

Visualizing Large-scale and High-dimensional Data

Jian Tang, Jingzhou Liu, Ming Zhang and Qiaozhu Mei

Where is **Computer Science** in the map of all **Sciences**?

Where is **WWW** among all fields of **Computer Science**?

Scientific Literature (10M points)

Scientific Literature (10M points)

Computer Science

Scientific Literature (10M points)

2

Computer Science

Scientific Literature (10M points)

Scientific Literature (10M points)

2

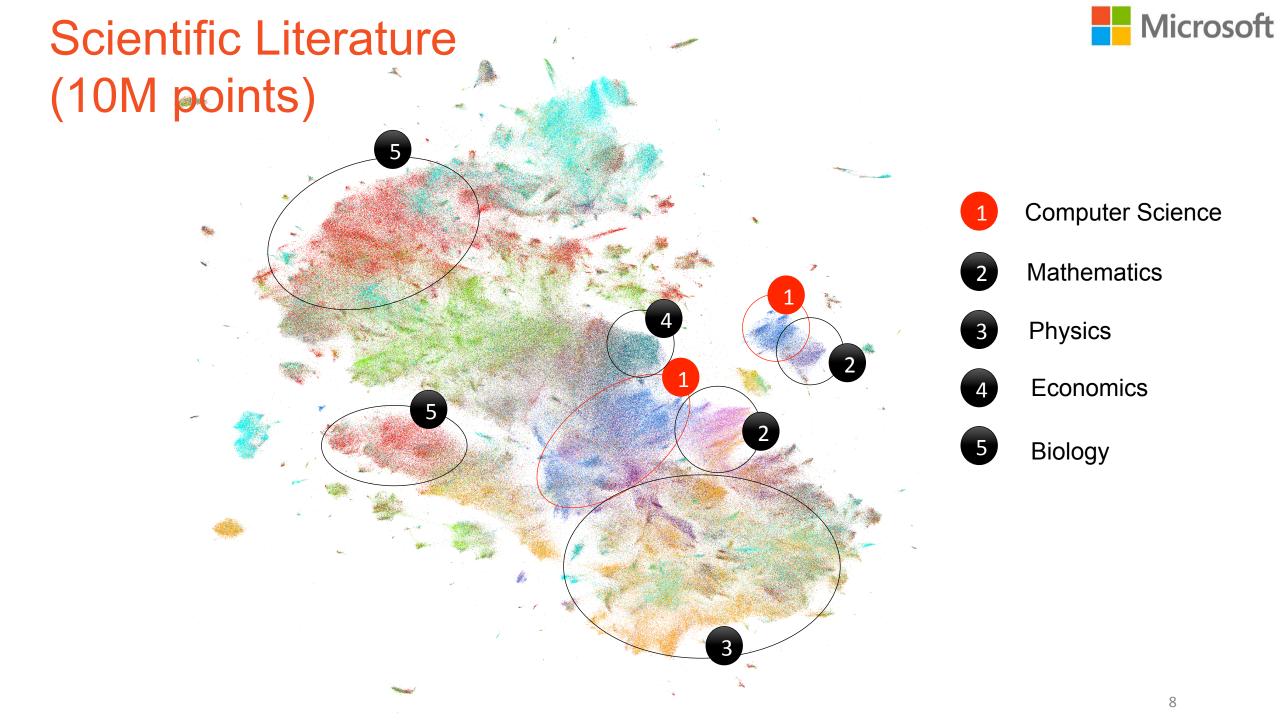
3

3



Mathematics

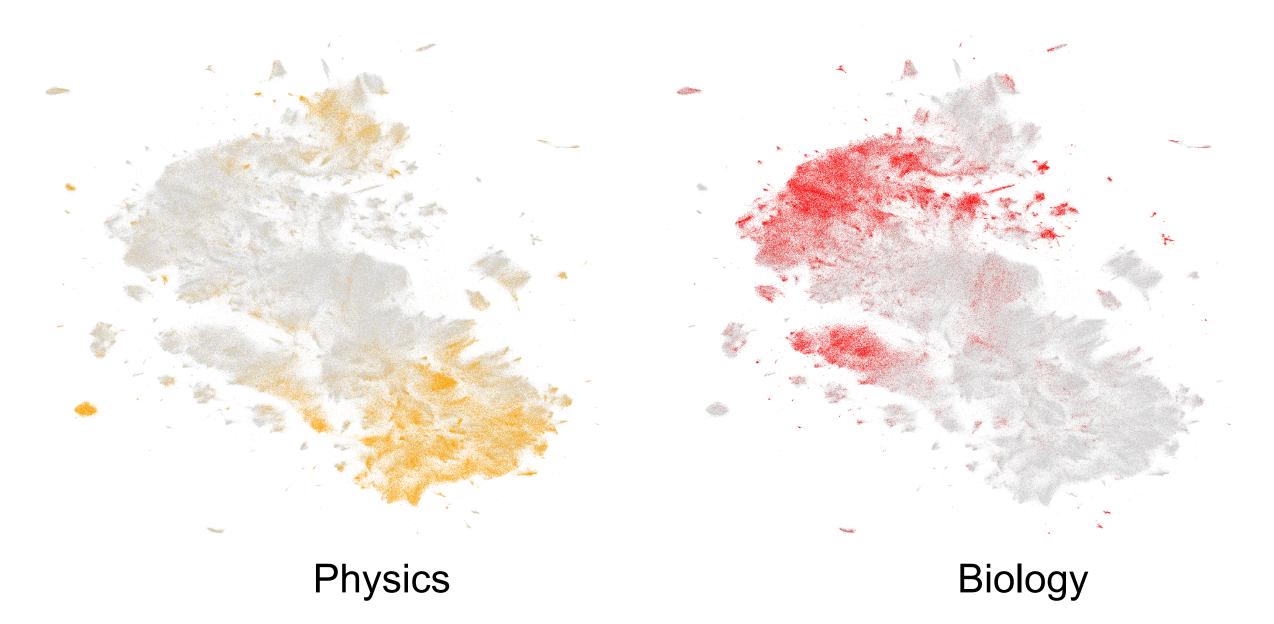
Economics



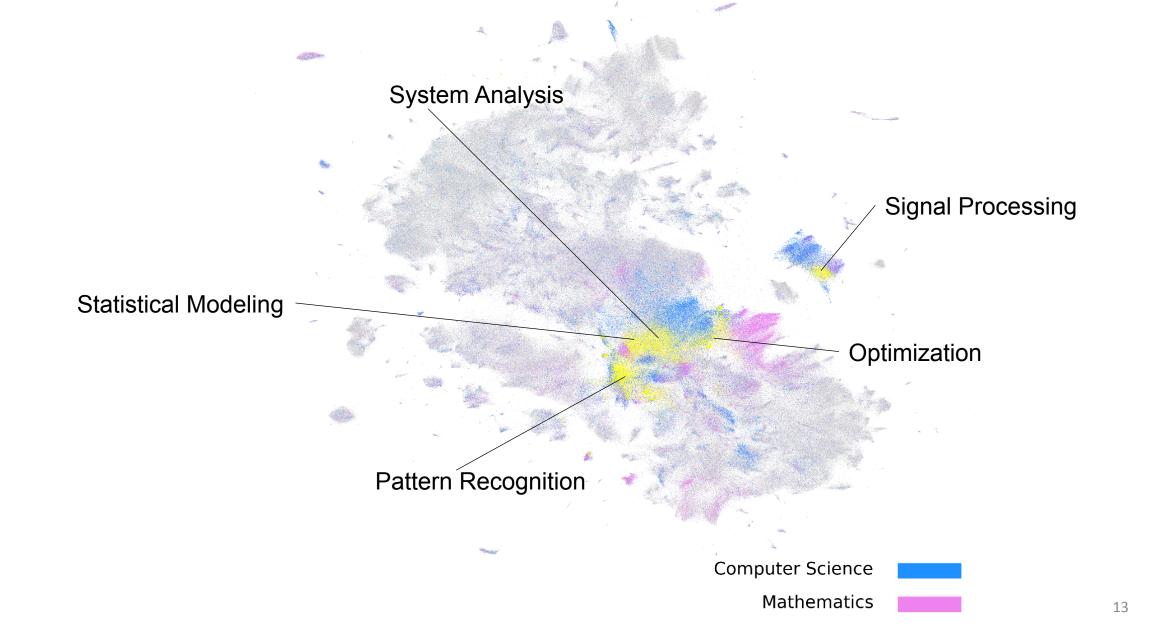
Microsoft Scientific Literature 6 (10M points) 5 **Computer Science** Mathematics 2 14 Physics 3 6 Economics 5 Biology 5 Chemistry 6 3

Microsoft Scientific Literature 6 (10M points) 5 **Computer Science** Mathematics 2 1 Physics 3 6 Economics 5 Biology 5 Chemistry 6 Medicine 7 3

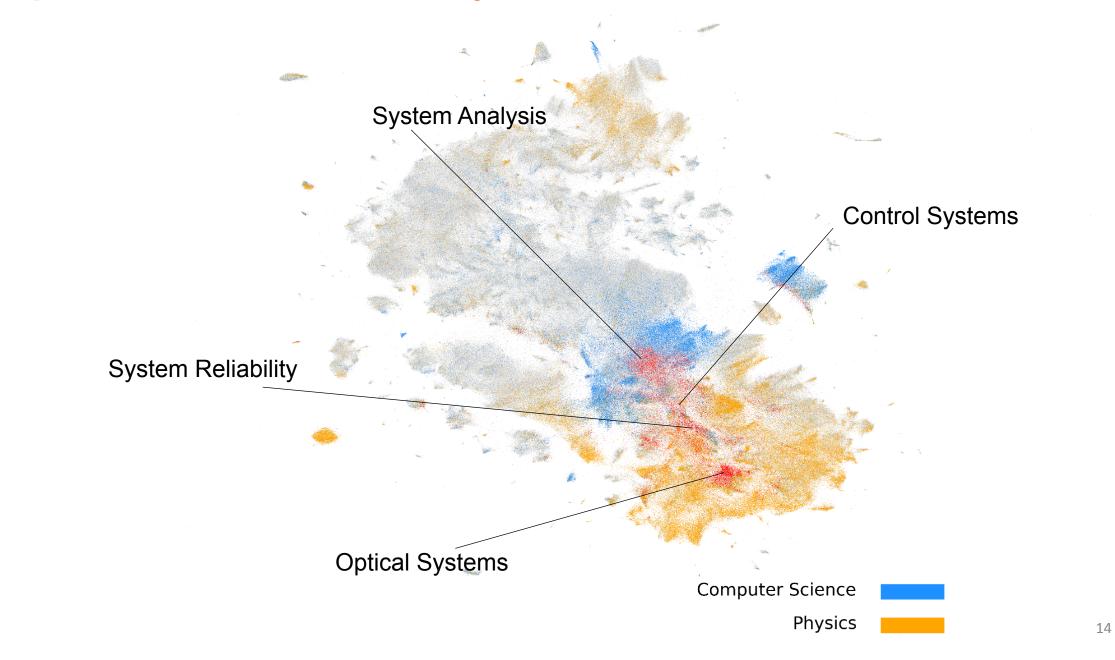
Mathematics

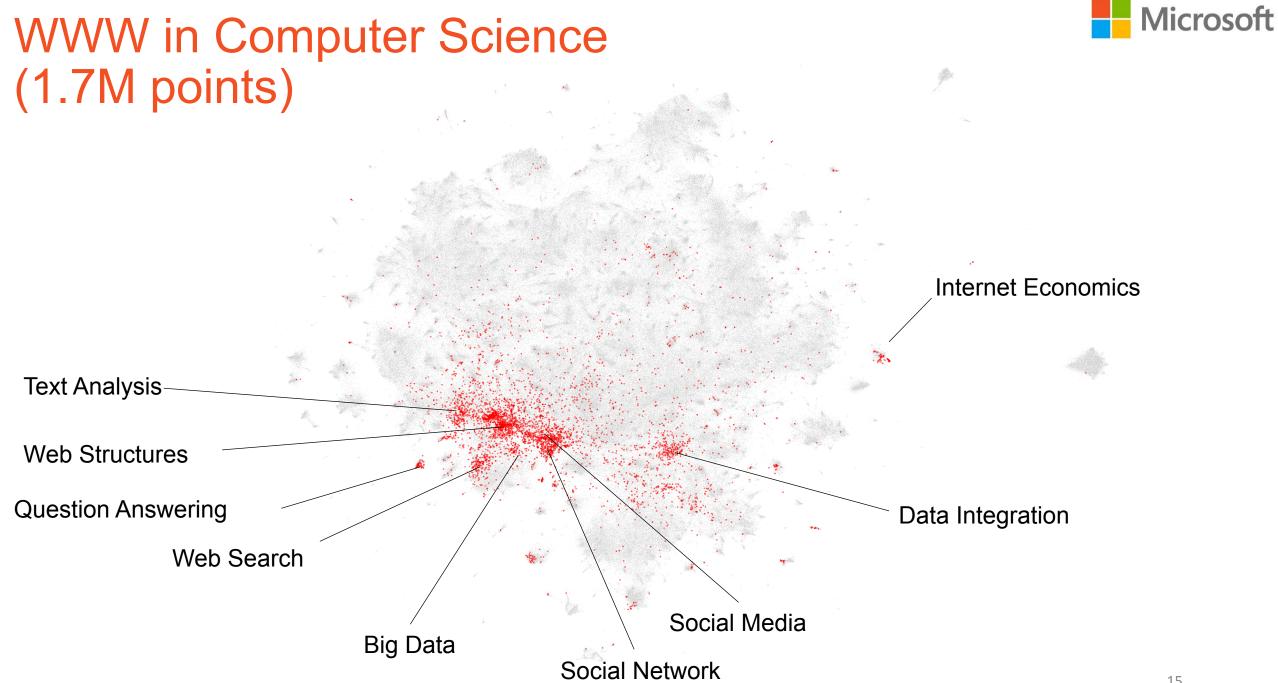


Computer Science vs. Mathematics

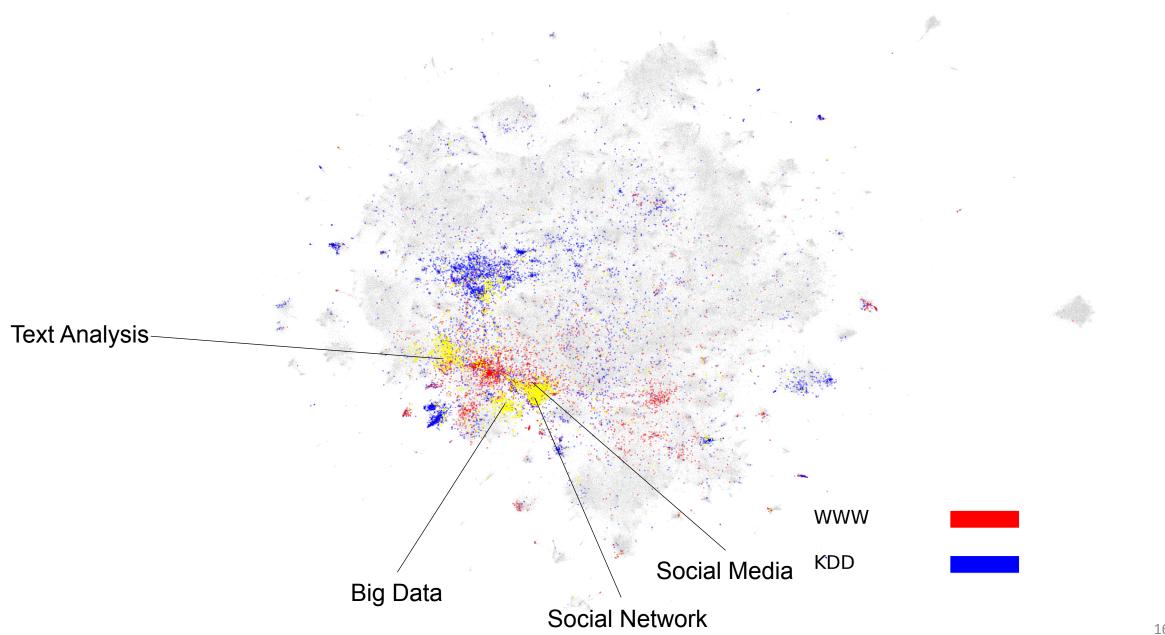


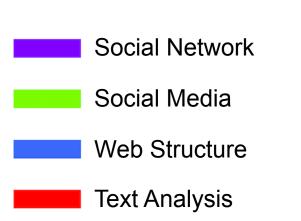
Computer Science vs. Physics

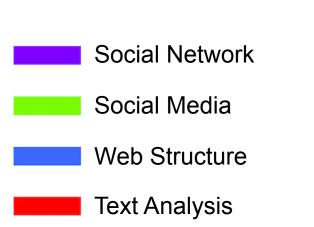


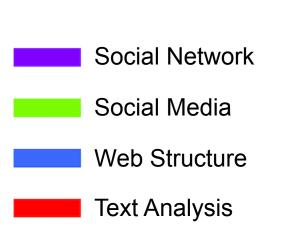


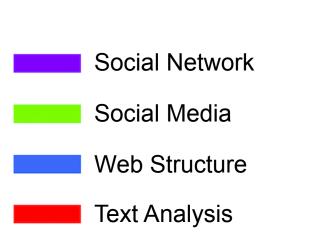
WWW v.s. KDD

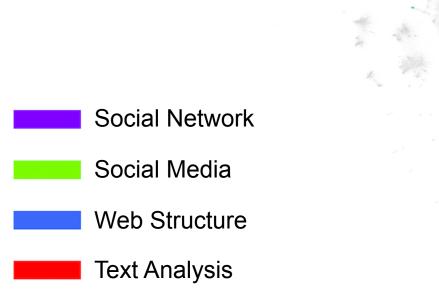


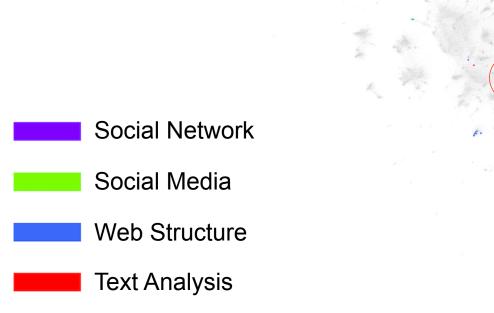


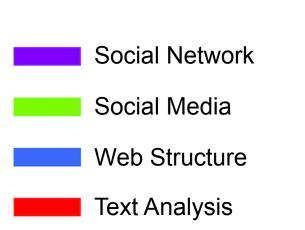


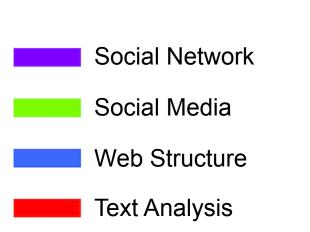


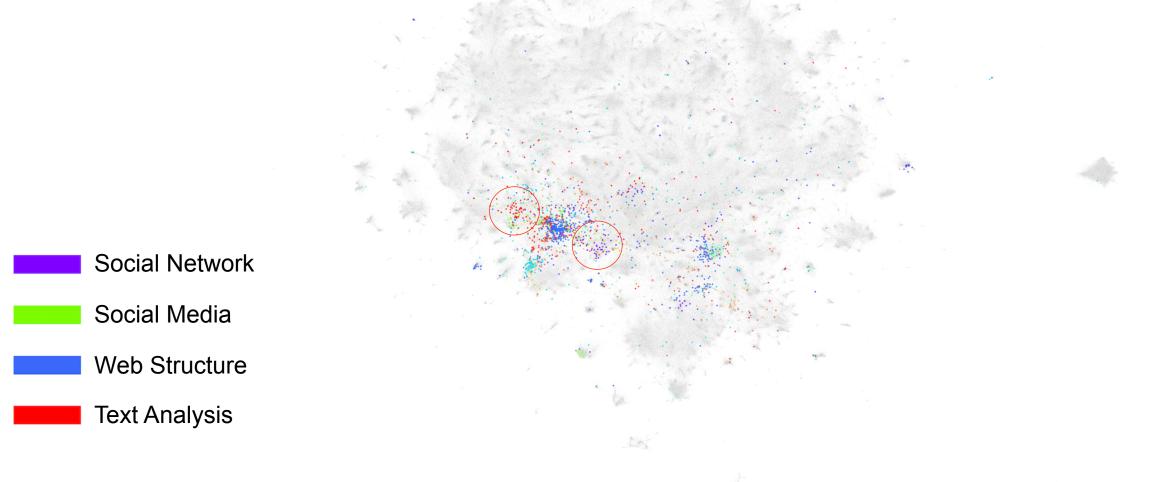


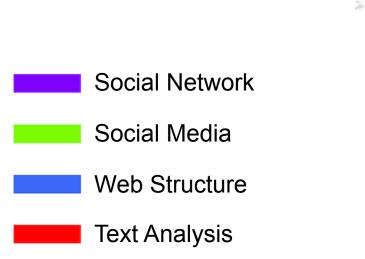


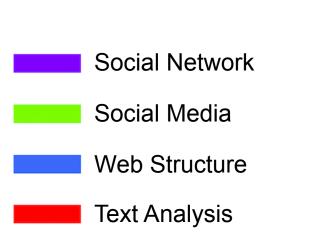


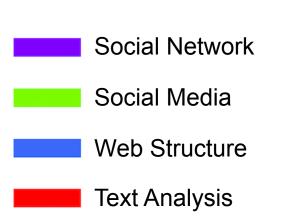


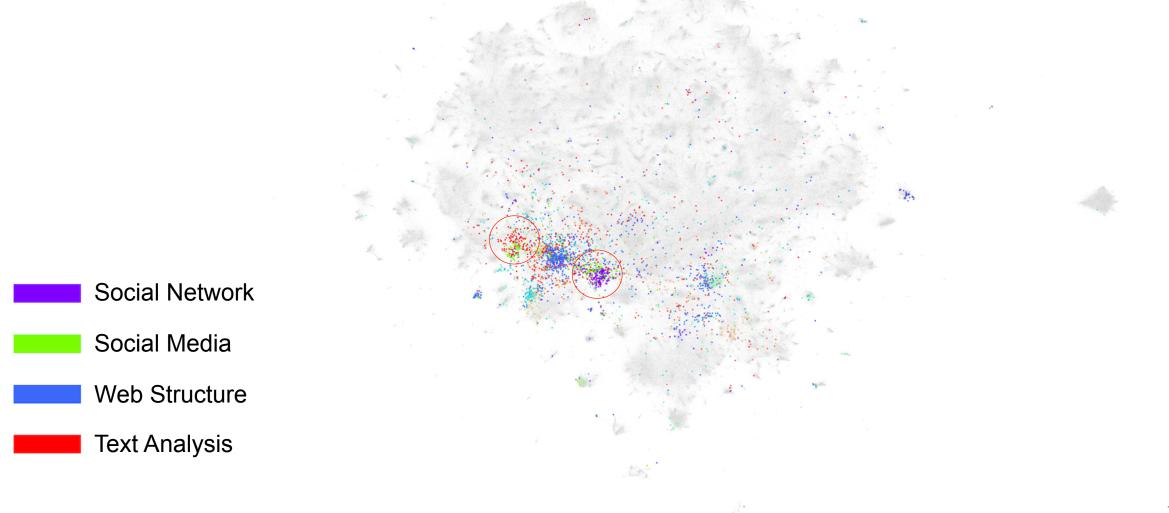


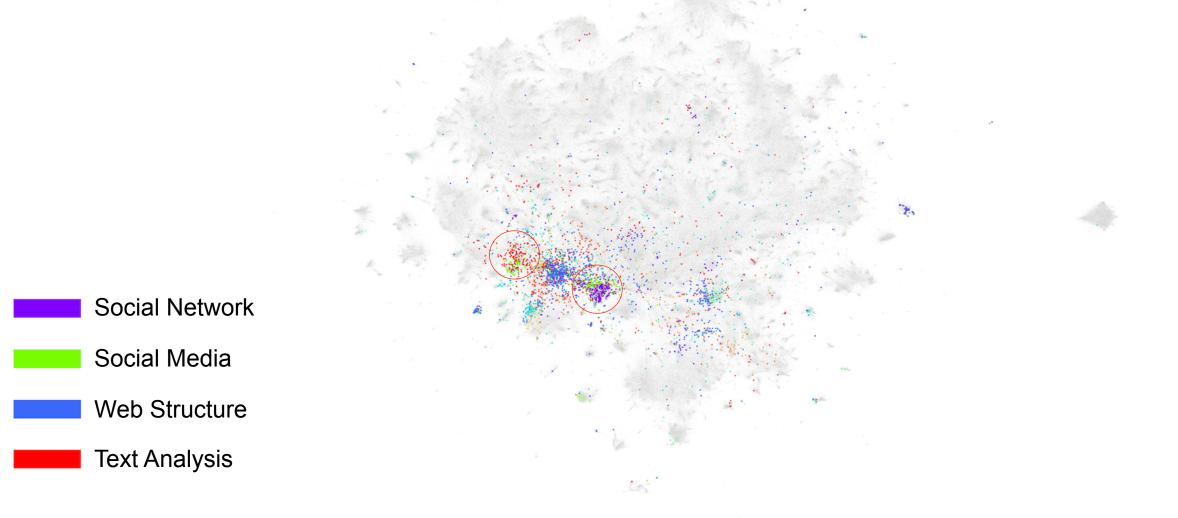


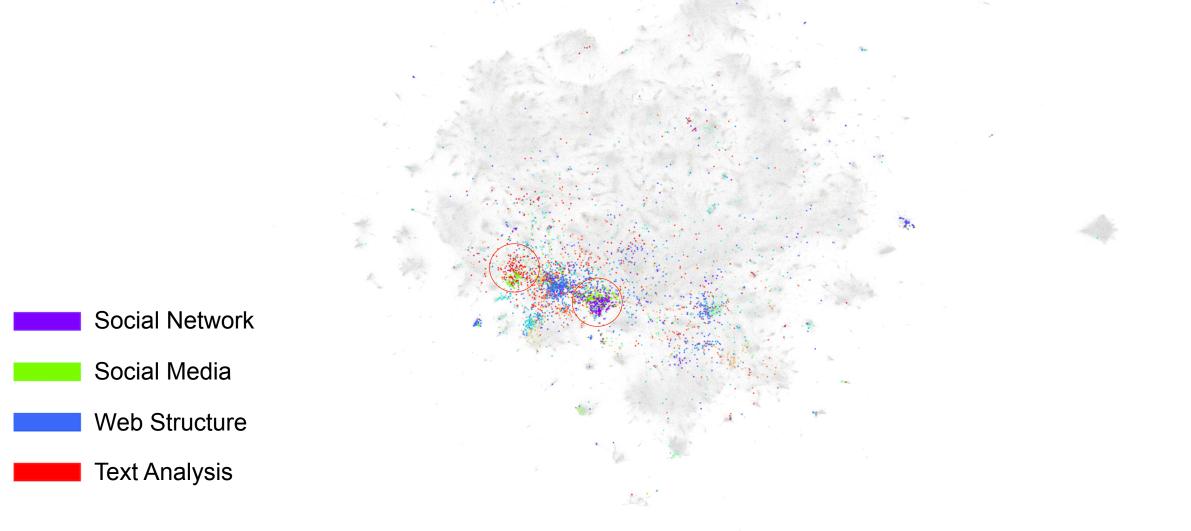






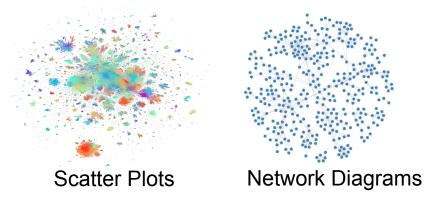


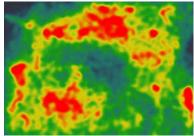




Challenging to Visualize the Big Data

- Intuitive ways for data understanding and exploration
- Classical visualization techniques
 - Scatter plots, network diagrams, heatmaps,...
 - Requires 2D/3D layouts of data
- Real-world data are often Big
 - E.g., images, text, speech and networks
 - Large-scale (> millions) and high-dimensional (> hundreds)



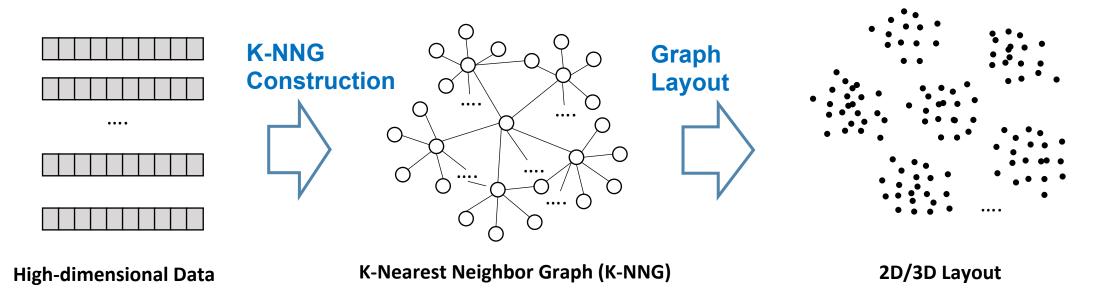


Heatmaps

Related Work

- Linear methods: e.g., PCA, MDS
 - High-dimensional data are usually on a *nonlinear* manifold
- Nonlinear methods: e.g., IsoMap, Laplacian Eigenmap.
 - Only preserve *local* structures of data
- Nonlinear method: t-SNE (Maaten and Hinton, 2008)
 - Current state-of-the-art
 - Preserve both *local* and *global* structures
 - But difficult to scale up

Typical Pipeline of Data Visualization



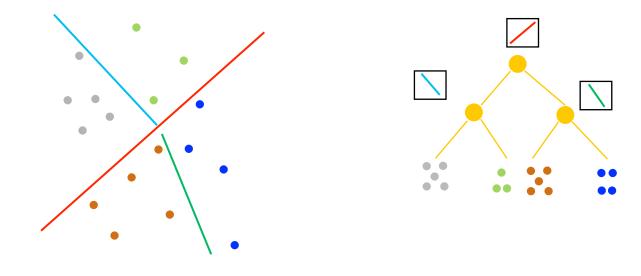
- Limitations of t-SNE:
 - K-NNG construction: complexity grows *exponentially* to the data dimension
 - Graph layout: complexity is O(NlogN), where N is the number of data points
 - Very *sensitive* parameters

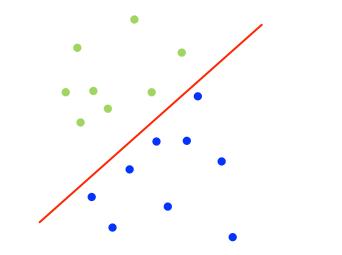
Our Approach: LargeVis

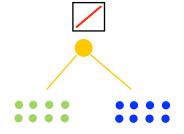
- An efficient approach for approximate K-NNG construction
 - Thirty times faster than t-SNE on 3 million data points
 - Better time-accuracy tradeoff
- An efficient probabilistic model for graph layout
 - O(NlogN) -> O(N)
 - Seven times faster than t-SNE on 3 million data points
 - More **effective** visualization layouts than t-SNE
 - **Stable** parameters across different data sets

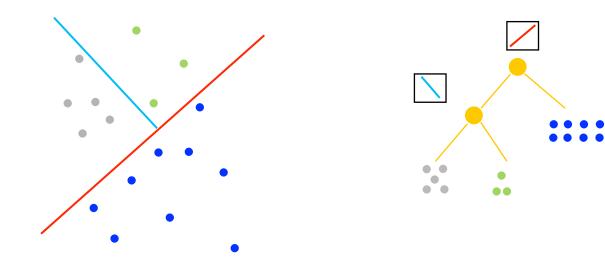
Random Projection Trees

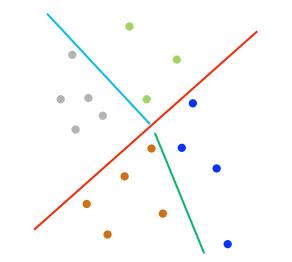
• Partition the whole space into different regions with multiple hyperplanes

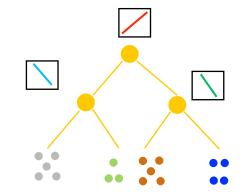






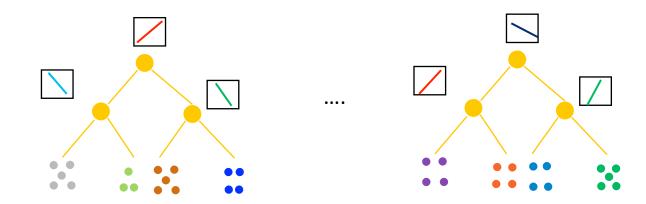






K-NNG Construction

- Search nearest neighbors through traversing random projection trees
 - Only data points in the leaf are considered as nearest neighbors
- Multiple trees are usually used to improve the accuracy
 - e.g., hundreds



Reduce the Number of Trees

- Construct a less accurate K-NNG with a few trees
- Iteratively refine the K-NNG through "neighbor exploring"
 - "A neighbor of my neighbor is also likely to be my neighbor"
 - Second-order neighbors are also treated as candidates of *first-order* neighbors

Results of K-NNG Construction

- X axis: accuracy of K-NNG
 - With different values of parameters
- Y axis: running time (minutes)
- tSNE: 16 hours (95% accuracy)
- LargeVis: 25 minutes
 - >30 times faster than t-SNE

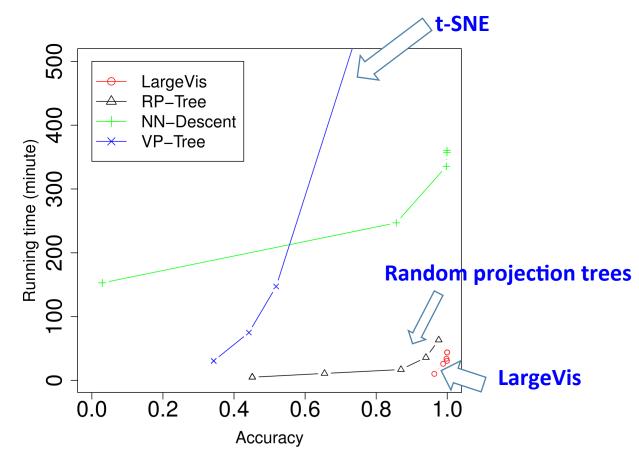


Fig.: Results on 3 Million Data with 100 Dimension

A Probabilistic Model for Graph Layout

- Preserve the similarities of the vertices in 2D/3D space
 - Represent each vertex *i* with a 2D/3D vector \vec{y}_i
 - Keep similar data close while dissimilar data far apart
- Probability of observing a *binary* edge between vertices (*i*,*j*):

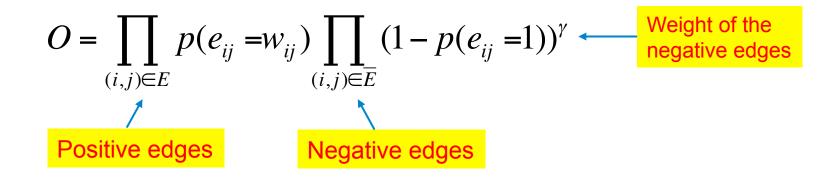
$$p(e_{ij} = 1) = \frac{1}{1 + \|\vec{y}_i - \vec{y}_j\|^2}$$

• Likelihood of observing a *weighted* edge between vertices (*i*,*j*):

$$p(e_{ij} = w_{ij}) = p(e_{ij} = 1)^{w_{ij}}$$

A Probabilistic Model for Graph Layout

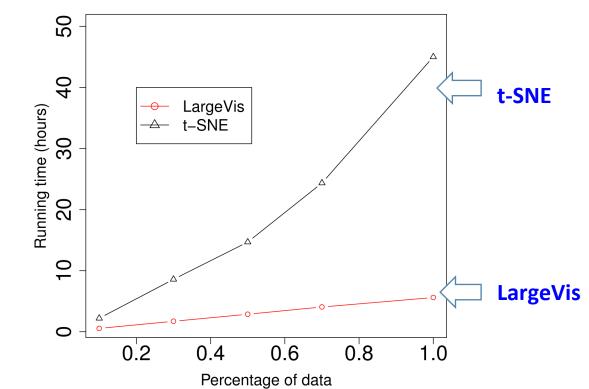
• Objective:



- Randomly sample some negative edges
- Optimized through asynchronous stochastic gradient descent
- Time complexity: *linear* to the number of data points

Efficiency of Graph Layout

- Time complexity
 - t-SNE: O(NlogN)
 - LargeVis: O(N)
- On 3 million data points
 - t-SNE: 45 hours
 - LargeVis: 5.6 hours
 - Seven times faster



Visualization Quality

- Metric: *classification accuracy* with KNN on 2D space
- Configuration:
 - LargeVis with *default* parameters
 - t-SNE with *default* and *optimal* parameters (tuned per data set)
- LargeVis ≈ tSNE with optimal parameters
- LargeVis >> tSNE with default parameters
- Parameters of LargeVis are very stable

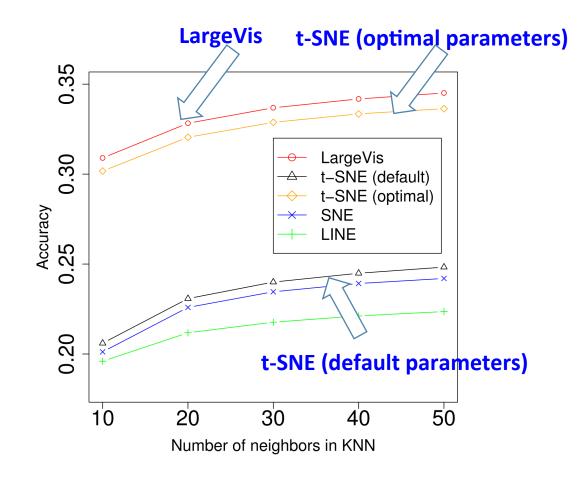


Fig.: Results on 3 Million Data with 100 Dimension

Take Away

- LargeVis: a new technique for big data layout
- Efficient K-nearest neighbor graph construction
 - Random projection trees + neighbor exploring
- Efficient and effective probabilistic model for graph layout
 - Complexity *linear* to the number of data points
 - Stable parameters
- The layout computed by LargeVis can facilitate many visualizations.
- We will release the source code very soon!

Microsoft Scientific Literature 6 (10M points) 5 **Computer Science** Mathematics 2 1 Physics 3 6 Economics 5 Biology 5 Chemistry 6 Medicine 7 3

Running Time (hours) of t-SNE and LargeVis

	~1M	~3M	~4M	~2M	~1.5M
Dataset	WikiWord	WikiDoc	LiveJournal	CSAuthor	DBLPPaper
t-SNE	9.82	45.01	70.35	28.33	18.73
LargeVis	2.01	5.60	9.26	4.24	3.19
Speedup Rate	3.9	7	6.6	5.7	4.9

Construct K-NNG on 3 Million Data with 100 Dimension

- X axis: accuracy of K-NNG
 - With different values of parameters
- Y axis: running time (minutes)
- LargeVis: ~ 2 hours
- Very hard to yield a very accurate K-NNG with random projection trees

