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ABSTRACT

We propose a simple, efficient and effective method using deep con-
volutional activation features (CNNs) to achieve stat- of-the-art clas-
sification and segmentation for the MICCAI 2014 Brain Tumor Dig-
ital Pathology Challenge. Common traits of such medical image
challenges are characterized by large image dimensions (up to the
gigabyte size of an image), a limited amount of training data, and sig-
nificant clinical feature representations. To tackle these challenges,
we transfer the features extracted from CNNs trained with a very
large general image database to the medical image challenge. In this
paper, we used CNN activations trained by ImageNet to extract fea-
tures (4096 neurons, 13.3% active). In addition, feature selection,
feature pooling, and data augmentation are used in our work. Our
system obtained 97.5% accuracy on classification and 84% accu-
racy on segmentation, demonstrating a significant performance gain
over other participating teams.

Index Terms— deep convolutional activation features, deep
learning, feature learning, segmentation, classification

1. INTRODUCTION

Feature representation plays an important role in the medical im-
age field. Since there are different image modalities, such as MRI,
CT and digital histopathology images in the medical domain, even
though images are acquired from the same patient for a certain dis-
ease, their morphologies, textures and color distributions vary sig-
nificantly. For example, brain tumor scan images from MRI and
histopathology show distinct patterns, making it hard to apply a gen-
eral pattern for brain tumor detection on both image sources. There-
fore, feature representation [1] is a top priority in high-level medical
tasks such as classification and segmentation. A lot of research has
focused on feature design of various types, such as object-like fea-
tures and texture features. However, their applications are limited
due to the special designs.

In addition, an insufficient amount of training data is another
major concern in the medical domain. Since training data depends
on the number of disease incidences, it is usually harder to col-
lect than images of natural scenes. Also, the detailed annotation
of medical images is a challenging task. Manual annotation is not
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only labor-intensive and time-consuming, but also intrinsically am-
biguous even when labeled by clinical experts. Therefore, a limited
amount of available training data is common in medical image tasks
and indeed poses a great challenge to solving real-world problems
using feature learning. In our case, there are only 45 images for
classification and only 35 images for segmentation.

Deep convolutional activation features have achieved great suc-
cess in computer vision in recent years [2, 3, 4, 5, 6, 7, 8]. The emer-
gence of large image databases such as ImageNet, comprising more
than 10 million images and more than 20,000 classes [6], makes it
possible for CNNs to provide sufficient feature description for gen-
eral images. In this paper, we explore the potential of using Ima-
geNet knowledge via deep convolutional activation features to ex-
tract features for classification and segmentation, as highlighted in
the MICCAI 2014 Brain Tumor Digital Pathology Challenge [9].

Glioma is a kind of brain tumor with several subtypes based on
their glioma grade. High grade glioma includes anaplastic astrocy-
tomas and glioblastoma multiforme [10]. The characteristics that
distinguishes high grade glioma from low grade glioma (LGG) is
the presence of necrotic regions in the glioblastoma multiforme and
the presence of hyperplastic blood vessels and megakaryocytes [11].
Figures 1 (a) and (b) show samples from GBM and LGG histopathol-
ogy images.

(a) (b) (c) (d)
Fig. 1. Samples of (a) GBM and (b) LGG; and samples of necrosis images.
(c) Raw image. (d) Ground truth image; Gray mask represents necrosis.

In sub-challenge I, the task was the classification of glioblas-
toma multiforme (GBM) and low grade glioma (LGG) using digi-
tal histopathology images. A standard histopathology image can be
scanned at a resolution as big as 100, 000 × 100, 000 pixels, which
can contain about 1 million descriptive objects. Therefore, it is diffi-
cult to design special pathological features for distinguishing GBM
and LGG. We introduced deep convolutional activation features to
describe pathological features of brain tumors. In our method, the
inputs need to be resized to 224 × 224 pixels to fit our CNN model
trained by ImageNet. If an original image is resized to 224 × 224
pixels, pathologists cannot recognize it correctly. One key step in our
approach for classification requires some tailoring to fit the proper-
ties of CNN features, namely feature pooling. Similar to the activity
of visual neurons in the mammalian primary visual cortex, our CNN
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activation feature vector is fairly sparse (4096 neurons, 13.3% ac-
tive), which, according to [12] and cross-validation, indicates that
3-norm pooling may be more suitable to our task. Therefore, we
adopt 3-norm pooling to integrate the final features for each image.
In addition, feature selection is used to select a subset of more rele-
vant features and to reduce redundant or irrelevant features. Finally,
selected features are passed to a linear SVM [13] for classification.

Necrosis is a significant indicator to distinguish LGG from
GBM. In sub-challenge II, the task was a segmentation of necrosis
and non-necrosis regions from GBM histopathology images (See
Figures 1 (c) and (d)). We cast the segmentation problem as a clas-
sification problem. An image is split into many patches as either
necrosis or non-necrosis. Necrosis patches are considered as pos-
itive samples while non-necrosis are considered as negative. The
features of patches are extracted by CNNs. A linear SVM [13] is
applied to classify these patches of necrosis and non-necrosis. The
discriminative probability (or classification confidence) maps for
each pixel are created by the mean of the confidences of all the
patches containing the pixel.

2. RELATED WORK

Feature representation design is a popular topic in histopathology
images. Expert designed features include morphometric features
[14], fractal features [15], texture features [16] and object-like fea-
tures [17]. However, study [18] has pointed out that features learned
by a two-layer network with non-linear responses using unlabeled
image patches are superior to expert designed representations when
it comes to histopathology images. Nayak [19] introduces sparse
features learning using the restricted Boltzmann machine (RBM) to
describe histopathology features in GBM and clear cell kidney car-
cinoma (KIRC). These two methods show that feature learning is
better than special feature designs. However, a limited amount of
training data is a universal challenge to feature learning. In our case,
similar problems arose because there were only 45 images for clas-
sification and only 35 images for segmentation. Based on the above
two points, we used CNN features trained by ImageNet to represent
features in brain tumor histopathology images.

Deep CNN features used as generic descriptors are a growing
trend. Some publicly available CNN models have been used to ex-
tract features: Caffe [20] is utilized in works [20, 3, 2] and Over-
Feat [21] is used by [8]. The CNN features are usually used in
classification and object detection tasks [20, 3, 2, 8]. The above-
mentioned related work only focuses on nature images. To the best
of our knowledge, this is the first attempt to transfer CNN features to
histopathology images and achieve state-of-the-art performance in a
pathology image challenge.

3. ALGORITHMS

3.1. CNN architecture

The CNN model we used is generously provided by the Cognitive-
Vision team in ImageNet LSVRC 2013 [5]. The CNN architecture is
similar to the one used in [6], but without the GPU split, since mod-
ern GPUs have enough memory for the entire model. The graphical
representation of the architecture is shown in Figure 2. Note that
this model was trained on the entirety of ImageNet; thus it is not
the same one the CognitiveVision team used in ILSVRC 2013. The
code used for training and extracting features is based on [6]. During
training, the data pre-processing and data augmentation techniques

introduced in [6] were used, turning input images of various reso-
lutions to 224 × 224 input for the network. For feature extraction,
since input patches are already 224× 224, no rescaling or cropping
was needed. In this paper, 4096-dimensional output of the last hid-
den layer, i.e., the second-to-last fully connected layer, is used as our
extracted feature vector (highlighted in Figure 2).
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Fig. 2. The architecture of the CNN model used in this work. The blue
arrow indicates the layer whose output is our CNN feature.

3.2. Classification framework

The vast size of histopathology images makes it necessary to extract
features locally. To this end, we divide each histopathology image
into a set of overlapping square patches with a size of 336×336 pix-
els determined by cross-validation. The patches form a rectangular
grid with which adjacent patches have 25% overlap (i.e. 84 pix-
els). To reduce the number of patches with only white background,
if the RGB values of all pixels in a patch are all greater than 200, that
patch is discarded. All patches are then resized to 224×224 pixels to
form 4096-dimensional CNN feature vectors. All the feature vectors
of an image are computed over a 3-norm pool based on the theo-
retical analysis of feature pooling [12] and cross-validation, which
yield a final single feature vector for the whole image. The equation
of 3-norm pool is computed by fP (v) = ( 1

N

∑N
i=1 v

P
i )

1
P , where

P is 3, N is the number of patches of an image and vi is the 4096
dimensional feature vector of the ith patch.

Feature selection is necessary in order to select a subset of more
relevant features and to reduce redundant or irrelevant features. Fea-
tures are selected based on the rank of difference between GBM and
LGG. The difference of the kth feature dimension is computed as
follows: diff k =

∣∣∣ 1
NGBM

∑NGBM
i=1 vik − 1

NLGG

∑NLGG
i=1 vik

∣∣∣ (for k =

1, . . . , 4096, where NGBM and NLGG are the number of GBM and
LGG in the training set, and vik is the kth dimensional feature of the
ith image.). The top 100 features with the largest differences were
chosen as our final features.

Finally, a one-vs-one linear SVM is used to classify GBM and
LGG. The regularization parameters C of SVM are determined by
cross-validation. Figure 3 shows the pipeline of our classification
framework.

Fig. 3. Flow diagram of classification framework. The inputs include
both GBM (positive) and LGG (negative) images. We sample patches of
336 × 336 pixels on a regular grid. Because the inputs of the CNN model
are 224 × 224 pixels, all patches are resized to 224 × 224 pixels. A 4096-
dimensional CNN feature vector is extracted for each patch. Feature pooling
and feature selection are used to obtain a 100-dimensional feature vector for
each image. A linear SVM automatically classifies GBM and LGG. Orange
square: GBM; Brown square: LGG.

3.3. Segmentation framework
The segmentation methods of medical images can mainly be divided
into three categories: unsupervised [17], weakly supervised [22] and
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supervised learning [15]. Compared with supervised learning, un-
supervised and weakly supervised methods often lead to inferior re-
sults. Therefore, we have chosen a supervised method to segment
necrosis and non-necrosis in GBM.

In our work, we pose the segmentation problem of an image
as a collection of classification problems on its patches. Figure 4
describes the pipeline of our segmentation framework. Patches are
sampled on a regular grid at a size of 112×112 pixels in 8-pixel
strides. If the necrosis area of a patch is greater than 50% of the patch
area, the patch is labeled as a necrosis patch, and vice versa. The
classification problem is to distinguish necrosis from non-necrosis.
Necrosis patches are considered as positive instances while non-
necrosis are considered as negative instances. All patches are resized
to 224× 224 pixels to obtain a 4096-dimensional CNN feature vec-
tor similar to the previous classification workflow. A linear SVM
is used to learn the segmentation model. Since a pixel can be cov-
ered by overlapped patches with their respective labels, a confidence
score of the pixel is computed based on the mean of the confidence
scores of these patches containing the pixel from the SVM classifier.
The discriminative probability (or classification confidence) maps
for each pixel are created by the corresponding confidence scores.
Next, we obtain segmentation results of necrosis by the threshold
generated by cross-validation. We then conduct a post process, such
as removing very some amounts of very tiny noise and filling some
small holes.

In addition, we further make two changes to the training data for
the last submission model. (1) We have observed that hemorrhage
tissues appear in both necrosis and non-necrosis regions. Therefore,
hemorrhage patches in necrosis regions are relabeled as non-necrosis
patches. In the prediction stage, necrosis regions containing hemor-
rhages are predicted to be non-necrosis patches. The phenomenon
usually appears in the interior area of necrosis. Thus, the post pro-
cess recognizes these patches as necrosis. (2) We have observed that
training images are nonuniform and have various sizes. The training
data is not evenly distributed. In the last model for submission, we
augmented the instances of missed regions and false regions gener-
ated by leave-one-out cross-validation on the training data.

Fig. 4. Flow diagram of the segmentation framework. The inputs include
both necrosis (positive) and non-necrosis (negative) images in GBM. We
sample 112 × 112 patches on a regular grid (stride=8). All patches are
resized to 224 × 224 pixels. A 4096-dimensional CNN feature vector for
each patch is extracted. A linear SVM classifier distinguishes positive and
negative. Probability mapping images are generated using all predicted confi-
dences. After smoothing, necrosis segmentations are formed. Orange square:
necrosis; Brown square: non-necrosis.

4. VISUALIZATION OF CNN ACTIVATION FEATURES

We visualize individual components of the responses of neurons in
the last hidden layer (4096 dimensions) to observe the properties
of CNN features. The degree of relevance of activated neurons is

determined via the high-to-low ranking of weight values from the
classification training model. For the relevant neurons, we select
patches that activate them the most. Figure 5 shows some samples
(each row stands for a relevant neuron).

One of the most significant hallmarks is distinct image appear-
ances and similar semantic features, e.g. clinical features. For exam-
ple, the property of cell heteromorphism (1st row), cell hemorrhage
(3rd row), angiogenesis (5th row) and uniform cell size (9th row) can
be discerned from the neurons in Figure 5 respectively. These clini-
cal features can adequately distinguish GBM and LGG. The visual-
ization demonstrates that we can successfully transfer CNN features
to capture semantic features of medical images in nature.

Fig. 5. Sample discriminative patches found with individual components
(neurons) of the CNN activation features. Each row of patches causes a high
response in one of the 4096 neurons. Note the variance of appearance prop-
erties in each row. All the images come from 45 training datasets in the
classification task.

5. EXPERIMENTS

5.1. Datasets

The training data is provided by the organizers from the TCGA web
[23]. In sub-challenge I, the training set includes 23 GBM images
and 22 LGG images. The test set includes 40 images. In sub-
challenge II, the training set includes 35 images. The average num-
ber of necrosis pixels of a training image is 1, 330, 000±1, 520, 000.
The average number of non-necrosis pixels of a training image is
2, 900, 000± 3, 790, 000. The test set includes 21 images.

5.2. Comparison

We made a comparison with our methods in both classification and
segmentation. We compared CNN features with manual features for
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generic object recognition in our two tasks. Manual Feature (MF):
Generic object recognition features were chosen, including SIFT,
LBP, and L*a*b color histogram. The feature dimension is 186.
CNN-F: The last full connection layer was used to extract features
(4096 dimensions).

Classification: MCIL [22]: The patch extraction setting is the
same as our method. The softmax function here is the GM model and
the weak classifier is the Gaussian function. The parameters in the
algorithm are the same [22]. Image-level SVM: A whole pathology
image is directly resized into 224× 224 pixels. The CNN-F is used.
SVM-MF: The features used are manual features. The rest is the
same as our method. SVM-CNN: Our method.

Segmentation: GraphRLM [17]: The method is an unsu-
pervised method to distinguish cancer or non-cancer in colon
histopathology. The parameters in our experiment are set as:
rmin = 8, rstrel = 2, winsize = 96, distthr = 1.25, and
compthr = 100. SVM-MF: The features used are manual. The
rest is the same as our method. SVM-CNN: Our method.

5.3. Evaluation

In classification, accuracy is used as the evaluation method. In seg-
mentation, given the ground truth map Gi and the probability map Pi

generated by the algorithm, the score of an image is Si =
2|Pi∩Gi|
Pi+Gi

.
The evaluation score (called accuracy) is the mean of Si (for i =
1, ...,K, where K is the number of images).

5.4. Results

Classification Our final submission in the challenge achieves an ac-
curacy of 97.5% on the test data, ranking first among other partic-
ipants. The increase in accuracy compared to the second place is
7.5%. Table 1 summarizes the performances of some of the top-
performing approaches. We also conduct the experiment only in the
training data using 3-fold cross-validation. Table 2 compares the per-
formances from the experiments. Compared with manual features
(MF), CNN features are powerful in improving performance. Due
to the characteristics of large scale images, the image-level SVM
method was the worst at recognizing LGG and GBM. Compared
with the MCIL algorithm, our method was 6.7% better. Compared
with SVM-MF, SVM-CNN improved from 77.8% to 97.8%.

Table 1. Classification performance in the challenge

Accuracy Place
Anne Martel 75.0% 4th
Hang Chang 85.0% 3rd

Jocelyn Barker 90.0% 2nd
Our method 97.5% 1st

Table 2. Comparison with other methods for classification

MCIL Image-level SVM SVM-MF SVM-CNN
91.1% 62.2% 77.8% 97.8%

Segmentation Our final submission to the challenge achieved first
place with an accuracy of 84% on the test data. Our top perform-
ing model surprisingly improved by 11 points compared with the
second team. Table 3 shows the top performances from the other
participating teams. In addition, we made a comparison of the ex-
periments in segmentation including GraphRLM [17], SVM with
manual features and our submitted method. Figure 6 shows some
results from leave-one-out cross-validation only using 35 training

data. The GraphRLM method is an unsupervised method to seg-
ment histopathology tissue images. It is not suitable for segmenting
necrosis and non-necrosis regions. The performance of manual fea-
tures showed 64% accuracy while the performance of CNN features
showed 84% accuracy. A gain of CNN features over manual features
was 31%.

Table 3. Segmentation performance in the challenge

Accuracy Place
Anne Martel 63% 4th
Hang Chang 68% 3rd

Siyamalan Manivannan 73% 2nd
Our method 84% 1st

Fig. 6. Image Types: (a): The original images. (b): The gray mask repre-
sents necrosis. (c),(d),(e): GraphRLM, SVM-MF, SVM-CNN. Purple: true
segmentation; Pale red: missed segmentation; Orange: false segmentation.

6. CONCLUSION

In this paper, we have introduced deep convolutional activation fea-
tures trained by ImageNet knowledge in the MICCAI 2014 Brain
Tumor Digital Pathology Challenge. We successfully transferred
ImageNet knowledge as deep convolutional activation features to
histopathology image classification and histopathology image seg-
mentation with relatively little training data. CNN features are sig-
nificantly more powerful than manual features (an improvement of
20 points in both classification and segmentation). In addition, due to
the large size of histopathology images, feature pooling is used for a
single feature vector in our classification method. Experimentations
have demonstrated that this efficient method can achieve a-state-of-
the-art accuracy of 97.5% for classification and 84% for segmenta-
tion in the brain tumor challenge. In the future, we will attempt this
method on other image tasks in the medical image field.
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