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Where	is	Computer	Science	in	the	map	of	all	Sciences?	
	

Where	is	WWW	among	all	fields	of	Computer	Science?	
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Computer Science vs. Mathematics 

Optimization 

Pattern Recognition 

Signal Processing 
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topic	90:	spectral	analysis	

topic	144:	Dynamic	system	analysis	

topic	56:		
	

topic	55	

Control Systems  
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WWW in Computer Science 
(1.7M points) 
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WWW v.s. KDD 
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Topic Evolution: WWW2001 
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Topic Evolution: WWW2002 
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Topic Evolution: WWW2003 
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Topic Evolution: WWW2004 
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Topic Evolution: WWW2005 
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Topic Evolution: WWW2006 
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Topic Evolution: WWW2007 
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Topic Evolution: WWW2008 
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Topic Evolution: WWW2009 
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Topic Evolution: WWW2010 
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Topic Evolution: WWW2011 
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Topic Evolution: WWW2012 
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Topic Evolution: WWW2013 
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Topic Evolution: WWW2014 
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Topic Evolution: WWW2015 
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Challenging to Visualize the Big Data 

•  Intuitive ways for data understanding and 
exploration 

•  Classical visualization techniques   
•  Scatter plots, network diagrams, heatmaps,... 
•  Requires 2D/3D layouts of data 

•  Real-world data are often Big 
•  E.g., images, text, speech and networks 
•  Large-scale (> millions) and high-dimensional ( > 

hundreds) 
Heatmaps 

Network Diagrams Scatter Plots 
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Related Work  

• Linear methods: e.g., PCA, MDS 
•  High-dimensional data are usually on a nonlinear manifold 

• Nonlinear methods: e.g., IsoMap, Laplacian Eigenmap. 
•  Only preserve local structures of data 

• Nonlinear method: t-SNE (Maaten and Hinton, 2008) 
•  Current state-of-the-art 
•  Preserve both local and global structures 
•  But difficult to scale up 
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Typical Pipeline of Data Visualization 

….	 ….	
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High-dimensional	Data	 K-Nearest	Neighbor	Graph	(K-NNG)	 2D/3D	Layout	

K-NNG 
Construction 

Graph 
Layout 

•  Limitations of t-SNE: 
•  K-NNG construction: complexity grows exponentially to the data dimension 
•  Graph layout: complexity is O(NlogN), where N is the number of data points 
•  Very sensitive parameters 
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Our Approach: LargeVis 

•   An efficient approach for approximate K-NNG construction 
•  Thirty times faster than t-SNE on 3 million data points 
•  Better time-accuracy tradeoff 

• An efficient probabilistic model for graph layout  
•  O(NlogN) -> O(N) 
•  Seven times faster than t-SNE on 3 million data points 
•  More effective visualization layouts than t-SNE 
•  Stable parameters across different data sets 
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Random Projection Trees 

•  Partition the whole space into different regions with multiple hyperplanes 

0	
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Random Projection Trees 
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Random Projection Trees 
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Random Projection Trees 
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Random Projection Trees 

40	



K-NNG Construction 

•  Search nearest neighbors through traversing random projection trees 
•  Only data points in the leaf are considered as nearest neighbors 

•  Multiple trees are usually used to improve the accuracy 
•  e.g., hundreds 

 

0	

….	
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Reduce the Number of Trees 

• Construct a less accurate K-NNG with a few trees 
•  Iteratively refine the K-NNG through “neighbor exploring” 

•  “A neighbor of my neighbor is also likely to be my neighbor”  
•  Second-order neighbors are also treated as candidates of first-order 

neighbors 
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•  X axis: accuracy of K-NNG 
•  With different values of parameters 

•  Y axis: running time (minutes) 
•  tSNE:  16 hours (95% accuracy) 
•  LargeVis:  25 minutes 

•  >30 times faster than t-SNE 

 

 

Results of K-NNG Construction 

LargeVis	

t-SNE	

Random	projecGon	trees		

Fig.: Results on 3 Million Data with 100 Dimension	
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A Probabilistic Model for Graph Layout 

•  Likelihood of observing a weighted edge between vertices (𝑖,𝑗):  
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p(eij = wij ) = p(eij =1)
wij

p(eij =1) =
1

1+ || yi
!"
− yj
!"!
||2

•  Preserve the similarities of the vertices in 2D/3D space 
•  Represent each vertex i with a 2D/3D vector  
•  Keep similar data close while dissimilar data far apart 

•  Probability of observing a binary edge between vertices (i,j): 
 

yi
!"



A Probabilistic Model for Graph Layout 

•  Objective: 

•  Randomly sample some negative edges 
•  Optimized through asynchronous stochastic gradient descent 
•  Time complexity: linear to the number of data points  

Positive edges Negative edges 

Weight of the  
negative edges 
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O = p(eij =
(i, j )∈E
∏ wij ) (1− p(eij =

(i, j )∈E
∏ 1))γ



Efficiency of Graph Layout 

LargeVis	

t-SNE	

• Time complexity 
•  t-SNE: O(NlogN) 
•  LargeVis: O(N) 

• On 3 million data points 
•  t-SNE: 45 hours 
•  LargeVis: 5.6 hours 
•  Seven times faster 
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Visualization Quality 
•  Metric: classification accuracy with KNN 

on 2D space 
•  Configuration: 

•  LargeVis with default parameters 
•  t-SNE with default and optimal parameters 

(tuned per data set) 

•  LargeVis ≈ tSNE with optimal 
parameters 

•  LargeVis >> tSNE with default 
parameters 

•  Parameters of LargeVis are very stable 

LargeVis	 t-SNE	(opGmal	parameters)	

t-SNE	(default	parameters)	

Fig.: Results on 3 Million Data with 100 Dimension	
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Take Away 
•  LargeVis: a new technique for big data layout 
•  Efficient K-nearest neighbor graph construction 

•  Random projection trees + neighbor exploring 

•  Efficient and effective probabilistic model for graph layout 
•  Complexity linear to the number of data points 
•  Stable parameters 

•  The layout computed by LargeVis can facilitate many visualizations. 
•  We will release the source code very soon! 
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Running Time (hours) of  t-SNE and 
LargeVis 

Dataset	 WikiWord	 WikiDoc	 LiveJournal	 CSAuthor	 DBLPPaper	

t-SNE	 9.82	 45.01	 70.35	 28.33	 18.73	

LargeVis	 2.01	 5.60	 9.26	 4.24	 3.19	

Speedup	Rate	 3.9	 7	 6.6	 5.7	 4.9	

~1M	 ~3M	 ~4M	 ~2M	 ~1.5M	
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•  X	axis:	accuracy	of	K-NNG	
•  With	different	values	of	parameters	

•  Y	axis:	running	Ume	(minutes)	
•  LargeVis:	~	2	hours		
•  Very	hard	to	yield	a	very	accurate	K-NNG	
with	random	projecUon	trees	

	

Construct K-NNG on 3 Million Data with 100 
Dimension 

LargeVis	

t-SNE	

Random	projecGon	trees		
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