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Abstract

In this paper we address the problem of visual instance mining, which is to automat-
ically discover frequently appearing visual instances from a large collection of images.
We propose a scalable mining method by leveraging the graph structure with images as
vertices. Different from most existing work that focused on either instance-level sim-
ilarities or image-level context properties, our graph captures both information. The
instance-level information is integrated during the construction of a weighted and undi-
rected instance graph based on the similarity between augmented local features, while
the image-level context is explored with a greedy breadth-first search algorithm to dis-
cover clusters of visual instances from the graph. This method is capable of mining
challenging small visual instances with diverse variations. We evaluated our method on
two fully annotated datasets and outperformed the state of the arts on both datasets with
higher recalls. We also applied our method on a one-million Flickr dataset and proved
its scalability.

1 Introduction
Visual instances are the basic re-occurring information in the visual world. In this paper
we address the problem of visual instance mining. Specifically, the goal is to automatically
discover frequent visual instances from a collection of images. We are interested in mining
specific instances, such as Air Force One and Monarch Butterfly, which are different from
high-level visual categories like plane and butterfly.

Visual instance mining plays a fundamental role in many tasks in multimedia analysis,
such as multimedia summarization [13], image archaeology [6] and trend prediction. Anoth-
er potential application of this work is automatic image annotation [12]. The visual instances
mined from a very large image database are likely to cover many representative instances.
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Figure 1: The framework of the proposed method for visual instance mining.

We can build a knowledge base with the semantics of discovered visual instances. Then an
unseen image can be matched to some indexed visual instances, whose semantic information
can be propagated. Some vertical applications, such as logo recognition [10], are also based
on visual instance mining.

The problem of visual instance mining brings two challenges. The first one is the mining
of small instances that have large variations. In many cases, visual instances may only cover
very limited image areas, which sometimes can hardly be noticed even by humans. Different
types of variations, such as scale, rotation, and occlusion, especially the variations result-
ed from out-of-plane rotation and non-rigid objects, require highly robust algorithms. The
second challenge is the scale of the dataset. A large-scale database is essential for discover-
ing practically useful visual instances. However, large-scale databases usually contain more
noises that significantly affect the performance of the methods designed on small databases.
Also, the need of high efficiency rules out complex and non-parallelizable methods.

Most existing work focused on large instance mining, or image clustering. A number of
methods based on min-hash [1, 2, 7] are developed for this purpose. Typically, min-hash val-
ues on BoW feature sets are computed and sketch collisions indicate matched image pairs.
These methods can find landmarks in large image collections, but they do not work well on
small instances, because the Jaccard similarity between two images sharing a small instance
is low, leading to a low min-hash collision probability. Furthermore, when the dataset is
large, the number of random collisions that lead to false positives will dramatically increase,
as analyzed in [16]. Philbin and Zisserman [9] constructed a matching graph by searching
with every image as a query in the dataset and then finds its dense sub-graphs. Their match-
ing graph is a powerful way to represent image-level context properties, but image search
with spatial verification makes the graph construction slow, and it also suffers from a low
recall due to the whole-image matching. Among a few methods that target for scalable small
instance mining, geometric min-hashing (GmH) [3] and thread of features (ToF) [16] are t-
wo representative works. GmH extends min-hash by considering the geometric relationships
between local features, thus being more tolerant with the size of instances. ToF first discov-
ers feature threads each of which consists of a set of local features with similar descriptors
and neighborhoods, then leverages min-hash collisions to find clusters of feature threads,
and generates final instance clusters by voting within each thread cluster. These methods
are capable of discovering small instances via instance-level local matches, but they do not
consider the structure of connections between images.

To tackle these two challenges, we propose a novel method that is robust and scalable
from the graph perspective for mining both large and small instances. We argue that a graph
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structure constructed by local matches not only helps to capture the similarities between
instances, but also reflects image-level context properties via indirect paths, thus combin-
ing the advantages of [9] and [16]. The framework is shown in Figure 1. First of all we
extract local SIFT [8] features, quantize them [11], and augment each local feature with
the Hamming Embedding [4] binary code of its feature vector and neighbor features. Then
we build a weighted and undirected instance graph with images as vertices. The similari-
ty scores between the augmented local features, which combine the HE weighting scheme
[5] and the Jaccard similarity of neighboring visual word sets, contribute to the weights of
edges between images. From the sparse instance graph we are able to efficiently discover
instance clusters by the proposed greedy breadth-first search algorithm. Experiments show
that our method outperforms the state-of-the-art ToF method on both clustering performance
and running speed.

The rest of the paper is organized as follows. We introduce the proposed method in Sec-
tion 2. Section 3 discusses some implementation details. Section 4 presents the experimental
results, followed by conclusions and future work in Section 5.

2 The Proposed Framework

As shown in Figure 1, our method has three steps: feature extraction, graph construction,
and instance clustering. Next, we discuss each step in detail.

2.1 Feature Extraction

Given a collection of images, the first step of our method is to extract local SIFT [8] fea-
tures from each image and quantize each feature to a visual word [11] using a one-million
codebook trained on a separate dataset. Each image is then represented by a set of features
F = { f1, f2, . . . , fn}, where n is the number of features. Each feature fi (1≤ i≤ n) is a tuple
< v,g,x,y,s >, where v is its visual word ID, g is the image ID, (x,y) is its location, and s is
its scale.

Due to the information loss of quantization and the limited discriminability of single local
features, we augment each local feature using the information of both the raw feature vector
and its neighbors. First, we compress the 128-dimensional floating-point SIFT feature vector
into a compact 32-bit binary code representation by Hamming Embedding (HE) [4]. HE
projects feature vectors to a 32-dimensional space by a random orthogonal matrix, and then
binarizes them with thresholds learned independently on each visual word. Conceptually, it
further partitions the Voronoi cell of each visual word to encode more information. Second,
we integrate the visual word IDs of its neighbor features, where the neighboring relationship
is measured by the Euclidean distance between feature locations. We only consider neighbor
features that have similar scale (scale ratio between 0.5 and 2) to the augmented feature.
Finally each augmented local feature is represented by the tuple < v,g,c,V >, where c is the
32-bit HE binary code and V is the set of neighboring visual words.

2.2 Graph Construction

After feature extraction and augmentation, we have a large set of augmented local features.
In this step we match the augmented local features to construct the instance graph and thus
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connect images. In this way the graph captures both instance-level similarities and image-
level context properties.

We first discuss the similarity measure between two augmented features, denoted by fi
and f j, where fi =< vi,gi,ci,Vi > and f j =< v j,g j,c j,Vj >. For the purpose of building
the instance graph, we are only interested in highly similar features. In order to efficiently
compute the similarity, we partition the feature space by the visual word v. In other words,
if vi 6= v j their similarity si j will be 0. This reduces the time cost to 1/w of the brute-force
method, where w is the codebook size which is one million in this work.

For fi and f j having vi = v j, the idea is to combine the similarity of their HE binary
codes and neighbor feature sets, as they are complementary to each other in terms of feature
discrimination. As in [5], we define the similarity score of HE codes as

sHE =− log2(
1
2l

h

∑
k=0

C(l,k)), (1)

where l is the length of HE code (32 in our work), h is the Hamming distance between ci and
c j, and the combinatorial function C(l,k) is computed by

C(l,k) =
l!

k!(l− k)!
. (2)

All the possible l + 1 values of sHE are computed in advance and stored in a look-up table.
The similarity score of neighbor feature sets is their Jaccard similarity:

sNR =
|Vi∩Vj|
|Vi∪Vj|

. (3)

As sHE is in the range [0, l] and sNR is in the range [0,1], we normalize sHE to [0,1] and the
final similarity between two augmented local features is

si j =
1
l

sHE + sNR. (4)

Note that sHE can be computed efficiently by XOR operation and table look-up, while
the computation of sNR is relatively slow. Therefore, to further speed up the computation, we
prune the computation process and set the similarity directly to 0, if the Hamming distance h
is larger than a certain Hamming threshold ht . As ht is usually small and h follows a binary
distribution B(l,0.5), this pruning technique can save remarkably much computational effort.
To increase the precision, we also set similarity to 0 if there are less than two common
neighbors in Vi and Vj.

Based on the defined similarity measure, we can construct the instance graph. The graph
G =<V,E > is a sparse weighted undirected graph. Each vertex v ∈V represents an image
in the database. For each feature pair of fi and f j that have non-zero similarity score, they
contribute the score si j to the weight of the edge e ∈ E connecting the two images gi and
g j. Multiple contributions to the same edge are combined by summing up all the scores,
resulting in an edge with a higher weight. The weight between two images reflects the
confidence that they share the same visual instances. High confidence can be gained either
by a single strong local feature match or multiple weak matches. Figure 2 illustrates two
instance graphs constructed from two datasets MQA [15] and PartialDup [14].
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(a) MQA

(b) PartialDup

Figure 2: Visualization of the instance graphs of two datasets (a) MQA and (b) PartialDup
(nodes without any connections are not shown), constructed by our method. Colors of ver-
tices illustrate the ground truth clusters. Edge width reflects the confidence of two images
sharing the same visual instance. The layout of each graph places together images which are
connected by high confidence edges. Clear clustering patterns can be observed.
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2.3 Instance Clustering
The instance graph gives a good insight of the structure of the image database. We propose
a greedy breadth-first search (GBFS) algorithm to discover clusters by exploring the graph
structure, given a specific image as entry point. The main idea is to add images in the
connected components in a layer-by-layer greedy way, while the rules become stricter as
more distant vertices are explored. The detailed algorithm is summarized in Algorithm 1.

Algorithm 1 GBFS Clustering on the Instance Graph
Input. The instance graph G and an image I.
Step 1. Initialize an instance cluster C that contains only one image I. Initialize an empty
queue Q and enqueue I to Q.
Step 2. Dequeue an image from Q and denote it as I∗. Find all neighbors of I∗ in the graph
G and order them by corresponding edge weights in a descending order. The neighbor set
is denoted as N(I∗). Remove from N(I∗) all elements that are already in cluster C.
Step 3. For each image in N(I∗), use a test (average weight test) to judge if it should be
added to C. If it is added to C, enqueue it to Q.
Step 4. Loop step 2 and step 3 until Q is empty or the search in the maximum search depth
dmax is completed.
Output. The instance cluster C.

In Algorithm 1, the average weight test computes the average weight between the test
image and each image already in C. It passes the test if and only if the average weight
is larger than a threshold wt . To punish images more distant from the input image I, wt
becomes larger as the search goes deeper. In our experiments, considering the efficiency and
the balance between precision and recall, we set the maximum search depth dmax = 2 and
wt = 0.5 when search depth is 1, and wt = 5 when search depth is 2.

The algorithm runs with each image as an entry point in turn. Note that there may be
duplicate and highly similar clusters obtained from different entry points. The duplicate
clusters can be simply removed without affecting the evaluations. Like our baseline ToF
[16] method, we do not further post-process similar clusters.

3 Implementation
The whole framework is implemented in parallel. Feature extraction is easy to parallelize,
as the computation on each image is independent. Instance clustering is also a parallel step,
since clusters obtained from different entry points can be computed at the same time. Graph
construction partitions the feature space to parallelize the input, but the output needs more
consideration. As different partitions may contribute to the same edge, we maintain a partial
instance graph within each feature space partition, and in the end we merge them together to
form the complete instance graph. The merging is much faster than the computation of the
similarity score, so it will not become a bottleneck of our method.

4 Experiments
In this section we first conduct experiments on two benchmark datasets, i.e., MQA [15] and
PartialDup [14] to evaluate the proposed method, and then apply it on a large scale dataset
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to show its scalability.

4.1 Benchmark Datasets

The MQA dataset [15] and the PartialDup dataset [14] are leveraged to quantitatively e-
valuate the performance of our method. The first dataset contains 438 images with 52 in-
stance clusters, while the second has 20 clusters and totally 782 images. We select these two
datasets because they have a variety of visual instance sizes and different types of intra-class
variations exist. MQA mainly emphasizes out-of-plane rotation, non-rigid objects, various
lighting conditions, and occlusion. On the other hand, PartialDup is closer to the definition
of web duplicates, having variations such as scale changes, in-plane rotation, different image
quality, and cropping.

4.2 Evaluation Measures

Let us use CGT to denote the set of ground truth clusters, and CDR the discovered cluster
set. The same evaluation measures as in [16] are adopted, which are based on image pairs
and called Pair Measures in this paper. They include Pair Precision, Pair Recall, and Pair F-
measure. Pair Precision (Ppair) is defined as the number of image pairs in both CGT and CDR
divided by the number of image pairs in CDR. Pair Recall (Rpair) is defined as the number
of image pairs in both CGT and CDR divided by the number of image pairs in CGT . Pair
F-measure (Fpair) is the harmonic mean of Ppair and Rpair.

We observed that Pair Measures cannot tell the difference between fragmented clusters
and a single big cluster, as long as they cover the same set of image pairs. Therefore, to have
a better evaluation, we also propose another type of measurements called Cluster Measures
that favor big clusters. For each cluster CA in CGT and every cluster CB in CDR, we com-
pute the precision as |CA ∩CB|/|CB|, the recall as |CA ∩CB|/|CA|, and the F-measure as the
harmonic mean of precision and recall. The CB with the best F-measure is selected, and its
precision and recall are defined as the measures for the ground truth cluster CA. Averaging
precision and recall over all the clusters in CGT results in the final Cluster Precision (Pcluster)
and Cluster Recall (Rcluster). Cluster F-measure (Fcluster) is the harmonic mean of Pcluster and
Rcluster.

4.3 Parameter Selection

There are two parameters that have large impacts on the performance, i.e., the number of
neighbor features |V | and the Hamming threshold ht . We tried different combinations of the
two parameters and plot the curves of Pair F-measure in Figure 3. Small |V | and ht will
reduce the memory cost and increase running speed, but we observed from Figure 3 that at
least one of them needs to be large to achieve a good performance, especially |V |. A small
|V | fails to provide enough neighborhood context information and reduces the discriminative
power of augmented features, while a small ht leads to low tolerance with variations. For
the MQA dataset, although using a very large |V | improved the F-measure, it resulted in an
apparent drop of precision and cost more memory space. Therefore, we set |V | = 50 and
ht = 5 for a balance. For the PartialDup dataset, we choose |V |= 30 and ht = 6.
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Figure 3: Performance of our method with different number of neighbor features |V | and
Hamming threshold ht on (a) MQA and (b) PartialDup.

4.4 Algorithm Comparison

As ToF outperforms other state-of-the-art visual instance mining methods [16], we adopt
ToF as our baseline. We implemented it by ourselves and achieved similar performance on
MQA dataset as in their paper with similar parameter configurations. Table 1 shows the
comparison results of ToF and our instance graph (IG) method on the two datasets.

From Table 1 we can see that, both Pair F-measure and Cluster F-measure of IG outper-
form those of ToF on both datasets, which resulted from a large recall improvement although
with a slight loss of precision. Figure 4 illustrates some clustering examples on the instance
graph, from which we can see the effectiveness of the graph structure in image relationship
representation over simple feature threads. Furthermore, IG performs much better than ToF
when using Cluster Measures. This indicates that ToF suffered from cluster fragmentation
while IG solved this issue by fully exploring the graph with the GBFS algorithm.

Table 1 also shows the results of two variations of our method. IG-HE defines the similar-
ity of augmented features simply as si j =

1
l sHE without the neighbor information. Compared

to IG, the performance of IG-HE dropped on MQA, but stayed at the same level on Par-
tialDup. This shows that neighbor information is more useful when viewpoints are changed
and non-rigid objects exist. IG-EW uses equal weights for different search depths in the
GBFS algorithm. The Pair Measures dropped dramatically as more noises were introduced.
However, the Cluster Measures became even better, which shows that indirect connections
contain context information for better clustering.

With a 16-core machine and the same level of code optimization, the core steps of ToF
(feature threading + thread clustering + cluster voting) cost 6.7s and 8.9s on MQA and Par-
tialDup, respectively, while the core steps of IG (graph construction + instance clustering)
only take 1.5s and 0.9s. This proves the efficiency of our IG method over ToF.

4.5 Instance Graph Visualization

Figure 2 visualizes the instance graphs of the two datasets, constructed with the best param-
eters. We can see that the graphs successfully captured the structure of the datasets, as clear
clustering patterns can be observed. The sparsity of the graphs is also confirmed, as their
average degrees of vertices are 1.26 and 11.17, respectively.
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Figure 4: Illustration of the high recall of the IG method over the ToF method on (a) MQA
and (b) PartialDup. The three images in each row demonstrate a search path in the instance
graph, where the left and the right images are connected via the middle one. ToF method is
not capable of discovering such relationships due to its thread structure and voting scheme.clusterbig
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Figure 5: Example clusters mined from the Flickr dataset. The discovered instances vary
from large-size buildings (rows 1 and 2) and medium-size sign (row 3) to small-size logo
and watermark (rows 4 and 5).
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Table 1: Performance comparisons on the MQA and PartialDup datasets.

Dataset Method Fpair Ppair Rpair Fcluster Pcluster Rcluster

MQA ToF 0.284 0.639 0.183 0.440 0.776 0.307
MQA IG 0.301 0.613 0.200 0.510 0.756 0.385
MQA IG-HE 0.294 0.618 0.193 0.506 0.758 0.379
MQA IG-EW 0.292 0.495 0.207 0.519 0.742 0.400

PartialDup ToF 0.745 0.887 0.643 0.477 1.000 0.313
PartialDup IG 0.757 0.835 0.693 0.717 0.983 0.565
PartialDup IG-HE 0.757 0.837 0.691 0.717 0.983 0.564
PartialDup IG-EW 0.587 0.467 0.792 0.839 1.000 0.723

4.6 The Scalability of the Proposed Method

We tested the scalability of our method on a dataset that contains one million images crawled
from Flickr. Due to the lack of ground truth, we do not quantitatively evaluate the instance
mining performance on this dataset. Figure 5 shows some example clusters automatically
discovered from the images. We can see that our method is capable of mining both large and
small visual instances with different types of variations. The core graph construction and
instance clustering steps only cost less than an hour with a 16-core machine, which shows
the scalability of our method.

5 Conclusions and Future Work

In this paper we have presented a scalable instance graph method to tackle the visual in-
stance mining problem. The instance graph is constructed via local matches and reflects the
global structure of an image database. We propose algorithms for efficient computation of
similarity between augmented features and discovering clusters on the constructed graph.
Experimental results show the superior performance of our method compared to the state of
the arts and also its scalability to large-scale datasets.

One possible future work is to fully explore the structure of the instance graph. For ex-
ample, weight propagation can be applied to update the similarity between images. Another
future direction is to improve the instance clustering method on the graph, making it more
effective and no longer require an entry point.
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