search quality is
another useful item for future work.
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