IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 7, JULY 2015

967

Partial-Duplicate Clustering and Visual Pattern
Discovery on Web Scale Image Database

Wei Li, Changhu Wang, Senior Member, IEEE, Lei Zhang, Senior Member, IEEE, Yong Rui, Fellow, IEEE, and
Bo Zhang

Abstract—In  this paper, we study the problem of
discovering visual patterns and partial-duplicate images, which is
fundamental to visual concept representation and image parsing,
but very challenging when the database is extremely large, such
as billions of images indexed by a commercial search engine.
Although extensive research with sophisticated algorithms has
been conducted for either partial-duplicate clustering or visual
pattern discovery, most of them can not be easily extended to this
scale, since both are clustering problems in nature and require
pairwise comparisons. To tackle this computational challenge,
we introduce a novel and highly parallelizable framework
to discover partial-duplicate images and visual patterns in a
unified way in distributed computing systems. We emphasize the
nested property of local features, and propose the generalized
nested feature (GNF) as a mid-level representation for regions
and local patterns. Initial coarse clusters are then discovered
by GNFs, upon which n-gram GNF is defined to represent
co-occurrent visual patterns. After that, efficient merging and
refining algorithms are used to get the partial-duplicate clusters,
and logical combinations of probabilistic GNF models are
leveraged to represent the visual patterns of partially duplicate
images. Extensive experiments show the parallelizable property
and effectiveness of the algorithms on both partial-duplicate
clustering and visual pattern discovery. With 2000 machines,
it costs about eight and 400 minutes to process one million and
40 million images respectively, which is quite efficient compared
to previous methods.

Index Terms—Local features, parallel algorithms, partial-
duplicate images, visual patterns.
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[. INTRODUCTION

ISUAL patterns are the basic re-occurring visual infor-

mation in the visual world, the discovery of which plays
an important role in computer vision research and applications.
Visual patterns can be defined in different ways according to the
semantic level and appearance variance. For example, trees can
be regarded as one pattern and the sky as another. These patterns
have clear semantic meanings, but with significant intra-class
variance. On the other hand, we can focus on a lower semantic
level with less appearance variance, like different logos or land-
mark patterns. Although the former class-level definition is very
useful for applications like image parsing and image categoriza-
tion, users normally prefer to search more specific patterns in
real-life applications. For example, in the augmented reality sce-
nario, it is more useful to tell a user that he is looking at a loquat
tree rather than only a tree, or the Kinkakuji Temple instead of
a temple. Thus, in this work we mainly focus on instance-level
visual pattern with limited appearance variance, which plays an
important role in specific object recognition.

Partial-duplicate images always share this kind of visual pat-
terns. With the explosive growth of web images and conve-
nience of image acquisition and sharing, more than 28% web
images have partial-duplicate images [1]. They mainly come
from manipulations on images by cropping and editing. Par-
tial-duplicate clustering in a web-scale database plays an impor-
tant role in many real-world applications, e.g., image annotation
by mining surrounding texts of partial-duplicate images [2].

Many works have been devoted to finding partial-duplicate
clusters in a collection of images [1], [3]-[6]. Most of them
are based on local features, either being tested only on small
datasets [5] or evaluated on small datasets and tested on mil-
lion-level datasets without detailed evaluations [3], [6]. A few
papers leverage global features, but they do so for image re-
trieval rather than clustering [4], or for partitioning huge image
sets into smaller disjoint ones [1]. Although methods like min-
hash show promising results [3], [S] with local features, when
the database scales up they suffer from scalability issues [1] and
have high false positive rates [6]. [ 1] is one of the few works that
address partial-duplicate clustering on a very large image data-
base, i.c., 2 billion images. It adopts global features to partition
image space and cluster images, followed by cluster merging via
matching local features. It has good scalability but low recall,
because the global feature-based partition only keeps globally
similar images rather than partial-duplicates with small local
region overlaps. We argue that these local regions are of great
importance for parsing images with finer granularity and dis-
covering visual patterns. This motivates us to develop an algo-
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Fig. 1. Overview of the proposed framework. Each circle represents a GNF. It illustrates the detection of one cluster and its visual patterns. From input images
(a) we first extract GNF groups as a mid-level representation for regions and local patterns (b). Initial clusters can be discovered efficiently by GNF matching (c).
n-gram GNFs are further defined for a more discriminative representation for visual patterns (d). Finally, efficient merging and refining algorithms (e) are used to
get partial-duplicate clusters as well as visual patterns modeled by logical (AN D /O R) combinations of GNFs (f). For more details please refer to Section II1.

rithm that can discover partial-duplicates even with very small
overlaps.

Some other works focus on discovering or representing visual
patterns without explicit partial-duplicate clustering [7]-[11].
Most of them are devoted to finding a higher level represen-
tation of objects and patterns than local features like SIFT [12],
e.g., visual phrase [7] or similar representations [8]-[11] that
combine several local features together. But the computational
cost of such kind of work is sometimes high and thus not easy to
scale up [7]. Moreover, sometimes image category information
is required prior to pattern discovery [10], [11].

Although partial-duplicate clustering and visual pattern dis-
covery were usually studied separately in the literature, the two
problems are actually coupled with each other. Images in the
same partial-duplicate cluster normally share the same visual
patterns, and visual patterns are the reason for cluster gener-
ation. This makes the problems more challenging, especially
in a super large database, e.g., billions of images indexed by
a commercial search engine, where some sophisticated algo-
rithms need to be avoided for efficiency and parallelization.

In this paper we propose a novel and highly parallelizable
framework to solve the two problems of partial-duplicate clus-
tering and visual pattern discovery in a unified way, as shown
in Fig. 1. To the best of our knowledge, this is the first work to
address these two problems at the same time. The main idea is
to first propose candidate visual patterns from each image and
cluster images by matching and filtering proposed patterns, fol-
lowed by the construction of more discriminative patterns and
the discovery of better partial-duplicate clusters. In this frame-
work, we utilize the nested relationship between local features,
from which we propose the generalized nested features (GNFs)
to represent spatially related local features as a mid-level rep-
resentation for regions and local patterns [Fig. 1(b)]. Based on
this representation, initial clusters can be discovered efficiently
by matching GNFs [Fig. 1(c)], and n-gram GNFs are further de-
fined for a more discriminative representation for visual patterns
[Fig. 1(d)]. Finally, efficient merging and refining algorithms
[Fig. 1(e)] are used to get partial-duplicate clusters, and logical
[AN D/OR] combinations of GNFs are leveraged to model the
visual patterns of partially duplicate images [Fig. 1(f)]. Based on
the intermediate n-gram clusters, we can also construct proba-
bilistic GNF models, which are more robust and expressive than
single GNF representation, and can facilitate applications like

image annotation and image retrieval. The framework and algo-
rithms are implemented on a distributed system with thousands
of machines to solve real-world problems. We conduct experi-
ments on a variety of public datasets with scales from hundreds
to 40 million images. Experimental results show the effective-
ness and high parallelization of the proposed framework on par-
tial-duplicate clustering and visual pattern discovery. With 2000
machines, it costs about 8 minutes and 400 minutes to discover
partial-duplicate image clusters and typical visual patterns from
1 million and 40 million images respectively. The efficiency and
highly parallelizable property make this framework practical to
scale up to the billions of images indexed by search engines.

One potential application of this work is automatic image
annotation [2]. The visual patterns discovered from a web-scale
image database might cover most representative patterns. Par-
ticularly for web images indexed by search engines, there are
rich surrounding texts and click information that links semantic
queries with clicked images. We can link this semantic infor-
mation with discovered visual patterns. An unseen image can
be matched to some indexed visual patterns, whose tags can be
propagated to this unseen image. Because of the local pattern
match, it is also possible to tag a local region instead of the
whole image. Another application is to discover the manipula-
tion history of web photos [13], based on the locally matched
parts of partial-duplicate clusters. We can also build a large
knowledge base from discovered visual patterns, facilitating
other object-level applications, such as object recognition.

The main contributions of this paper include: a) a novel and
highly scalable approach to solve partial-duplicate clustering
and visual pattern discovery in a unified framework which
has achieved promising results; b) the proposed GNF as an
improved method to represent and cluster visual patterns and its
modeling for applications such as image annotation; and c) the
implementation of this framework on a distributed system,
which differs from most previous works that used only a single
machine, to fully understand the properties of web-scale image
database.

The rest of the paper is organized as follows. In Section II we
discuss some related works and differentiate them from ours.
The framework and algorithms are presented in Section III. In
Section IV, experimental results are presented, followed by con-
clusions and future work in Section V.
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II. RELATED WORK

We briefly introduce some representative approaches related
to this work on partial-duplicate detection and visual pattern
representation and discovery.

Partial-Duplicate Detection: It is worth noting that par-
tial-duplicate clustering is different from partial-duplicate
retrieval, where the latter is a retrieval problem with com-
plexity of O(N), but the former is a clustering problem with
complexity of O(N?) in nature. The retrieval problem has
been intensively studied [14] since the first introduction of
the bag-of-words model to images and videos in 2003 [15]. In
particular, many algorithms have been developed to address the
problem of spatial information loss in the bag-of-words model
[8], [9], [16]-[19]. Spatial information is leveraged in different
ways. [8], [9], [19] constructed feature groups based on some
spatial relationships to increase the discriminative power of
local features. At the search time, [17] matched geometry-pre-
serving visual phrases with spatial information stored in the
index, and [18] integrated spatial correspondence in the simi-
larity measure. Reference [16] re-ranked retrieval results with
spatial verification. However, most of these techniques can not
be easily adapted to the clustering problem. It is also non-trivial
to directly apply the retrieval framework to clustering, which
essentially requires the use of every image in the database to
search for its partial-duplicate version. When the database size
increases to tens of millions or billions, clustering by search is
impractical simply because of its high computational cost.

Multiple feature hashing [20] is a recent work on near-dupli-
cate video retrieval. This algorithm learns hash functions that
map multiple global and local features to binary codes. Then
the similarity between two videos could be computed with the
Hamming distance between two representative codes, which
had high accuracy and efficiency. But the learning scheme re-
quires a number of matrix manipulations. Some of these ma-
trices have size N;-by-N;, where N; is the number of training
images. This restricts the scale of the training set. Furthermore,
it is non-trivial to design a robust and fast algorithm for clus-
tering simply based on the binary codes representation.

Among the few papers on partial-duplicate clustering, one
representative work was proposed by Chum and Matas [3]. It
first used s-tuple min-hash values based on local features to dis-
cover cluster seeds. Then retrieval techniques were leveraged
to find duplicates by using cluster seeds as queries. Geometric
constraints were further applied to local features to improve the
performance [5], and faster computation of min-hash signatures
could speed up the detection process [21]. The idea was further
extended by [6], where min-hash values were extracted from
image partitions on grids.

Although some of these min-hash-based approaches can ef-
fectively solve partial-duplicate clustering on a million level
database, it might suffer from the following issues when scaling
up even further. First, as pointed out in [6], on a very large scale
dataset false positives caused by min-hash is a serious problem.
It may lead to many wrong clusters. Second, the complexity of
the seed growing step is quite high. Chum and Matas [3] showed
that the computational complexity of seed growing is O(N L),
where N is the total number of images in the database and L

is the number of cluster seeds. As observed in [1], when N is
large, L is close to N and O(NL) ~ O(N?). In contrast, our
framework avoids such issues. We leverage feature groups and
appropriate matching thresholds to ensure precision. As can be
seen in Section III, the most time-consuming step in our frame-
work has complexity O(NG), where G is the average number
of GNFs that share the same bounding feature ID, which is nor-
mally orders of magnitude smaller than NV and L. Furthermore,
this step can be completed fully in parallel, resulting in an actual
running speed that is much faster than previous methods.

Another representative solution to duplicate clustering is [1],
in which global features were first used to partition image space
and cluster images, and then local features were adopted to
merge clusters. Although it can be scaled up to a billion level
database, it can only merge within similar subspaces measured
by global descriptors. Because many partial-duplicate images
on the web have large appearance variances, partitioning by
global descriptors would filter out many diverse images in the
cluster, leading to low recall.

Visual Pattern Representation and Discovery: After the
introduction of the visual phrase [7], many variances were
studied [8]-[11], [22] to obtain a higher level representation of
local visual information. For example, [10] constructed delta
visual phrases and clustered them into visual synset. Reference
[22] grouped local features with K-means and represented each
group with a compact descriptor. [9] is an effective method.
It grouped local features into bundling groups based on re-
gions detected by a second local feature detector. We base our
approach on nested features [8] for several reasons. First, it
is simpler and faster than most of the other methods. It only
uses one type of local feature and does not require complex
computations or image category information, which is quite
suitable for discovering patterns on a very large image database.
Second, Nested-SIFT outperformed bundling features [9] and
some other features in retrieval experiments [8], which showed
its discriminative capability. Third, nested features can be
generalized to handle images with very few features, e.g., logos
and objects with simple shapes, which are common on the web.

Discovering recurring patterns from a single image was
studied in [23]. Its idea of forming spatially related feature
groups to represent a pattern inspired our framework. Although
its algorithm can be adopted to detect patterns recurring in
different images, its high computational complexity makes it
impossible to be applied to web scale applications.

Instance-level object discovery is closely related to our work.
[24] discovered instance-level objects from scenes of daily
living. It used one or more image segments to represent an
object, which is different from our local-feature-based repre-
sentation. Also it focused on mining objects from daily scenes,
while we use web images as input. Reference [25] further
improved the framework with a large product image database
to tackle the problem of sparse observations and viewpoint
changes. It showed the power of data-driven methods. As in
our work, we also observe that the amount of data plays an
important role in visual pattern discovery.

A recent work [26] proposed thread of features for scalable
visual instance mining. It was shown to be very robust against all
kinds of intra-class variations. However, its precision on large
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datasets is very low, making it hard to be applied to real-world
applications.

There are many other works on visual pattern discovery and
we refer the readers to [27] for a more complete survey.

III. FRAMEWORK AND ALGORITHMS

In this section, we first give a brief overview of the proposed
framework, and then introduce detailed algorithms.

A. Overview

We design an effective and scalable framework to discover
representative visual patterns and partial-duplicate clusters, as
shown in Fig. 1. The key idea is to first from each image detect
some candidate visual patterns that have high probabilities to
find matches in other images. This essentially avoids the com-
binatorial explosion in visual feature group construction. The
candidate visual patterns are discriminative local feature groups
in each image, from which images with similar local patterns
can be roughly clustered together in a very efficient way. Then,
representative visual patterns can be discovered based on the
rough clusters, followed by refining partial-duplicate clusters
and combining visual patterns. To guarantee the efficiency and
parallelizability of the framework, we try to make these steps
as separate as possible, each of which can be formulated in the
map-reduce manner and thus fully parallelizable.

First, we extract generalized nested features (GNFs) for each
image (Section III-B), followed by the clustering algorithm
based on GNF matching (Section ITI-C). Then, a more discrim-
inative local pattern representation, n-gram GNF, is introduced
to improve the precision of image clustering (Section III-D).
Finally, clusters are further merged to increase the recall of
partial-duplicate clustering (Section III-E), the visual patterns
of which can be represented by the logical combinations of
GNFs (Section III-F). We also propose a probabilistic method
to model visual patterns based on intermediate n-gram clusters
(Section III-G).

B. Generalized Nested Feature Extraction

In this section, we introduce the proposed generalized nested
feature (GNF), which is a group of spatially related local fea-
tures and thus more discriminative. GNF not only serves as the
basic element of our visual pattern representation, but also plays
an important role in partial-duplicate clustering.

We briefly introduce the nested local features proposed by [8],
followed by the proposed GNFs.

1) Nested Local Features: In this work, we use the local fea-
ture described in [28] rather than SIFT [12] due to its discrimina-
tive power and efficiency. We use a pre-trained 1 million code-
book to quantize feature descriptors to visual words (all experi-
ments use the same codebook). Each local feature is represented
by: a) the {(z, y) location in the image, b) the orientation, c) the
scale, d) the quantized visual word ID, and e) the strength. The
strength of a local feature measures the response level of the
feature detector. More details on local feature extraction can be
found in [12] and [28].

Combinations of local features with spatial relationship have
been proven to be more discriminative. We base our work on
Nested-SIFT [8] because of its simple computation process, as
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bounding feature member feature

Fig. 2. Examples of nested feature groups in an image. Each circle represents
a local feature.

well as better performance than other ones such as bundling fea-
tures [9]. It is observed that, many local features are spatially
nested in other features in each image. Grouping the nested fea-
tures together can greatly increase the discriminative power of
local features and generates a higher-level representation for
local regions and patterns. It can also leverage geometric rela-
tionships between features in the same group. As defined in [8],
anested feature group consists of a bounding feature and several
member features that are spatially included in the bounding fea-
ture, as illustrated in Fig. 2. The minimum number of member
features in a group is set to two to remove trivial groups.

2) Generalized Nested Features (GNFs): We introduce the
generalized nested features (GNFs) based on [8] by adding the
selection strategy for nested features, and generalizing it from
nested features to neighbor features.

Nested Group Selection: One problem of the nested features
in [8] is that there is no feature ranking and selection strategy,
and thus all the nested groups need to be extracted and used. This
might lead to noisy groups of low repeatability, and increase the
computational complexity.

To solve this problem, we define the strength of each group
and only keep the strongest groups. Group strength can be de-
fined based on the strength values of its bounding feature and
member features. In this work, considering the efficiency of
group selection, we adopt the strength value of the bounding fea-
ture as the strength of the group. We also tested more complex
ways to calculate the group strength, such as combination of
strength of both bounding and member features, but did not ob-
serve obvious improvements. Experiments in Section IV show
that group selection can improve the performance. In all ex-
periments, the number of top groups is set to 100, which is a
trade-off between eliminating noisy groups and keeping useful
information.

Neighbor Feature Group: Another problem of the original
nested features is the difficulty in finding spatially nested fea-
tures when dealing with small images with simple shapes and
textures. This is an important issue for our problem, because a
large portion of web image thumbnails that we target are these
kinds of data, for example logos, simple line drawings, diagram
charts, etc.

Thus we generalize the nested relationship to a neighborhood
relationship. For a local feature that does not belong to any
nested group, we find its 10 nearest neighbors and construct a
group with that feature as the bounding feature and its neigh-
bors as member features. Note that for local features which al-
ready belong to one or more nested groups, we do not construct
any neighbor groups to avoid redundant information and noise.
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Fig. 3. TIllustration of two kinds of GNF. (a) shows a nested feature group. The left figure illustrates how to assign region IDs, in which the arrow represents the
orientation of the bounding feature. The right figure shows an example group with region IDs marked in member features. Similarly, (b) illustrates neighbor feature

group.

Section IV shows the effectiveness of adding neighbor feature
groups. Nested feature groups and neighbor feature groups are
constructed in different ways and thus should be considered sep-
arately when matching GNFs.

GNF Definition and Representation: The generalized nested
features (GNFs) include both nested and neighbor feature
groups. The set of GNFs in an image can be formulated as F
= Fnqg U F,,, where F,qy = {f1,f2,..., fu} is the set of
u nested feature groups and F,, = {fut1, fut2s---s futv}
is the set of v neighbor feature groups. Each GNF f € F is
represented by a 5-tuple < b, M, R, s,t >, where b is the visual
word ID of the bounding feature, M = {m;} is the visual word
IDs of member features, R = {r} is the geometric locations of
the member features, s is the strength of GNF, and # is the type
of GNF (nested or neighbor). The geometric locations rj are
represented by region IDs relative to the scale and orientation
of the bounding feature. For nested feature groups we divide
the area of the bounding feature into 8 regions as in Fig. 3(a),
numbered from 0 to 7. For neighbor feature groups, as the
member features usually appear outside the bounding feature,
we only consider the orientation but not the distance, resulting
in 4 orientation regions as a weaker geometric constraint, as
shown in Fig. 3(b).

C. Clustering via GNF Matching

With each image represented by GNFs, we apply a di-
vide-and-conquer strategy for image clustering for efficiency.
We first divide all GNFs to different buckets according to their
bounding IDs, i.e., the visual word IDs of their bounding fea-
tures. Each bucket thus contains GNFs with the same bounding
ID and the number of buckets equals to the codebook size.
Then, for each bucket, we conduct GNF clustering indepen-
dently, making it efficient and fully parallelizable. Note that,
each GNF corresponds to one image, and thus each image
with multiple GNFs might belong to multiple clusters. In later
steps we will allow GNFs with different bounding IDs to be
merged together on some conditions. Also note that one image
might have some identical GNFs due to recurring patterns. We
found this is rare in the experiments and does not affect our
framework; thus we do not consider it separately.

The codebook size affects the number of buckets as well as
the matching criteria during clustering. If the codebook is too
small, each bucket will have many images, leading to higher
computational cost. On the contrary, if a very large codebook
is used, the matching criteria will become too strict to discover
various clusters. Therefore in this work, we choose 1 million as

the codebook size. Similarly-sized codebooks were widely used
in related works.

Next, we will first introduce the GNF similarity measurement
and clustering algorithm for each bucket, followed by the anal-
ysis of computational complexity.

1) GNF Similarity: To conduct clustering, we first define the
similarity between two GNFs. As there are two kinds of GNFs,
we consider the following three conditions.

1) Two nested feature groups. The similarity is defined as in
[8]. Matched member features contribute to the similarity
score. As aforementioned, a member feature in a GNF is
represented by its visual word ID m and its region ID
r. We consider all member feature pairs < m;, r; > and
< mj,r; >.1fm; = m;, which means that they have the
same visual word ID, there will be an ID match. If both
m; = m; and r; = 7; are satisfied, which means that they
not only share similar appearances but also are located at
similar positions relative to their bounding features, we
call it a geometric match. Let .S; be the weight for one ID
match, and S, for one geometric match, the similarity is
given by

S =14+ N;5+ Ny5, )]

where N; and IV, are the numbers of ID matches and geo-
metric matches. Note that if two features are geometri-
cally matched, they are also counted in ID match. In the
experiments we empirically set S; to 1 and S, to 6.

ii) Two neighbor feature groups. As neighbor feature groups
have the same representation as nested feature groups, the
score computation is also similar. The difference is that
geometric match will occur more frequently than nested
feature groups, because of the weak geometric constraint.
Thus, we reduce the geometric match weight to avoid
false positives. The similarity score is

Szl-l—]\“Tz‘Si—i-NgTSg. ?)
iii) One nested feature group and one neighbor feature group.
Nested feature groups and neighbor feature groups are
constructed in different ways. Thus, it is meaningless to
match them. We also observed many false matches in ex-
periments if considering this kind of matching. Therefore

we define

S=0. 3)
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Fig. 4. Unigram GNF with poor discrimination capability. Each circle repre-
sents a GNF. In this example, each region contains a T-shape pattern. We can
see that although these GNF's belong to one unigram GNF, they actually corre-
spond to different semantics.

2) Clustering: Based on the GNF similarity measurement,
we leverage the e-clustering algorithm [1] for GNF clustering.
This algorithm connects two points if they are similar enough
(controlled by a distance threshold) and outputs the connected
components as clusters. An appropriate threshold is important
for this algorithm and will be further discussed in Section IV.
K-means algorithm is another option. However, it is inappro-
priate to use K-means, as the number of clusters K is normally
close to the number of images given the nature of the partial-du-
plicate clustering problem where single images (without dupli-
cates) are considered as individual clusters. This makes it diffi-
cult to estimate K beforehand. Also K-means is not as efficient
as e-clustering because it requires multiple iterations. We thus
choose e-clustering in this work.

After e-clustering, we get many coarse clusters. Each cluster
corresponds to one type of GNFs, and every GNF in the cluster
is linked to one image. The clustered GNFs are repeatable and
representative, while less meaningful GNFs such as those on the
background are filtered. However, these clusters are generated
via simple matching rules within the same bucket. The simple
matching rules are not sufficient to achieve a good trade-off be-
tween precision and recall. For example, many partial-dupli-
cate images may exist in different buckets. Therefore further
merging and refining steps are needed.

3) Complexity Analysis: Clustering is the most time-con-
suming step in this framework. The algorithm complexity is
O(VG?), where V is the size of codebook used for feature
quantization, and G is the average number of GNFs that
share the same bounding feature ID. During the construction
of GNFs, because of the top group selection, the number of
GNFs in one image is less than a certain number and thus
can be treated as a constant. It is therefore easy to know that
O(VG) = O(N), where N is the number of input images.
Therefore, the complexity can be rewritten as O(NG). In prac-
tice, when a large codebook is used, G is orders of magnitude
smaller than N. Thus theoretically it is much more efficient
than previous methods like [3]. Furthermore, since different
buckets are independent, it is easy to process multiple buckets
in parallel, making it even faster.

D. n-Gram GNFs

Although GNF matching leverages geometric information to
ensure spatial consistency, it still fails in some cases. Recall that
each cluster corresponds to a set of visually similar GNFs. They
can be considered as a quantized GNF called unigram GNF.
Fig. 4 shows an example where unigram GNF has poor dis-
crimination capability. Many web images contain texts, grids
and simple shapes, and quantization errors are likely to occur
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in these cases. Thus a single GNF is sometimes not sufficient
to represent a meaningful pattern for clustering. Therefore, we
propose n-gram GNFs, i.e., n co-occurrent GNFs, to address
this issue.

1) n-Gram GNF Construction: The basic idea is that, if a
unigram GNF is not discriminative enough, another one will be
combined with this one to compose a pair of GNFs, i.e., bigram
GNF. In the same way we can get a 3-gram (unigram+bigram)
or 4-gram (bigram + bigram) GNF if this bigram GNF is not
discriminative, and so on. In this work, we only adopt unigram
and bigram GNFs for efficiency.

Let U be the set of unigram GNFs that our framework dis-
covers. For each unigram GNF » € U, we check whether it
is ambiguous by measuring the similarities of the images in its
cluster. Specifically, top 40 local features (ordered by strength)
are extracted from each image, and then we pairwise compare
images in the same cluster by top features to see if they match.
More than 6 common top features in two images indicate a
matched image pair. If the ratio of matched image pairs is above
a certain threshold (50%), we judge that u is representative, oth-
erwise it is ambiguous. In this way U is split into two sets U, and
U, containing representative and ambiguous unigram GNFs re-
spectively. Then we consider two different GNFs u; € U, and
u; € U,. Of all possible u; and u;, we only select the fre-
quently co-occuring ones (their clusters share common images
and no spatial relationships between u; and u; are required),
and < u;,u; > is called a bigram GNF. All such < u;, u; >
pairs form the bigram set B. The final cluster of a bigram GNF
is the intersection of its two unigram clusters, making sure that
each image in the cluster have both patterns. U, U B becomes a
set of more discriminative patterns.

The n-gram GNF construction process can be easily for-
mulated in the map-reduce manner, and thus is quite scalable.
Specifically, in the map stage, we check all possible < u;, u; >
pairs and filter them by comparing their clusters to see if they
frequently co-occur. The selected pairs are outputted to the
reduce stage, where bigram representations are constructed and
corresponding clusters are merged.

2) Representation: As a result, there are both unigram and
bigram GNF clusters, in which each image has a corresponding
pattern represented by a unigram or bigram GNF. Bigram GNFs
or higher-order n-gram GNFs can be treated as the logical
AND of two or more unigram GNFs. Each image can have
several n-gram GNFs, and thus distributes in several clusters.

E. Cluster Merging and Refining

1) Merging: As aforementioned, an image might have
different representative patterns (i.e., n-gram GNFs), and thus
might belong to different clusters, as shown in Fig. 5. Therefore,
if two clusters share a high proportion of images, we merge
them as a new cluster. The merging threshold controls the
balance between precision and recall. A small threshold leads
to many possible merging operations and increases the noise.
On the other hand, a large threshold barely helps to increase
recall. In the experiments this threshold is set to 50% of the size
of the smaller cluster empirically. The merged visual pattern is
represented by logical OR of two n-gram GNFs. That is, any
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Fig. 5. Illustration of two clusters which can be merged to form a larger cluster.
Not all patterns can be detected in an image due to manipulations and quantiza-
tion errors.
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Fig. 6. Example of logical combinations of visual patterns in an image. The
image has one unigram GNF and one bigram GNF, and we can represent it by
concatenating GNFs with logical operators AN D and OR.

one of them is sufficient to identify the semantics of the merged
cluster.

For efficient implementation, an inverted index structure is
used to avoid pairwise comparisons.

2) Refining: Although the recall of partial-duplicate clus-
tering is significantly improved after merging, the precision of
some clusters may drop as merging introduces noises. There-
fore, cluster refining is necessary as a post-processing step to
guarantee high precision for the final results. In this step, we in-
dependently process each cluster; this step is also suitable for
parallel computation.

We assign a unique ID to each n-gram GNF (corresponds to
a cluster before merging). We call it a super code in this work,
as it can be considered as a more discriminative visual word.
Each image is then represented by multiple super codes. For
each cluster after merging, we remove outlier images by e-clus-
tering, having at least C common super codes as the threshold.
In experiments C' is checked from 1 to 6 to get the best param-
eter. This will eliminate a large portion of false positives, im-
proving precision while maintaining the level of recall.

F. Logical Operations on GNFs

The unigram GNFs obtained after GNF clustering are the
basic components of the visual pattern representation. The
n-gram GNF generation introduces the logical operator AN D,
while cluster merging brings the OR operator. As a result,
each image in partial-duplicate clusters is represented by the
logical combinations of unigram GNFs, which indicate the
visual pattern model of that image, as shown in Fig. 6.

In this way, each image can be represented by a few super
codes, which are the quantized type IDs of its frequently occur-
ring GNFs. This representation is more compact and discrimi-
native than the original local features. Note that the number of
super codes in an image is not only far less than the number of
local features, but also less than the total number of GNFs, as
some GNFs are filtered during clustering.

G. Visual Pattern Modeling

Here we introduce a method to model visual patterns in a
probabilistic way, based on which it will be easy to calculate the
similarity between an n-gram GNF and a model, facilitating the
recognition of unseen images and other potential applications.

1) Super Code Probabilistic Model: As aforementioned,
super code means a set of similar n-gram GNFs. We introduce
a probabilistic model to represent it. Here we only discuss the
modeling of a set of unigram GNFs, which can be directly
extended to n-gram GNF models, i.e., the AN D combination
of n unigram models. In the rest of this section, we use GNF to
represent unigram GNF for short.

In our framework, all GNFs corresponding to a super code
share the same bounding feature ID, but they may have dif-
ferent member features. It is apparent that if a member feature
frequently occurs, it will carry more information and thus is
more important in this model. So we define the weight W, of a
member feature a as

_ Hflf € Fse,a € £l
|Fsc|

where Fseo is the set of GNFs corresponding to the spe-
cific super code and ¢ € f means that a is a member
feature of GNF f. If two member features have the same
visual word ID but different region IDs, they will be con-
sidered as two different member features. In this way, we
have the distribution of member features and their locations.
Fig. 7 shows an example. The probabilistic model of a super
code contains: a) bounding feature ID, b) a list of < member
feature ID,region ID,weight > tuples, and ¢) GNF group
type (nested/neighbor). Note that GNFs in Section III-F can be
replaced with models to get a better representation.

2) Matching GNF and Model: For recognizing unseen im-
ages and many other applications, sometimes it is necessary to
compute the similarity between a GNF (in an unseen image) and
amodel. When matching a unigram GNF and a model, first they
must share the same bounding feature ID and the same GNF
group type, otherwise the similarity is defined as

W, “

S = 0. (%)
If the group type is a nested feature group, the similarity is com-
puted by

P Q
S =Y WpSi+ > W,S, (6)
p=1 g=1

where P and () are the number of ID matches and geometric
matches respectively, W, and W, are weights of matched
member features in the model, and \5; and S, are the scoring
weights of ID match and geometric match respectively (1
and 6 in our experiments). If the group type is a neighbor
feature group, the similarity, considering the weak geometric
constraint, is calculated by

P WS
S =S W5+ S 279 7
]; » ; i @)
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Fig. 7. Visualization of super code modeling. In this example, there are three unigram GNFs in the cluster. Different colors represent different visual word IDs
and line width of member features in the model illustrates the weights. (a) Unigram GNF 1. (b) Unigram GNF 2. (¢) Unigram GNF 3. (d) Model.

For n-gram GNFs, the similarity score is the sum of all unigram
scores if all n bounding IDs and group types match, otherwise
itis 0.

IV. EXPERIMENTS

We evaluate the proposed framework and algorithms on a va-
riety of datasets for partial-duplicate clustering and visual pat-
tern discovery. We will first introduce the experiments on some
small datasets, and then extend to Clickture datasets with 40 mil-
lion web images.

A. Evaluations on Small Datasets

We first introduce the datasets, evaluation measures, and
baseline algorithms. Then, the proposed algorithms are evalu-
ated and compared.

1) Datasets: We adopted two datasets with ground truth clus-
ters to evaluate the clustering performance of our framework.
The first one is the PartialDup dataset used in [9]. It contains
782 images with 20 clusters. Images from the same cluster are
partial-duplicate images obtained from the web. The second is
the UKBench dataset [29]. It has 10200 images in total and
every four images are in one cluster, resulting in 2550 clus-
ters. The images in each cluster have the same object taken from
different views. Note that for web images which we focus on,
the partial-duplicates are mainly caused by manipulations rather
than view changes, so we will prefer best settings of PartialDup
dataset for larger datasets.

2) Evaluation Measures: There are a variety of evaluation
measures in the literature [3], [5], [6]. In order to extend the
evaluation measures to datasets without ground truth in later ex-
periments, we designed a new method to measure the clustering
performance. Different evaluation measures will not change the
conclusions.

For each ground truth cluster C'gr, we first find all resulting
clusters with matched images, denoted as candidate clusters. For
each candidate cluster Cop, we calculate its precision (P), re-
call (R), and F-measure (F') as below. The candidate cluster
with the best F' is selected, and the corresponding P, R and F’
are considered as results of the ground truth cluster C'grp.

Car NCepl|
P=——"" 8
Con) )]
Cer NCepl
R=—"—— 9
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Fig. 8. Performance achieved by the baseline LFC algorithm with the best
matching threshold 7" under different numbers of top features K. (a) and
(b) show results on the PartialDup and UKBench datasets, respectively. Note
that F' is not necessarily between P and R as the three measures are averaged
independently.

We average the three measures over all ground truth clusters to
get the final results.

3) Baseline Algorithm: We treat the BoW-based clustering by
search algorithm as our baseline algorithm, which was actually
considered as the upper bound of local-feature-match-based par-
tial-duplicate clustering in web-scale databases in [1], [2]. Note
that the min-hash-based solution [3], [5] is also an efficient ap-
proximation of the BoW-based search approach.

In the baseline algorithm, top K local features in each image
are extracted and quantized using the same codebook as in our
framework. For every image in the dataset, we take it as a query
and match it with all other images. If the number of matched
feature pairs is above a threshold 7', the image will be retrieved.
All retrieved images plus the query image form a cluster. This
simple local-feature-based algorithm (LF) can be further im-
proved by pairwise comparison (LFC). Instead of querying the
dataset, we directly conduct e-clustering on the dataset with the
same 7" as the distance threshold. LFC performs slightly better
than LF in our experiments, but it is not as scalable as LF. LFC is
used as a baseline on small datasets. For the Clickture datasets,
considering the scalability issue, we use LF as the baseline. Ex-
periments show that changing baseline from LF to LFC or vice
versa will not affect the results and conclusions.

Parameters K (number of top features) and T (matching
threshold) are important for the clustering result. With a fixed
K, alarger T increases the precision while decreases the recall.
Thus, an appropriate 7' is required. The influence of K is
more interesting. Fig. 8 shows the performance curves on two
datasets with K changed. For each K we adopt the best T' for
evaluation. The conclusion is that a moderate K performs the
best. The reason is that a small K leads to too few features,
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Fig. 9. Clustering performance (F-measure) of our framework with different
group construction methods and matching thresholds on (a) PartialDup and
(b) UKBench datasets.

while a large K leads to too many weak features with noises.
For the PartialDup dataset the best configuration is K = 20
and T' = 2. For the UKBench dataset it is K = 40 and T’ = 4.
Results with these parameters will be compared with ours.

4) Evaluation on Different Settings: In this section, we eval-
uate the feature group construction methods and GNF matching
thresholds. The final clustering results after cluster merging and
post-processing are used for comparison, in which the feature
group construction part has three options: a) all nested feature
groups (NF), b) only top nested feature groups (NF-T), and
c) the proposed generalized nested feature (GNF).

Fig. 9 shows the comparison results of F-measure with dif-
ferent thresholds and group construction methods. We can see
that on the PartialDup dataset, GNF performs best among the
three methods, while NF is the worst. NF-T improves preci-
sion by removing noise groups. GNF further improves recall by
the use of neighbor feature groups, especially for image clusters
with simple shapes and patterns. We also find that an appropri-
ately chosen threshold helps balance precision and recall.

However, on the UKBench dataset group selection decreases
the performance, and neighbor feature groups only slightly im-
prove the results. That is because UKBench contains larger im-
ages than PartialDup, and more effective local features can be
extracted from each image. Thus, it becomes less discriminative
when using only top features. Another reason is that, the im-
ages in UKBench are photos taken from different views, which
are likely to have complex textures, so most features belong to
nested feature groups rather than neighbor groups.

Our goal is to conduct large-scale image clustering on web
images, in which thumbnail images will be leveraged for effi-
ciency, and images with simple shapes and textures such as cli-
part images and logo images will exist. Thus, the target dataset is
more similar to PartialDup than UKBench. Since GNF can gen-
erate fewer groups and is more robust for images with fewer fea-
tures, we adopt GNF as the feature group construction method
in the next experiments.

5) Comparison of Algorithms: Finally, we compare our
framework with the baseline. We use SC (short for super code)
to refer to the final clustering results of the proposed framework.
Both LFC and SC use the best parameter settings, including K,
T and GNF matching threshold. Table I shows the results. It is
obvious that our framework outperforms the baseline, with an

TABLE I
COMPARISONS OF DIFFERENT ALGORITHMS
ON PARTIALDUP AND UKBENCH DATASETS

[ Dataset | Algorithm [ F [ P [ R |
PartialDup LFC 0.672 | 0.838 | 0.650
PartialDup SC 0.776 | 0.900 | 0.756
UKBench LFC 0.499 | 0.947 | 0.412
UKBench SC 0000 | 0917 | 051

improvement of about 0.1 absolute F-measure on both datasets.
This shows the effectiveness of our framework.

B. Evaluations on Clickture Datasets

We further evaluate the proposed framework on larger scale
and practical web image datasets. First, we introduce the ex-
periment settings, including datasets, evaluation measures, and
baseline algorithm. Then, experiments are conducted to eval-
uate the proposed algorithms and framework on partial-dupli-
cate clustering. After that, we illustrate the effectiveness of vi-
sual pattern discovery and GNF modeling, followed by paral-
lelizability and statistics of the framework.

1) Datasets: The Clickture-Lite and Clickture-Full datasets
[30] are used in the following experiments. Clickture-Lite
contains 1 million thumbnail images from a commercial
image search engine, while Clickture-Full is a superset of
Clickture-Lite, containing 40 million images. They are good
samples of web images. Each image in these two datasets has
corresponding search engine queries and their click counts by
real users. Such information was collected from search engine
logs and provides a good description of image contents. We use
Clickture-Lite to further evaluate clustering algorithms, and
Clickture-Full to test the scalability and the visual patterns.

2) Evaluation Measures: Clickture-Lite does not have
ground truth clusters, and it is hard to manually label the whole
dataset. Thus, we designed a fair approach to compare two
algorithms without full ground truth. The basic idea is to first
make the two methods achieve similar precision by adjusting
parameters, and then use one as ground truth to evaluate the
recall of the other one.

In our case, we compare the clustering results of LF (baseline
local feature matching) and SC (final output of our framework)
algorithms. Next we will give the details of forward and inverse
evaluations.

i) Forward evaluation. We first randomly sample some
clusters from the results of LF (500 clusters in this
paper). Each cluster is manually labeled whether it was a
correct partial-duplicate cluster. A strict labeling rule is
used. A cluster is labeled as positive only if it has 100%
precision. The LF precision Py is given by the number
of positive clusters divided by the number of sampled
clusters. Then we keep the positive clusters as ground
truth to evaluate the recall and extension of SC.

The recall R g measures the proportion of images that
SC can correctly discover in each positive LF cluster,
while the extension E g measures the number of images
that SC can discover compared to LF. For each positive
LF cluster Cr, i, we first calculate the recall of all SC clus-
ters, and select the SC cluster with the best recall as the
matched SC cluster. The recall and extension of that SC
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Fig. 10. (a) Recall and (b) extension of our framework (Bigram SC) with
different GNF matching thresholds on Clickture-Lite dataset. Performance
without bigrams (Unigram SC) and performance of coarse clusters without
cluster merging and refining (Bigram/Unigram coarse) are also presented for
comparison.

cluster ('s¢ are adopted for this LF cluster, as defined

below.
Rse = [Cur N Cscl (11)
|Crr
|Csc|
Fqr = 12
SC = Gl (12)

Averaging over all LF clusters results in the final Rg¢
and Fso measures.

i1) Inverse evaluation. The steps are very similar to for-

ward evaluation. We could get Ps, Rpr and Epp by
switching the roles of LF and SC in forward evaluation.

In summary, from forward evaluation, we obtain the preci-
sion of LF Py, as well as the recall and extension of SC Rg¢
and s, while from inverse evaluation, we get Pg~, Ry and
Frp. A large Rg¢ means that SC discovers most images that
LF can find, while a large E g indicates that SC discovers more
diverse images that LF cannot find. Because the data are not
fully labeled, we do not know the accuracy of the extension
value. However, since we can make the precision of the two
algorithms at the same level, the comparison between Frr and
Fsc does make sense.

3) Baseline Algorithm: In the baseline algorithm LF, we set
the number of top features K = 40 and match threshold T’ = 8.
The value of K was set according to the experiments on small
datasets. Because our framework has high precision (Pg¢ >
0.93), we need to find a configuration with high precision for LF.
Thus T was set to 8, which is the minimum number that ensures
clustering precision more than 90%. With this configuration we
have Prr = 0.912. The average number of images of the 500
sampled LF clusters is 23.23, and the average number of images
of the 456 correct ground truth LF clusters is 13.31.

4) Bigrams and Thresholds: We want to find a proper GNF
matching threshold T'h to get a similar precision as LF, and then
compare recall and extension with LF. Fig. 10 shows the recall
and extension curves with T'h from 8 to 40. Th = 8 means that
two GNFs (with the same bounding ID) have a geometric match.
It is the minimal value we can adopt to guarantee the geometric
relationship, and a lower threshold will cause the precision to
drop fast. As T'h increases, Rgc and Ego both decrease, and
we find that the precision Pg (Bigram SC) achieves 95% when
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TABLE 11
COMPARISON OF LF AND SC ON CLICKTURE-LITE DATASET

[ Method | Algorithm | P | R | E |
Unigram LF 0912 | 0.840 | 0.871
Unigram SC 0.930 | 0.940 | 1.783
Bigram LF 0912 | 0.889 | 0.937
Bigram SC 0.950 | 0935 | 1.722

Fig. 11. Bad cases generated by the baseline algorithm. That is because local
features are not discriminative for text and grid patterns. However, our frame-
work can avoid this kind of results by using more discriminative representation,
i.e., n-gram GNF.

Th = 8, and continues increasing with a larger (stricter) Th.
Thus, Th = 8 is a good choice for GNF matching.

Fig. 10 also shows the performance without bigram GNFs
(Unigram SC) and the performance of coarse clusters without
cluster merging and refining (Bigram/Unigram coarse) for com-
parison. Bigram increases the precision by combining unigrams
(for example by 2% when Th = 8), with the slight cost of re-
call and extension. The performance of coarse clusters is much
worse than SC when the matching threshold is relatively small,
showing the necessity of cluster merging step. For large thresh-
olds it becomes better than SC, because they make the post-pro-
cessing step after cluster merging too strict, and thus affect the
recall of SC.

5) Comparison of Algorithms: Table 11 shows the evalua-
tion results of LF and SC with their best parameters. Results
without and with bigrams are all provided. We can see that our
framework greatly outperforms the baseline method on all mea-
sures. With an appropriate GNF matching threshold, our frame-
work can achieve better precision while discovering more di-
verse image clusters. As aforementioned, the usage of bigram
GNFs improves the precision at the cost of recall loss. As the
increase of precision is more obvious (and for many applica-
tions, more crucial) than the decrease of recall, bigram becomes
a necessity in our framework.

Fig. 11 shows two cases in which LF fails, where images con-
tain texts and grids. These cases are quite common in web im-
ages, which are hard to differentiate by local features. However,
our framework can avoid most of them by using more discrim-
inative representation, i.e., n-gram GNF. For a wrong cluster
like this, SC usually either generates no corresponding cluster
or produces some subsets of it that contain full-duplicates.

Fig. 12 shows two LF clusters and their corresponding SC
clusters, the Mona Lisa and the world map. They are two ex-
amples of popularly manipulated images. A variety of transfor-
mations and modifications exist in these images, some of which
are not easily identified even by humans. We can see that SC
can detect more diverse images, apparently outperforming LF.
Meanwhile, it does not sacrifice precision.



LI et al.: PARTIAL-DUPLICATE CLUSTERING AND VISUAL PATTERN DISCOVERY ON WEB SCALE IMAGE DATABASE 977

o2

B
w“jg
&
BT
DhEE
:

T
mm S
| ,

S Y S
LA ACA T A

|

B

J 5

PEDrr | RS
DR
TN

PEiiw | miir

B R

(@)

- LA Al R,
h§? *,W,: %E“’ -
o - AR WA o

(more omitted)

(b)

Fig. 12. Two LF clusters (top) and corresponding SC clusters (bottom). We can see that SC clusters have better recall and diversity. (a) Mona Lisa. (b) World map.
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Fig. 13. Sampled images from three clusters detected on Clickture-Full dataset.
The selected clusters are all from top 20 clusters ordered by cluster size, each
of which has more than 1000 images with almost perfect precision.

We also run our framework with the Clickture-Full dataset,
with the best parameter settings on Clickture-Lite. Fig. 13 shows
some sampled images from detected clusters. The selected clus-
ters are all from top 20 clusters ordered by cluster size, each of
which has more than 1000 images with almost perfect precision.
Some of the images are highly modified, including cropping,
overlapping and occlusion. It shows that the increase of dataset
size does not lower clustering performance. On the contrary, as
there are more diverse images in larger databases, the advan-
tages of our framework might be more obvious.

6) Visual Patterns and Applications: We now have a close
look at the discovered visual patterns. Fig. 14 shows some ex-
amples of image visual pattern representations. The areas of
the bounding features in GNFs are shown as circles, and corre-
sponding local patches are cropped for illustration. We observe
that most of these visual patterns are quite discriminative.

Next we link semantics to visual patterns. We assume that
each image has several keywords (either surrounding texts or
click data), which describe the image content. The keywords of
an image can be propagated to an n-gram GNF if the image con-
tains this GNF. Thus, each n-gram GNF corresponds to a col-
lection of keywords. For a pattern model pattern with keyword
collection C, we can define the probability P(w|pattern) as

k|k Ty k=
P(w|pattern) = | {klk < %] wi
k

(13)

where w is a specific keyword in the dictionary. This proba-
bility distribution describes the relationship between keywords
and patterns. Similarly we can get the probability distribution
of keywords given a cluster P{w|cluster). The probabilistic
representation of pattern semantics and cluster semantics will
be useful to a variety of applications. We leveraged click logs
of each image in Clickture datasets to generate the image key-
words. For each image we compute the distribution of keywords
in its click logs and select top three keywords.

Fig. 15 lists some frequently occurring visual patterns with
top three keywords ordered by P(w|cluster). We can see that
the visual patterns and keywords have good semantic relation-
ship. Furthermore, the local patches are quite discriminative.

One application is to use discovered visual patterns to rec-
ognize visual patterns of unseen images. To guarantee fast
matching, we build an index for all pattern models by hashing
bounding IDs and group types, so that only a very small portion
of models need to be checked when matching GNFs with our
models.

We first compute all GNFs of an unseen image using the
same way in our framework. For each GNF, we find all matched
models in the index and compute similarity scores. Let M be the
number of matched models and §; be the similarity with the jth
model. For a keyword w we define its probability to this GNF
as

E;\il S;P(w|pattern;)

P(w|GNF) = = (14)

where F is the normalization factor.

Fig. 16 shows some example results. The pattern models were
learnt from Clickture-Full, and the testing images are from a
separate image set without intersection with Clickture-Full. We
can see that the detected local patterns and assigned keywords
matched well.

7) Parallelizability and Statistics: To test the parallelizability
of the proposed framework, we leveraged a distributed system
with thousands of machines to implement this framework. We
tested on the Clickture-Lite dataset with 50 and 2000 nodes in
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Fig. 14. Some example images with discovered visual patterns and their logical representations.
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Fig. 15. TIllustrations of frequently occurring visual patterns and corresponding top three cluster keywords. Visual patterns are visualized as local patches.
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man 0.253
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lightning 0.273
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Fig. 16. Example results of detected local patterns for unseen images. For each result the circle indicates position and size of the local region, and top three

keywords with their probabilities are listed next to the image.

turn. The e-clustering by GNF matching has the highest com-
plexity and cost the most time. It took about 3 hours on 50 nodes,
but only 5 minutes on 2000 nodes. This shows the full paral-
lelizable property of the framework, since when the number of
nodes increased to 40 times, the running time reduced to about
1/40. The whole framework cost about 8 minutes using 2000
machines, which is quite efficient.

With 2000 nodes, Clickture-Full was also completed in a rea-
sonable time. GNF matching took about 4 hours, and the whole

framework cost less than 7 hours. By comparing with Click-
ture-Lite, we find that running time is almost linear to the dataset
size. One reason is that we removed some stopwords before
GNF matching, most of which are meaningless. We believe that
with careful parameter selection, algorithm speedup, and more
computing resources, it is not hard to scale this framework to
billion-level database.

Table III summarizes some statistics of the two datasets. We
also find that the results on these two datasets have similar pre-
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TABLE III
SOME STATISTICS ON CLICKTURE-LITE AND CLICKTURE-FULL DATASETS
Dataset Lite Full
#images 1,000,000 | 40,000,000
#clusters with 3+ images 17,876 1,331,218
#clusters with 10+ images 953 156,903
Joimages with 2+ duplicates 8.3% 20.5%
#GNF types 721,580 32,600,318

cision (about 95%). That means with our framework, scaling up
the database will help discover more clusters and visual patterns
without precision loss.

V. CONCLUSION AND FUTURE WORK

We have presented in this paper a novel and highly scalable
framework to cluster partial-duplicate images and discover vi-
sual patterns in web scale image databases. Each step in the
framework was deliberately designed to ensure good perfor-
mance, fast speed, and high parallelization. Experimental re-
sults showed that our framework performed much better than
the baseline algorithm (which sometimes was considered as an
upper bound in web-scale image clustering), and the discov-
ered visual patterns were discriminative and semantically mean-
ingful. Experiments also verified its good scalability.

Despite of the superior performance of our framework, it
has some limitations. As our framework requires a relatively
strict matching rule, it is not very robust to large variations of
viewpoint and non-rigid objects. One possible future work is
to explore more robust visual pattern representation to tackle
this variance problem. Furthermore, we will try to scale up the
database to the order of billions, and then build a visual pat-
tern knowledge base, based on which many computer vision
tasks can be completed. Some vertical applications related to vi-
sual patterns may also be considered in the future, such as logo
recognition [31] and [32] and product recognition.
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