Building global and scalable systems with
Atomic Multicast

Parisa Jalili Marandi
University of Lugano
Switzerland

Samuel Benz
University of Lugano
Switzerland

ABSTRACT

The rise of worldwide Internet-scale services demands large
distributed systems. Indeed, when handling several millions
of users, it is common to operate thousands of servers spread
across the globe. Here, replication plays a central role, as it
contributes to improve the user experience by hiding failures
and by providing acceptable latency. In this paper, we claim
that atomic multicast, with strong and well-defined proper-
ties, is the appropriate abstraction to efficiently design and
implement globally scalable distributed systems. We sub-
stantiate our claim with the design of two modern online
services atop atomic multicast, a strongly consistent key-
value store and a distributed log. In addition to presenting
the design of these services, we experimentally assess their
performance in a geographically distributed deployment.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Fault tolerance; D.4.7

[Operating Systems]: Organization and Design— Distributed

Systems

1. INTRODUCTION

In little less that two decades, we have witnessed the ex-
plosion of worldwide online services (e.g., search engines,
e-commerce, social networks). These systems typically run
on some cloud infrastructure, hosted by datacenters placed
around the world. Moreover, when handling millions of users
located everywhere on the planet, it is common for these
services to operate thousands of servers scattered across the
globe. A major challenge for such services is to remain avail-
able and responsive in spite of server failures and an ever-
increasing user base. Replication plays a key role here, by
making it possible to hide failures and to provide acceptable
response time.

While replication can potentially lead to highly scalable
and available systems, it poses additional challenges. In-
deed, keeping multiple replicas consistent is a problem that
has puzzled system designers for many decades. Although
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

Middleware ’14, December 08 - 12 2014, Bordeaux, France
Copyright 2014 ACM 978-1-4503-2785-5/14/12. .. $15.00.
http://dx.doi.org/10.1145/2578726.2578744.

169

Benoit Garbinato
University of Lausanne
Switzerland

Fernando Pedone
University of Lugano
Switzerland

much progress has been made in the design of consistent
replicated systems [16], novel application requirements and
environment conditions (e.g., very large user base, geograph-
ical distribution) continue to defy designers. Some propos-
als have responded to these “new challenges” by weakening
the consistency guarantees offered by services. Weak consis-
tency is a natural way to handle the complexity of building
scalable systems, but it places the burden on the service
users, who must cope with non-intuitive service behavior.
Dynamo [21], for instance, overcomes the implications of
eventual consistency by letting the users decide about the
correct interpretation of the returned data. While weak con-
sistency is applicable in some cases, it can be hardly gener-
alized, which helps explain why we observe a recent trend
back to strong consistency (e.g., [2, 7, 133, 53]).

Strong consistency entails ordering requests across the
system. Different strategies have been proposed to order re-
quests in a distributed system, which can be divided into two
broad categories: those that impose a total order on requests
and those that partially order requests. Many distributed
systems today ensure some level of strong consistency by
totally ordering requests using the Paxos algorithm [37], or
a variation thereof. For example, Chubby [13] is a Paxos-
based distributed locking service at the heart of the Google
File System (GFS); Ceph [54] is a distributed file system
that relies on Paxos to provide a consistent cluster map to
all participants; and Zookeeper [32] turns a Paxos-like total
order protocol into an easy-to-use interface to support group
messaging and distributed locking.

In order to scale, services typically partition their state
and strive to only order requests that depend on each other,
imposing a partial order on requests. Sinfonia [2| and S-
DUR [20], for example, build a partial order by using a
two-phase commit-like protocol to guarantee that requests
spanning common partitions are processed in the same or-
der at each partition. Spanner [33] orders requests within
partitions using Paxos and across partitions using a protocol
that computes a request’s final timestamp from temporary
timestamps proposed by the involved partitions. In this pa-
per, we contend that instead of building a partial order on
requests using an ad-hoc protocol intertwined with the ap-
plication code, services have much to gain from relying on a
middleware to partially order requests, analogously to how
some libraries provide total order as a service (e.g., [4]).

Reliably delivering requests in total and partial order has
been encapsulated by atomic broadcast and atomic multi-
cast, respectively [30]. In this paper, we extend Multi-Ring
Paxos, a scalable atomic multicast protocol introduced in

[42], to (a) cope with large-scale environments and to (b) al-
low services to recover from a wide range of failures (e.g., the
failures of all replicas). Addressing these aspects required a
redesign of Multi-Ring Paxos and a brand-new library im-
plementation: Some large-scale environments (e.g., public
datacenters, wide-area networks) do not allow network-level
optimizations (e.g., IP-multicast [42]) that can significantly
boost bandwidth. Recovering from failures in Multi-Ring
Paxos is challenging because it must account for the fact
that replicas may not all have the same state. Thus, a replica
cannot recover by installing any other replica’s image.

We developed two services based on Multi-Ring Paxos:
MRP-Store, a key-value store, and dLog, a distributed log.
These services are at the core of many internet-scale applica-
tions. In both cases, we show in the paper that the challenge
of designing and implementing highly available and scalable
services can be significantly simplified if these services rely
on atomic multicast. Our performance evaluation assesses
the behavior of Multi-Ring Paxos under various conditions
and shows that MRP-Store and dLog can scale in differ-
ent scenarios. We also illustrate the behavior of MRP-Store
when servers recover from failures.

This paper makes the following contributions. First, we
propose an atomic multicast protocol capable of supporting
at the same time scalability and strong consistency in the
context of large-scale online services. Intuitively, Multi-Ring
Paxos composes multiple instances of Ring Paxos to provide
efficient message ordering. The Multi-Ring Paxos protocol
we describe in the paper does not rely on network-level op-
timizations (e.g., IP-multicast) and allow services to recover
from a wide range of failures. Second, we show how to design
two services, MRP-Store and dLog, atop Multi-Ring Paxos
and demonstrate the advantages of our proposed approach.
Third, we detail the implementation of Multi-Ring Paxos,
MRP-Store, and dLog. Finally, we provide a performance
assessment of all these components.

The remainder of this paper is structured as follows. Sec-
tion [2] describes our system model and assumptions. Sec-
tion[3explains why system designers must care about atomic
multicast as a middleware service. Sections |Z| and |5| present
the design of Multi-Ring Paxos and its recovery protocol.
Section |§| discusses the two services we designed and Sec-
tion [7] explains how they were implemented. Section [8] as-
sesses the performance of the components. Section [J] evalu-
ates the work and Section [10| concludes this paper.

2. SYSTEM MODEL

We assume a distributed system composed of a set II =
{p1,p2,...} of interconnected processes that communicate
through the primitives send(p,m) and receive(m), where
m is a message and p is a process. Processes may fail by
crashing and subsequently recover, but do not experience
arbitrary behavior (i.e., no Byzantine failures). Processes
are either correct or faulty. A correct process is eventually
operational “forever” and can reliably exchange messages
with other correct processes. In practice, “forever” means
long enough for processes to make some progress (e.g., ter-
minate one instance of consensus). Our protocols ensure
safety under both asynchronous and synchronous execution
periods. To ensure liveness, we assume the system is par-
tially synchronous |23|: it is initially asynchronous and even-
tually becomes synchronous. The time when the system
becomes synchronous, called the Global Stabilization Time

170

(GST) 23], is unknown to the processes. Before GST, there
are no bounds on the time it takes for messages to be trans-
mitted and actions to be executed. After GST, such bounds
exist but are unknown.

Atomic multicast is a communication abstraction defined
by the primitives multicast(y,m) and deliver(m), where m
is a message and < is a multicast group. Processes choose
from which multicast groups they wish to deliver messages.
If process p chooses to deliver messages multicast to group
v, we say that p subscribes to group ~. Let relation < be
defined such that m < m’ iff there is a process that delivers
m before m’. Atomic multicast ensures that (i) if a process
delivers m, then all correct processes that subscribe to
deliver m (agreement); (ii) if a correct process p multicast
m to v then all correct processes that subscribe to v deliver
m (validity); and (iii) relation < is acyclic (order). The order
property implies that if processes p and ¢ deliver messages
m and m’, then they deliver them in the same order. Atomic
broadcast is a special case of atomic multicast where there
is a single group to which all processes subscribe.

3. WHY ATOMIC MULTICAST

Two key requirements for current online services are (1) the
immunity to a wide range of failures and (2) the ability to
serve an increasing number of user requests. The first re-
quirement is usually fulfilled through replication within and
across datacenters, possibly located in different geographi-
cal areas. The second requirement is satisfied through scal-
ability, which can be “horizontal” or “vertical.” Horizontal
scalability (often simply scalability) consists in adding more
servers to cope with load increases, whereas vertical scal-
ability consists in adding more resources (e.g., processors,
disks) to a single server. Horizontal scalability boils down
to partitioning the state of the replicated service and assign-
ing partitions (i.e., so-called shards) to the aforementioned
geographically distributed servers.

Consistency vs. scalability. The partition-and-replicate
approach raises a challenging concern: How to preserve ser-
vice consistency in the presence of requests spanning mul-
tiple partitions, each partition located in a separate data
center, in particular when failures occur? When addressing
this issue, middleware solutions basically differ in how they
prioritize consistency wvs. scalability, depending on the se-
mantics requirements of the end-user services they support.
That is, while some services choose to relax consistency in
favor of scalability and low latency, others choose to tolerate
higher latency, possibly sacrificing availability (or at least its
perception by end-users), in the interest of service integrity.

Prioritizing scalability. @ TAO, Facebook’s distributed
data store [12], is an example of a middleware solution that
prioritizes scalability over consistency: with TAO, strong
consistency is ensured within partitions and a form of even-
tual consistency is implemented across partitions. This im-
plies that concurrent requests accessing multiple partitions
may lead to inconsistencies in Facebook’s social graph. To
lower potential conflicts, data access patterns can be consid-
ered when partitioning data (e.g., entries often accessed to-
gether can be located in the same partition). Unfortunately,
such optimizations are only possible if knowledge about data
usage is known a priori, which is often not the case.

Some middleware solutions, such as S-DUR [20] and Sin-
fonia (2], rely on two-phase commit [8] to provide strong

consistency across partitions. Scatter |28| on the other hand
prohibits cross-partition requests and uses a two-phase com-
mit protocol to merge commonly accessed data into the same
partition. A common issue with storage systems that rely
on atomic commitment is that requests spanning multiple
partitions (e.g., cross-partition transactions) are not totally
ordered and can thus invalidate each other, leading to mul-
tiple aborts. For example, assume objects x and y in parti-
tions p, and py, respectively, and two transactions 71 and
T5 where Th reads z and updates the value of y, and T3
reads y and updates the value of x. If not ordered, both
transactions will have to abort to ensure strong consistency
(i.e., serializability).

Prioritizing consistency. When it comes to prioritiz-
ing consistency, some proposals totally order requests be-
fore their execution, as in state-machine replication [51], or
execute requests first and then totally order the validation
of their execution, as in deferred update replication [46].
(With state-machine replication requests typically execute
sequentiallyﬂ with deferred update replication requests can
execute concurrently.) Coming back to our example of con-
flicting transactions 771 and 7%, while approaches based on
two-phase commit lead both transactions to abort, with de-
ferred update replication only one transaction aborts [45],
and with state-machine replication both transactions com-
mit. Many other solutions based on total order exist, such
as Spanner [33] and Calvin [53].

The Isis toolkit |[10] and later Transis 5] pioneered the use
of totally ordered group communication at the middleware
level. With Isis, total order was enforced at two levels: first,
a consistent sequence of views listing the replicas considered
alive was atomically delivered to each replica; then, messages
could be totally ordered within each view, using an atomic
broadcast primitive. In the same vein, many middleware
solutions rely on atomic broadcast as basic communication
primitive to guarantee total order.

The best of both worlds. We argue that atomic multi-
cast is the right communication abstraction when it comes
to combining consistency and scalability. Indeed, atomic
broadcast implies that all replicas are in the same group
and must thus receive each and every request, regardless
its actual content, which makes atomic broadcast an ineffi-
cient communication primitive when data is partitioned and
possibly spread across datacenters. With atomic multicast,
on the contrary, each request is only sent to the replicas
involved in the request, which is more efficient when data
is partitioned and possibly distributed across datacenters.
Compared to solutions that rely on atomic broadcast to en-
sure consistency within each partition and an ad hoc pro-
tocol to handle cross-partition requests, atomic multicast is
more advantageous in that requests are ordered both within
and across partitions.

Not only do we advocate atomic multicast as basic com-
munication primitive to build middleware services, we also
believe that the traditional group addressing semantics should
be replaced with one that better fits the context of large-
scale Internet services. With traditional atomic multicast
primitives (e.g., [22} |29} |48, |49} [50]), a client can address
multiple non-intersecting groups of servers, where each server

1Some proposals exploit application semantics to allow con-
current execution of commands in state-machine replication

(e.g., [34, 35| [40] [41]).

171

can only belong to a single group. Rather, we argue that
clients should address one group per multicast and each
server should be able to subscribe to any group it is in-
terested in, i.e., any replication group corresponding to the
shards the server is currently replicating, similarly to what
IP multicast supports. As we shall see in Section @, this
somehow “inverted” group addressing semantics allows us to
implement a scalable atomic multicast protocol.

Atomic Multicast and the CAP theorem [27]. Atomic
multicast ensures consistency, in the form of a well-defined
order property, is partition-tolerant, in the sense that par-
titions may happen, but violates availability: A ring is only
available if a majority of acceptors remains in the same par-
tition and can communicate. A learner will be available as
long as all the rings it subscribes to remain available.

Recovering from failures. The ability to safely recover
after a failure is an essential aspect of the failure immunity
requirement on large-scale middleware services. Further-
more, fast crash recovery is of practical importance when in-
memory data structures are used to significantly decrease la-
tency. Yet similarly to what is done to ensure cross-partition
consistency, existing middleware solutions tend to deal with
recovery issues in an ad hoc manner, directly at the service
level, rather than factor out the solution to recovery issues in
the underlying communication layer. A different approach
consists in relying on atomic multicast to orchestrate check-
pointing and coordinate checkpoints with the trimming of
the logs used by the ordering protocol. This is particularly
important in the context of atomic multicast since recovery
in partitioned systems is considerably more complex than
recovery in single partition systems (see Section .

Architecture overview. Figurepresents an overview of
our middleware solution based on atomic multicast, imple-
mented by Multi-Ring Paxos. Online services can build on
atomic multicast’s ordering and recovery properties, as de-
scribed in the next two sections. As suggested by this figure,
atomic multicast naturally supports state partitioning, an
important characteristic of scalable services, and no ad hoc
protocol is needed to handle coordination among partitions.

[Key-Value Store Service] [Distributed Log Service]

Atomic Multicast
(Multi-Ring Paxos)

(Ring Paxos)

‘ Atomic Broadcast

Network)

Figure 1: Architecture overview.

4. MULTI-RING PAXOS

Intuitively, Multi-Ring Paxos turns an atomic broadcast
protocol based on Ring Paxos into an atomic multicast pro-
tocol. That is, Multi-Ring Paxos is implemented as a collec-
tion of coordinated Ring Paxos instances, or rings for short,
such that a distinct multicast group is assigned to each ring.
Each ring in turn relies on a sequence of consensus instances,

implemented as an optimized version of Paxos.

Multi-Ring Paxos was introduced in [42]. In this section,
we recall how Multi-Ring Paxos works and describe a vari-
ation of Ring Paxos that does not rely on network-level op-
timizations (e.g., IP-multicast) to achieve high throughput.
In the next section, we introduce Multi-Ring Paxos’s recov-
ery.

Ring Paxos. Similarly to Paxos, Ring Paxos [43] dif-
ferentiates processes as proposers, acceptors, and learners,
where one of the acceptors is elected as the coordinator. All
processes in Ring Paxos communicate through a unidirec-
tional ring overlay, as illustrated in Figure [2| (a). Using a
ring topology for communication enables a balanced use of
networking resources and results in high performance.
Figure [2 (b) illustrates the operations of an optimized
Paxos, where Phase 1 is pre-executed for a collection of in-
stances. When a proposer proposes a value (i.e., the value is
atomically broadcast), the value circulates along the ring un-
til it reaches the coordinator. The coordinator proposes the
value in a Phase 2A message and forwards it to its successor
in the ring together with its own vote, that is, a Phase 2B
message. If an acceptor receives a Phase 2A /2B message and
agrees to vote for the proposed value, the acceptor updates
Phase 2B with its vote and sends the modified Phase 2A /2B
message to the next process in the ring. If a non-acceptor
receives a Phase 2A /2B message, it simply forwards the mes-
sage as is to its successor. When the last acceptor in the ring
receives a majority of votes for a value in a Phase 2B mes-
sage, it replaces the Phase 2B message by a decision message
and forwards the outcome to its successor. Values and de-
cisions stop circulating in the ring when all processes in the
ring have received them. A process learns a value once it
receives the value and the decision that the value can be
learned (i.e., the value is then delivered). To optimize net-
work and CPU usage, different types of messages for several
consensus instances (e.g., decision, Phase 2A/2B) are often
grouped into bigger packets before being forwarded. Ring
Paxos is oblivious to the relative position of processes in
the ring. Ring configuration and coordinator’s election are
handled with a coordination system, such as Zookeeper.

Multi-Ring Paxos. With Multi-Ring Paxos, each Learner
can subscribe to as many rings as it wants and participates
in coordinating multiple instances of Ring Paxos for those
rings. In Figure (c), we picture a deployment of Multi-Ring
Paxos with two rings and three learners, where learners L1
and L2 subscribe to rings 1 and 2, and learner L3 subscribes
only to ring 2. The coordination between groups relies on
two techniques, deterministic merge and rate leveling, con-
trolled with three parameters: M, A, and A.

Initially, a proposer multicasts a value to group v by
proposing the value to the coordinator responsible for -.
Then, Learners use a deterministic merge strategy to guar-
antee atomic multicast’s ordered delivery property: Learners
deliver messages from rings they subscribe to in round-robin,
following the order given by the ring identifier. More pre-
cisely, a learner delivers messages decided in M consensus
instances from the first ring, then delivers messages decided
in M consensus instances from the second ring, and so on
and then starts again with the next M consensus instances
from the first ring.

Since multicast groups may not be subject to the same
load, with the deterministic merge strategy described above,

172

replicas would deliver messages at the speed of the slow-
est multicast group, i.e., the group taking the longest time
to complete M consensus instances. To counter the effects
of unbalanced load, Multi-Ring Paxos uses a rate leveling
strategy whereby the coordinators of slow rings periodically
propose to skip consensus instances. That is, at regular A
intervals, a coordinator compares the number of messages
proposed in the interval with the maximum expected rate A
for the group and proposes enough skip instances to reach
the maximum rate. To skip an instance, the coordinator pro-
poses null values in Phase 2A messages. For performance,
the coordinator can propose to skip several consensus in-
stances in a single message.

S. RECOVERY

For a middleware relying on Multi-Ring Paxos to be com-
plete and usable, processes must be able to recover from
failures. More precisely, recovery should allow processes
to (a) restart their execution after failures and (b) limit
the amount of information needed for restart. Multi-Ring
Paxos’s recovery builds on Ring Paxos’s recovery. In the
following, we first describe recovery in Ring Paxos (Sec-
tion and then detail the subtleties involving recovery
in Multi-Ring Paxos (Section [5.2)).

5.1 Recovery in Ring Paxos

The mechanism used by a process to recover from a fail-
ure in Ring Paxos depends on the role played by the process.
In a typical deployment of Ring Paxos (e.g., state-machine
replication [36| [51]), clients propose commands and replicas
deliver and execute those commands in the same total order
before responding to the clients. In this case, clients act as
proposers and replicas as learners, while acceptors ensure
ordered delivery of messages. In the following, we focus the
discussion on the recovery of acceptors and replicas. Recov-
ering clients is comparatively an easier task.

Acceptor Recovery. Acceptors need information related
to past consensus instances in order to serve retransmission
requests from recovering replicas. So, before responding to a
coordinator’s request with a Phase 1B or Phase 2B message,
an acceptor must log its response onto stable storage. This
ensures that upon recovering from a failure, the acceptor can
retrieve data related to consensus instances it participated
in before the failure. In principle, an acceptor must keep
data for every consensus instance in which it participated.
In practice, it can coordinate with replicas to trim its log,
that is, to delete data about old consensus instances.

Replica Recovery. When a replica resumes execution
after a failure, it must build a state that is consistent with
the state of the replicas that did not crash. For this reason,
each replica periodically checkpoints its state onto stable
storage. Then, upon resuming from a failure, the replica
can read and install its last stored checkpoint and contact
the acceptors to recover the commands missing from this
checkpoint, i.e., the commands executed after the replica’s
last checkpoint.

Optimizations. The above recovery procedure is opti-
mized as follows. If the last checkpointed state of a recov-
ering replica is “too old”ﬂ the replica builds an updated

2That is, it would require the processing of too many missing

(Coord.) (Coord.)
Py T T >
Proposal TDecision
A >
(Coord.) Phase2A,2B pggigion Decision
Phase 2A,2B /
Decision
L1 >

@

(b)

Figure 2: (a) The various process roles in Ring Paxos disposed in one logical ring; (b) an execution of a single
instance of Ring Paxos; and (c) a configuration of Multi-Ring Paxos involving two rings (learners L, and Lo
deliver messages from Rings 1 and 2, and leaner L3 delivers messages from Ring 2 only).

state by retrieving the latest checkpoint from an operational
replica. This optimization reduces the number of commands
that must be recovered from the acceptors, at the cost of
transferring the complete state from a remote replica.

5.2 Recovery in Multi-Ring Paxos

Recovery in Multi-Ring Paxos is more elaborate than in
Ring Paxos. This happens because in Multi-Ring Paxos
replicas may deliver messages from different multicast groups
and thus evolve through different sequences of states. We
call the set of replicas that deliver messages from the same
set of multicast groups a partition. Replicas in the same par-
tition evolve through the same sequence of states. Therefore,
in Multi-Ring Paxos, a recovering replica can only recover a
remote checkpoint, to build an updated state, from another
replica in the same partition.

As in Ring Paxos, replicas periodically checkpoint their
state. Because a replica p’s state may depend on commands
delivered from multiple multicast groups, however, p’s check-
point in Multi-Ring Paxos is identified by a tuple k, of con-
sensus instances, with one entry in the tuple per multicast
group. A checkpoint identified by tuple k, reflects com-
mands decided in consensus instances up to k[x],, for each
multicast group x that p subscribed to. Since entries in k,
are ordered by group identifier and replicas deliver messages
from groups they subscribe to in round-robin, in the order
given by the group identifier, predicate [[holds for any state
checkpointed by replica p involving multicast groups « and
E

<y = klz]p, > klylp

(1)
Note that Predicate [I establishes a total order on check-
points taken by replicas in the same partition.

Periodically, the coordinator of a multicast group x asks
replicas that subscribe to x for the highest consensus in-
stance that acceptors in the corresponding ring can use to
safely trim their log. Every replica p replies with its highest
safe instance k[z], to the coordinator, reflecting the fact that
the replica has checkpointed a state containing the effects of
commands decided up to instance k[z],. The coordinator
waits for a quorum Qr of answers from the replicas, com-
putes the lowest instance number K[z]r out of the values
received in @7 and sends K[z]r to all acceptors. That is,

commands in order to build an up-to-date consistent state.

173

we have that the following predicate holds for K[z]r:

Vp € Qr : K[z]r < klz], 2)
Upon receiving the coordinator’s message, each acceptor can
then trim its log, removing data about all consensus in-
stances up to instance Klz]r.

A recovering replica contacts replicas in the same parti-
tion and waits for responses from a recovery quorum Qg.
Each replica ¢ responds with the identifier kq of its most
up-to-date checkpoint, containing commands up to consen-
sus instances in k4. The recovering replica selects the replica
with the most up-to-date checkpoint available in Qr, iden-
tified by tuple Kr such that:

Vg€ Qr:ke < Kr (3)
If Qr and Qr intersect, then by choosing the most up-
to-date checkpoint in Qg, identified by Kg, the recovering
replica can retrieve any consensus instances missing in the
selected checkpoint since such instances have not been re-
moved by the acceptors yet.

Indeed, since Q1 and Qr intersect, there is at least one
replica r in both quorums. For each multicast group « in the
partition, from Predicates [l and [3] we have k[z], < Kg[z].
Since r is in Qr, from Predicate [2] we have Kr[z] < k[z],
and therefore:

Kr <k, <Kg (4)

which then results in:

Kr < Kr (5)
Predicate [f] implies that for every multicast group z in the
most up-to-date checkpoint in Qg, the acceptors involved
in x have trimmed consensus instances at most equal to
the ones reflected in the checkpoint. Thus, a recovering
replica will be able to retrieve any instances decided after
the checkpoint was taken.

6. SERVICES

We have used two services, a key-value store and a dis-
tributed log, to illustrate the capabilities of Multi-Ring Paxos.
In this section we briefly discuss these services.

6.1 MRP-Store

MRP-Store implements a key-value store service where
keys are strings and values are byte arrays of arbitrary size.
The database is divided into [partitions Py, Pi, ..., P, such
that each partition P; is responsible for a subset of keys in
the key space. Applications can decide whether the data
is hash- or range-partitioned [44], and clients must know
the partitioning scheme. The service is accessed through
primitives to read, update, insert, and delete an entry (see
Table. Additionally we provide a range scan command to
retrieve entries whose keys are within a given interval.

Operation Description
read (k) return the value of entry k, if existent
scan(k, k") return all entries within range k..k’

update(k, v)
insert(k, v)
delete(k)

update entry k with value v, if existent
insert tuple (k,v) in the database
delete entry k from the database

Table 1: MRP-Store operations.

MRP-Store replicates each partition using the state-machine
replication approach [37], implemented with Multi-Ring Paxos.

A request to read, update, insert, or delete entry k is mul-
ticast to the partition where k belongs; a scan request is
multicast to all partitions that may possibly store an entry
within the provided range, if data is range-partitioned, or to
all partitions, if data is hash-partitioned.

MRP-Store ensures sequential consistency [6], that is, there
is a way to serialize client operations in any execution such
that: (1) it respects the semantics of the objects, as deter-
mined in their sequential specifications and (2) it respects
the order of non-overlapping operations submitted by the
same client. Atomic multicast prevents cycles in the exe-
cution of multi-partitions operations, which would result in
non-serializable executions.

6.2 dLog

DLog is a distributed shared log that allows multiple con-
current writers to append data to one or multiple logs atom-
ically (see Table . Append and multi-append commands
return the position of the log at which the data was stored.
There are also commands to read from a position in a log and
to trim a log at a certain position. Like MRP-Store, dLog
uses state-machine replication implemented with Multi-Ring
Paxos. Commands to append, read, and trim are multicast
to the log they address and multi-append commands are
multicast to all logs involved. A dLog server holds the most
recent appends in-memory and can be configured to write
data asynchronously or synchronously to disk.

Operation
append(l, v)
multi-append (L, v)
read(l, p)

trim(l, p)

Description

append v to log [, return position p
append value v to logs in £

return value v at position p in log [
trim log | up to position p

Table 2: dLog operations.

7. IMPLEMENTATION

In this section, we discuss important aspects about the
implementations of Multi-Ring Paxos and the services we

174

built on top of it.

7.1 Multi-Ring Paxos

Multi-Ring Paxos is implemented mostly in Java, with a
few parts in C. All the processes in Multi-Ring Paxos, inde-
pendent of their roles, are multi-threaded. Threads commu-
nicate through Java’s standard queues. A learner has dedi-
cated threads per each ring it subscribes to. Another thread
then deterministically merges the queues of these threads.
Acceptors, when using in-memory storage, have access to
pre-allocated buffers with 15000 slots, each slot of size 32
Kbytes. This allows the acceptors to handle re-transmission
during approximately 3 seconds of execution time under the
most strenuous conditions. Disk writes are implemented us-
ing the Java version of Berkeley DB. All communication
within Multi-Ring Paxos is based on TCP. Automatic ring
management and configuration management is handled by
Zookeeper. Applications can use Multi-Ring Paxos by in-
cluding it as a library or by running it standalone. In stan-
dalone mode, applications can communicate using a Thrift
APIEI Multi-Ring Paxos is publicly available for downloadEI

7.2 MRP-Store

In our prototype, clients connect to proposers through
Thrift and replicas implement the learner interface. The
partitioning schema is stored in Zookeeper and accessible to
all processes. Clients determine an entry’s location using
the partitioning information and send the command to a
proposer of the corresponding ring. Clients may batch small
commands, grouped by partition, up to 32 Kbytes. Repli-
cas reply to clients with the response of a command using
UDP. There are multiple client threads per client node and
each one only submits a new request after the first response
from a replica in single-partition commands or for at least
one response from every partition in scan operations was
received.

Database entries are stored in an in-memory tree at every
replica. Replicas comply with Multi-Ring Paxos’s recovery
strategy (see Section by periodically taking checkpoints
of the in-memory structure and writing them synchronously
to disk. After a majority of replicas have written their state
to stable storage, Paxos acceptors are allowed to trim their
logs. A recovering replica will contact a majority of other
replicas and download the most recent remote checkpoint.

7.3 dLog

Similarly to MRP-Store, dLog clients submit commands
to replicas using Thrift. Multiple commands from one client
can be grouped in batches of up to 32 Kbytes. Replicas im-
plement the learner’s interface to deliver commands. Repli-
cas append the most recent writes to an in-memory cache
of 200 Mbytes and write all data asynchronously to disk.
Results from the execution of commands are sent back to
clients through UDP. A trim command flushes the cache up
to the trim position and creates a new log file on disk.

8. PERFORMANCE EVALUATION

In this section, we experimentally assess various aspects
of the performance of our proposed systems:

3http://thrift.apache.org/
“https://github.com/sambenz/URingPaxos

e We establish a baseline performance for Multi-Ring
Paxos, MRP-Store, and dLog.

e We measure vertical and horizontal scalability of MRP-
Store and dLog in a datacenter and across datacenters.

e We evaluate the impact of recovery on performance.

8.1 Hardware setup

All the “local experiments” (i.e., within a datacenter) were
performed in a cluster of 4 servers equipped with 32-core
2.6 GHz Xeon CPUs and 128 GB of main memory. These
servers were interconnected through a 48 port 10 Gbps switch
with round trip time of 0.1 millisecond. In all the experi-
ments, clients and servers were deployed on separate ma-
chines. For persistency we use solid-state disks (SSDs) with
240 GB and 5 7200-RPM harddisks with 4 TB each. Each
machine was equipped with 2 NICs of 10 Gbps capacity.
The “global experiments” (i.e., across datacenters) were per-
formed on Amazon EC2 with large instances. Each large
instance server was equipped with 7.5 GB of main memory
and a 32 GB local SSD.

8.2 Experimental setup

Within a datacenter, Multi-Ring Paxos was initialized as
follows: M =1, A = 5 millisecond, and A = 9000. Across
datacenters, the following configuration was used: M =1,
A = 20 millisecond, and A = 2000. We keep machines ap-
proximately synchronized by running the NTP service before
the experiments. We used Berkeley DB version JE 5.0.58
as persistent storage. Unless stated otherwise, acceptors
used asynchronous disk writes. When in synchronous mode,
batching was disabled, that is, instances were written to disk
one by one. Each experiment is performed for a duration of
at least 100 seconds.

8.3 Baseline performance

In this section, we evaluate the performance of a single
multicast group in Multi-Ring Paxos with a “dummy ser-
vice” (i.e., commands do not execute any operations) under
varying request sizes and storage modes. We also compare
the performance of MRP-Store and dLog to existing services
with similar functionality.

8.3.1 Multi-Ring Paxos

Setup. In this experiment there is one ring with three
processes, all of which are proposers, acceptors, and learn-
ers, and one of the acceptors is the coordinator. Proposers
have 10 threads, each one submitting requests whose size
varies between 512 bytes and 32 Kbytes. Batching is dis-
abled in the ring. We consider five different storage modes:
in-memory, synchronous and asynchronous disk writes using
solid-state disks and harddisks.

Results. As seen in the top-left graph of Figure[3] regard-
less the storage mode, throughput increases as the request
size increases. With synchronous disk writes, the through-
put is limited by the disk’s performance. With in-memory
storage mode, the throughput is limited by the coordina-
tor’s CPU (bottom-left graph). The coordinator’s CPU us-
age is the highest in asynchronous mode. This is due to
Java’s parallel garbage collection (e.g., 200% CPU). For in-
memory storage, we allocate memory outside of Java’s heap
and therefore performance is not affected by Java’s garbage
collection. The bottom-right graph of Figure [3| shows the

175

CDF of latency for 32 Kbyte values. In synchronous disk
write mode, more than 90% of requests take less than 10
milliseconds.

8.3.2 MRP-Store

Setup. In this experiment, we use Yahoo! Cloud Serv-
ing Benchmark (YCSB) [19] to compare the performance of
MRP-Store against Apache’s Cassandra and a single MySQL
instance. These systems provide different consistency guar-
antees, and by comparing them we can highlight the perfor-
mance implications of each guarantee. In the experiments
with MRP-Store, we use three partitions, where partici-
pants in a partition subscribe to a ring local to the par-
tition. Each ring is deployed with three acceptors, all of
which write asynchronously to disk. We test configurations
of MRP-Store where replicas in the partitions subscribe to
a common global ring and where there is no global ring co-
ordinating the replicas (in the graph, “independent rings”).
All the rings are co-located on three machines and clients
run on a separate machine. In the experiments with Cas-
sandra, we initiate three partitions with replication factor
three. MySQL is deployed on a single server. In all cases,
the database is initialized with 1 GByte of data.

Results. With the exception of Workload E, composed
of 95% of small range scans and 5% of inserts, Cassandra
is consistently more efficient than the other systems since
it does not impose any ordering on requests (see Figure [4)).
Ordering requests within partitions only (i.e., independent
rings) is cheaper than ordering requests within and across
the system. This happens because with independent rings,
each ring can proceed at its own pace, regardless the load
in the other rings. To a certain extent, this can be under-
stood as the cost of ensuring stronger levels of consistency.
In our settings, MRP-Store compares similarly to MySQL.
As we show in the following sections, MRP-Store can scale
with additional partitions while keeping the same ordering
guarantees, something that is not possible with MySQL.

8.3.3 dLog

Setup. In this experiment, we compare the performance
of our dLog service to Apache’s Bookkeeper. Both systems
implement a distributed log with strong consistency guar-
anties. All requests are written to disk synchronously. The
dLog service uses two rings with three acceptors per ring.
dLog learners subscribe to both rings and are co-located
with the acceptors. Bookkeeper uses an ensemble of the
same three nodes. A multithreaded client runs on a differ-
ent machine and sends append requests of 1 KBytes.

Results. Figurecompares the performance of our dLog
service with Apache Bookkeeper. The dLog service con-
sistently outperforms Bookkeeper, both in terms of higher
throughput and lower latency. With 200 clients, dLog ap-
proaches the limits of the disk to perform writes synchronously.
The large latency in Bookkeeper is explained by its aggres-
sive batching mechanism, which attempts to maximize disk
use by writing in large chunks.

8.4 Scalability

In this section, we perform a set of experiments to assess
the scalability of our proposed services. We consider ver-
tical scalability with dLog (i.e., variations in performance
when increasing the resources per machine in a static set of
machines) and horizontal scalability with MRP-Store (i.e.,

8 B Sync Disk
S 7 B Sync Disk (SSD)]
N O Async Disk]
—_ O Async Disk (SSD)
a S O In Memory
a « -
=3
=
N 4
a
=
=)
3
Q w4
=
[
=
o
512 2k
Value size
° —
S 5
15 [
=
S
= o
© 4
£ 4
S
=4
8
3 8
@ -
X
S
> 81
o
O
o
512 2k 8k 32k
Value size

Figure 3: Multi-Ring Paxos with different storage modes and request sizes.

Latency (msec)

CDF (32K)

o
S
o)
(=3
n
-
512 2k 8k 32k
Value size
o
S S —
@ 1 - / [
S -
: L)
S} 1 | /
—— In Memory {
g— --- Sync Disk /
| Sync Disk (SSD) /
~ 1 ---- Async Disk |
=] i Async Disk (SSD) /
= — j
°© T T T T T T T
1 5 10 50 100 500 1000

Latency (msec)

Four metrics are measured:

throughput in mega bits per second (top-left graph), average latency in milliseconds (top-right graph), CPU
utilization at coordinator (bottom-left graph), and CDF for the latency when requests are 32 KBytes (bottom-
right graph). The y-axis for throughput and latency is in log scale.

variations in performance when increasing the number of
machines).

8.4.1 Vertical scalability

Setup. In this experiment, we evaluate vertical scalability
with the dLog service by varying the number of multicast
groups (rings). Each multicast group (ring) is composed
of three processes, one of which assumes the learner’s role
only and the others are both acceptors and proposers. We
perform experiments with up to 5 disks per acceptor, where
each ring is associated with a different disk. Therefore, by
increasing the number of rings, we add additional resources
to the acceptors. In each experiment, learners subscribe
to k rings and to a common ring shared by all learners,
where k varies according to the number of disks used in
the experiment. Processes in the rings are co-located on
three physical machines. Clients are located on a separate
machine and generate 1 KByte requests, which are batched
into 32 KByte packets by a proxy before being submitted
to Multi-Ring Paxos. The workload is composed of append
requests only. Throughput is shown per ring. The reported
latency is the average over all the rings.

Results. Figure [f] shows the throughput and latency of
Multi-Ring Paxos as the number of rings increases. Through-
put improves steadily with the number of rings. The percent
numbers shows the linear scalability relative to the previ-
ous values. The latency CDF corresponds to the reported
throughput for writes to disk 1.

8.4.2 Horizontal scalability

Setup. In this experiment, we evaluate horizontal scala-

176

bility with the MRP-Store service, globally deployed across
four Amazon EC2 regions (one in eu-west, two in us-west,
and one in us-east). In each region there is one ring com-
posed of a replica with three proposers/acceptors, and one
client running on a separate machine. Replicas from all the
rings are also part of a global ring. Clients send 1 KByte
commands to their local partitions (rings) only. Each client
machine batches the requests into packets of 32 Kbytes be-
fore sending them. The workload is composed of update
requests only. Latency is measured in the us-west-2 region.

Results. Similarly to the dLog service, throughput in-
creases as new partitions are added to the collection (see
Figurelz[). As expected, latency is almost constant with the
number of rings. We note that the local throughput of a
region is not influenced by other regions, the reason for the
scalability of the service. The percent numbers shows the
linear scalability relative to the previous values.

8.5 Impact of recovery on performance

In this section, we evaluate the impact of failure recovery
on the system’s performance using the MRP-Store service.

Setup. We deploy one ring with three acceptors, all per-
forming asynchronous disk writes, and three replicas in the
local cluster. The system operates at 75% of its peak load
and there is one client generating requests against the repli-
cas. The replicas periodically checkpoint their in-memory
data store synchronously to disk to allow the acceptors to
trim their log. One replica is terminated after 20 seconds
and restarts after 240 seconds, at which point it retrieves
the most recent checkpoint from an operational replica. The
instances that are not included in the checkpoint will be re-

=]
~ O
£
a B Cassandra
% X @ MRP-Store (indep. rings)
~ 8 O MRP-Store
5 O Mysql
g
=
2 ~N
=
f_:]

o = [

A B C D E F

YCSB workload (100 threads)

ey

Read Update Read-Mod-Write
Workload F: Read—modify-write

8 10

Latency (msec)
6

Figure 4: Performance of Apache’s Cassandra, two
configurations of MRP-Store, and MySQL, under
Yahoo! cloud serving benchmark (YCSB). The
graphs show throughput in operations per second
(top) and average latency in msecs (bottom).

trieved directly from the acceptors.

Results. Figure [§| shows the impact of recovery on per-
formance. As seen in the graph, re-starting a terminated
replica causes a short reduction in performance. Writing
checkpoints synchronously to the disk does not disrupt the
service either. We note that checkpoints are not written
to disk at the same time by all the replicas and that the
client waits only for the first response form any replica. Per-
formance is mostly affected by trimming the acceptor logs
and also when the recovering replica retrieves and installs a
checkpoint.

9. RELATED WORK

In this section, we review related work on atomic multi-
cast, distributed logging, and recovery.

Atomic multicast. The first atomic multicast protocol
can be traced back to [11], where an algorithm was devised
for failure-free scenarios. To decide on the final timestamp
of a message, each process in the set of message addressees
locally chooses a timestamp, exchanges its chosen times-
tamps, deterministically agrees on one of them, and delivers
messages according to the message’s final timestamp. As
only the destinations of a message are involved in finalizing
the message’s timestamp, this algorithm is scalable. More-
over, several works have extended this algorithm to tolerate
failures [25) 29| |48, [49], where the main idea is to replace
failure-prone processes by fault-tolerant disjoint groups of
processes, each group implementing the algorithm by means
of state-machine replication. The algorithm in [22] proposes
to daisy-chain the set of destination groups of a message
according to the unique group ids. The first group runs con-

177

o
~ 3 7
% - —— dLog °
Q o —&— Bookkeeper —
o 8 | /
Z S . o
5
Fl /
5 s ;
S b o - —
E oo
F o d «Zo-08
T T T T T
0 50 100 150 200

Number of client threads

250
I

o ————0

50
I

Latency (msec)
150
| |

T T T T T
0 50 100 150 200

Number of client threads

Figure 5: Performance of dLog and Apache’s Book-
keeper. The workload is composed of 1 Kbyte ap-
pend requests. The graphs show throughput in op-
erations per second (top) and average latency in
msecs (bottom).

sensus to decide on the delivery of the message and then
hands it over to the next group, and so on. Thus, the la-
tency of a message depends on the number of destination
groups.

While most works on multicast algorithms have a theo-
retical focus, Spread [4] implements a highly configurable
group communication system, which supports the abstrac-
tion of process groups. Spread orders messages by the means
of interconnected daemons that handle the communication
in the system. Processes connect to a daemon to multicast
and deliver messages. To the best of our knowledge, Multi-
Ring Paxos is the first high-performance atomic multicast
library available for download. Similarly to Mencius [39], co-
ordinators in Multi-Ring Paxos account for load imbalances
by proposing null values in consensus instances. Differently
from Mencius, which is an atomic broadcast protocol, Multi-
Ring Paxos implements atomic multicast by means of the ab-
straction of groups. While the group abstraction is similar to
the Totem Multi-Ring protocol [1], Totem uses timestamps
to achieve global total order. Multi-Ring Paxos’s determin-
istic merge strategy is similar to the work proposed in [3],
which totally orders message streams in a widely distributed
publish-subscribe system.

Distributed logging. Atomic broadcast is not the only
solution to totally order requests in a distributed environ-
ment. Distributed logging is an alternative approach, where
appending a log entry corresponds to executing a consensus
instance in an atomic broadcast protocol. CORFU |[38| im-
plements a distributed log with a cluster of network-connected
flash devices, where the log entries are partitioned among
the flash units. Each log entry is then made fault-tolerant

—

@
%]
Q
e
2 x . 97%
< o O disk 5 105%
2 O disk 4 05
o o disk3
£ 5 o disk 2 106%
o> | disk1
o 95%
-
° 100%
e}
2
© o
[=2]
o 1 2 3 4 5
3 . '
< Number of synchronized logs (rings)
~
— o
ﬁ — 1llog
S ---- 2logs
~ < 3 logs
LDL © - 4logs
O 5 logs

=

© T T T T T T T

0 5 10 15 20 25 30
Latency (msec)
Figure 6: Vertical scalability of dLog in asyn-

chronous mode. The graphs show aggregate
throughput in operations per second (top), and la-
tency CDF in msecs (bottom).

using chain replication and a set of flash devices. New data
is always appended to the end of the distributed log. To
append a message, a client of CORFU (e.g., application
server) retrieves and reserves the current tail of the dis-
tributed log through a sequencer node. Although appends
are directly applied to the flash devices, the scalability of re-
trieving the log’s next available offset is determined by the
centralized sequencer’s capacity. In our dLog service, the
increasing append load is smoothly absorbed by adding new
rings to the ensemble, and is not subject to central com-
ponents. Disk Paxos is another implementation of a
distributed log that does not rely on a sequencer. However,
Disk Paxos is not network efficient since for appending new
data clients always contend over the log entries. An advan-
tage with CORFU and similar systems is that the distri-
bution of appends among the storage units can be balanced.
Tango , builds on CORFU to implement partitioned ser-
vices, where a collection of log entries is allocated to each
partition. The replicas at each partition only execute the
subset of the log entries corresponding to their partitions,
and skip the rest. Globally ordering the entire set of log
entries simplifies ensuring consistency with cross partition
queries. However, the number of partitions a service can be
divided into is limited by the log’s capacity at handling the
appends. In our dLog service, an unbounded number of par-
titions can be created by adding new rings; moreover, queries
concerning disjoint partitions are not globally ordered.

Recovery. Recovery protocols often negatively affect a
system’s performance. Several optimizations can be applied
to the logging, checkpointing, and state transfer to minimize
the overhead of recovery as we discuss next.

Optimized logging. A common approach to efficient log-

178

—~
0

@

g 8

S~

s 99%
o O eu-west-1

< O us-west-1 107%

g’ ﬁ @ us-east-1

<] B us-west-2 o

< 83%

° 100%

o x 00%

5] [Te)

j=2)

963_’ (=}

= 1 2 3 4
<

Number of synchronized partitions (rings)

\

£ .

il 1 region

HJ/{(---- 2regions
o 3 regions

jj - 4regions

CDF (us-west-2)
0.4

L

T
0 50 100 150
Latency (msec)

Figure 7: Horizontal scalability of MRP-Store in
asynchronous mode. The graphs show aggregate
throughput in operations per second (top) and la-
tency CDF in msecs in us-west-1 (bottom).

ging is to log requests in batches [@ . Since
stable storage devices are often block-based it is more effi-
cient to write a batch of requests into one block rather than
to write multiple requests on many different blocks. Another
optimization is to parallelize the logging of batches [Eﬂ Par-
allel logging benefits most the applications in which the time
for processing a batch of requests is higher than the time re-
quired for logging a batch. The overhead of logging can
be further reduced by using solid-state disks (SSD) or raw
flash devices instead of magnetic disks . Similarly, in our
dLog service we support both harddisks and SSDs, and syn-
chronous and asynchronous disk writes to enable batched
flushes to the disk.

Optimized checkpointing. Checkpoints are often produced
during the normal operation of a system, while processing of
the requests is halted . Not handling requests
during these periods makes the system unavailable to clients
and reduces performance. If instead processes take check-
points at non-overlapping intervals, there will always be op-
erational processes that can continually serve the clients.
Building on this idea, in @ﬂ processes schedule their check-
points for different intervals. As the operation of a quorum
of processes is sufficient for their system to make progress,
a minority of processes can perform checkpointing while the
others continue to operate. Another optimization is to use
a helper process to take checkpoints asynchronously .
In this scheme, two threads, primary and the helper, ex-
ecute concurrently. While the primary processes requests,
the helper takes checkpoints periodically. Similarly, in our
dLog service replicas can take snapshots at different non-
overlapping intervals.

Optimized state transfer. State transfer has its own im-

= m
§ S -
= © - £
= B g ©
2g -
o | 51 <
g < =
<] m —— Throughput (ops) L 8 8
'E -- Throughput (mbps) E
i l o F

e T T T T T T T e

0 50 100 150 200 250 300
Runtime (sec)

Figure 8: Impact of recovery on performance (1:

one replica is terminated; 2: replica checkpoint; 3:
acceptor log trimming; 4: replica recovery; 5: re-
proposals due to recovery traffic).

plications on performance. During state transfer, a fraction
of the source processes’ resources (e.g., CPU, network) are
devoted to the transmission of the state, which is not to the
advantage of performance. To protect performance, state
transfer can be delayed to a moment in which the demand
on the system is low enough that both the execution of new
requests and the transfer of the state can be handled [32].
Another optimization is to reduce the amount of transferred
information. Representing the state through efficient data
structures |14], using incremental checkpoints [15, [17], or
compressing the state are among these techniques. In |9],
authors propose a collaborative state transfer protocol to
evenly distribute the transfer load across replicas.

10. CONCLUSIONS

When replicating services in large-scale settings, one com-
mon approach to scale performance and reduce latency is
to weaken consistency. Weak consistency, however, places
the burden on the service users, who must cope with non-
intuitive service behavior. Providing strong consistency in
globally distributed settings requires ordering requests across
multiple datacenters. While some proposals impose a to-
tal order on requests, some other systems partially order
requests across datacenters by means of ad hoc protocols
(e.g., two-phase commit). In this paper, we argued that
atomic multicast is the proper abstraction to implement
highly available and scalable systems without sacrificing con-
sistency. We showed the practicality of our argument by
implementing a high-performance atomic multicast library
equipped with efficient recovery to build globally distributed,
consistent, and durable key-value store and logging services.
Moreover, the results of our experiments demonstrate both
horizontal and vertical scalability of our proposed techniques.

11. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
helpful comments and their suggestions to improve the pa-
per. This work was supported in part by the Swiss National
Science Foundation under grant number 146714.

12. REFERENCES
[1] D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and

179

2]

8]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

R. K. Budhia. The totem multiple-ring ordering and
topology maintenance protocol. ACM, May 1998.

M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for
building scalable distributed systems. In ACM
SIGOPS OSR, volume 41, pages 159-174. ACM, 2007.
M. K. Aguilera and R. E. Strom. Efficient atomic
broadcast using deterministic merge. In PODC, 2000.
Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and
J. Stanton. The Spread toolkit: Architecture and
performance. Technical report, Johns Hopkins
University, 2004. CNDS-2004-1.

Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis:
A communication sub-system for high availability. In
FTCS, 1992.

H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Stmulations, and Advanced Topics.
Wiley, 2004.

M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu,

V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,
and A. Zuck. Tango: Distributed data structures over
a shared log. In SOSP, 2013.

P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems,
volume 370. Addison-wesley New York, 1987.

A. Bessani, M. Santos, J. Felix, N. Neves, and

M. Correia. On the efficiency of durable state machine
replication. In ATC, 2013.

K. Birman and R. Cooper. The Isis project: Real
experience with a fault tolerant programming system.
In ACM SIGOPS, 1990.

K. P. Birman and T. A. Joseph. Reliable
communication in the presence of failures. ACM
Transactions on Computer Systems (TOCS),
5(1):47-76, Feb. 1987.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,

P. Dimov, H. Ding, J. Ferris, A. Giardullo,

S. Kulkarni, H. Li, et al. Tao: Facebook distributed
data store for the social graph. In ATC, 2013.

M. Burrows. The chubby lock service for loosely
coupled distributed systems. In OSDI, 2006.

M. Castro and B. Liskov. Practical byzantine fault
tolerance. In OSDI, 1999.

M. Castro, R. Rodrigues, and B. Liskov. Base: Using
abstraction to improve fault tolerance. ACM
Transactions on Computer Systems (TOCS),
21(3):236-269, 2003.

B. Charron-Bost, F. Pedone, and A. Schiper, editors.
Replication: Theory and Practise. Springer-Verlag,
2010.

A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services. In
SOSP, 2009.

A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making byzantine fault tolerant systems
tolerate byzantine faults. In NSDI, 2009.

B. F. Cooper, A. Silberstein, E. Tam,

R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In SoCC, 2010.

F. P. D. Sciascia and F. Junqueira. Scalable deferred
update replication. In DSN, 2012.

[21]

[22]

[23]

[24]

[39]

[40]

[41]

G. DeCandia, D. Hastorun, M. Jampani,

G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP, 2007.

C. Delporte-Gallet and H. Fauconnier. Fault-tolerant
genuine atomic multicast to multiple groups. In
OPODIS, 2000.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the
ACM, 35(2):288-323, 1988.

R. Friedman and R. van Renesse. Packing messages as
a tool for boosting the performance of total ordering
protocols. In HPDC, 1997.

J. Fritzke, U., P. Ingels, A. Mostefaoui, and

M. Raynal. Fault-tolerant total order multicast to
asynchronous groups. In SRDS, 1998.

E. Gafni and L. Lamport. Disk paxos. Distributed
Computing, 16(1):1-20, 2003.

S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51-59, June 2002.
L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in scatter. In
SOSP, 2011.

R. Guerraoui and A. Schiper. Genuine atomic
multicast in asynchronous distributed systems. Theor.
Comput. Sci., 254(1-2):297-316, 2001.

V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts
and related problems. In Distributed Systems,

chapter 5. Addison-Wesley, 2nd edition, 1993.

J. H. Hartman and J. K. Ousterhout. The zebra
striped network file system. ACM Transactions on
Computer Systems (TOCS), 13(3):274-310, 1995.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale
systems. In ATC, 2010.

J. D. J. C. Corbett and M. E. et al. Spanner: Google’s
globally distributed database. In OSDI, 2012.

M. Kapritsos, Y. Wang, V. Quema, A. Clement,

L. Alvisi, and M. Dahlin. Eve: Execute-verify
replication for multi-core servers. In OSDI, 2012.

R. Kotla and M. Dahlin. High throughput byzantine
fault tolerance. In DSN, 2004.

L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558-565, 1978.

L. Lamport. The part-time parliament. ACM (TOCS),
1998.

D. Malkhi, M. Balakrishnan, J. D. Davis,

V. Prabhakaran, and T. Wobber. From paxos to corfu:
a flash-speed shared log. ACM SIGOPS OSR,
46(1):47-51, 2012.

Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
building efficient replicated state machines for wans.
In OSDI, 2008.

P. J. Marandi, C. E. Bezerra, and F. Pedone.
Rethinking state-machine replication for parallelism.
In ICDCS, 2014.

P. J. Marandi and F. Pedone. Optimistic parallel
state-machine replication. In SRDS, 2014.

180

42]

(43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

P. J. Marandi, M. Primi, and F. Pedone. Multi-ring
paxos. In DSN, 2012.

P. J. Marandi, M. Primi, N. Schiper, and F. Pedone.
Ring paxos: A high-throughput atomic broadcast
protocol. In DSN, 2010.

M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 1999.

F. Pedone, R. Guerraoui, and A. Schiper. Exploiting
atomic broadcast in replicated databases. In FEuroPar,
1998.

F. Pedone, R. Guerraoui, and A. Schiper. The
database state machine approach. Journal of
Distributed and Parallel Databases and Technology,
14(1), 2002.

J. Rao, E. J. Shekita, and S. Tata. Using paxos to
build a scalable, consistent, and highly available
datastore. Proceedings of the VLDB Endowment,
4(4):243-254, 2011.

L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable
atomic multicast. In ICCCN, 1998.

N. Schiper and F. Pedone. On the inherent cost of
atomic broadcast and multicast in wide area networks.
In ICDCN, 2008.

N. Schiper, P. Sutra, and F. Pedone. P-store: Genuine
partial replication in wide area networks. In SRDS,
2010.

F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4):299-319, Dec. 1990.

A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues,

P. Maniatis, et al. Zeno: Eventually consistent
byzantine-fault tolerance. In NSDI, 2009.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren,

P. Shao, and D. J. Abadi. Calvin: fast distributed
transactions for partitioned database systems. In
SIGMOD, 2012.

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long,
and C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In OSDI, 2006.

	Introduction
	System model
	Why Atomic Multicast
	Multi-Ring Paxos
	Recovery
	Recovery in Ring Paxos
	Recovery in Multi-Ring Paxos

	Services
	MRP-Store
	dLog

	Implementation
	Multi-Ring Paxos
	MRP-Store
	dLog

	Performance evaluation
	Hardware setup
	Experimental setup
	Baseline performance
	Multi-Ring Paxos
	MRP-Store
	dLog

	Scalability
	Vertical scalability
	Horizontal scalability

	Impact of recovery on performance

	Related work
	Conclusions
	Acknowledgments
	References

