Recognizing Actions in 3D using Action-Snippets and Activated Simplices

Chunyu Wang¹, John Flynn², Yizhou Wang¹, and Alan L. Yuille²

¹Nat'l Eng. Lab. for Video Technology, Cooperative Medianet Innovation Center
Key Lab. of Machine Perception (MoE), Sch'l of EECS, Peking University, Beijing, 100871, China
{wangchunyu, Yizhou.Wang}@pku.edu.cn
²Department of Statistics, University of California, Los Angeles (UCLA), USA
{john.flynn,yuille}@stat.ucla.edu

Abstract

Pose-based action recognition in 3D is the task of recognizing an action (e.g., walking or running) from a sequence of 3D skeletal poses. This is challenging because of variations due to different ways of performing the same action and inaccuracies in the estimation of the skeletal poses. The training data is usually small and hence complex classifiers risk over-fitting the data. We address this task by action-snippets which are short sequences of consecutive skeletal poses capturing the temporal relationships between poses in an action. We propose a novel representation for action-snippets, called activated simplices. Each activity is represented by a manifold which is approximated by an arrangement of activated simplices. A sequence (of action-snippets) is classified by selecting the closest manifold and outputting the corresponding activity. This is a simple classifier which helps avoid over-fitting the data but which significantly outperforms state-of-the-art methods on standard benchmarks.

Action recognition is an important computer vision task with many real-world applications. But here are serious challenges if the input is 2D images because there is considerable variation in the appearance of people (Laptev 2005; Schuldt, Laptev, and Caputo 2004) and the 2D images will also be very dependent on viewpoint.

The use of depth cameras makes the task easier because depth maps are more robust to appearance and viewpoint variations. Action recognition accuracy has substantially improved using 3D poses derived from depth maps (Shotton et al. 2013) (Li, Zhang, and Liu 2010). Our paper assumes that full 3D pose information is available.

But there remain challenges. First, poses of the same action can have large variations due to: (a) humans performing the same action in different styles, (b) inaccuracies in the estimated 3D poses. Second, most benchmarks (Li, Zhang, and Liu 2010; Seidenari et al. 2013) only provide a few hundred sequences, which makes it risky to train complex classifiers.

In this paper, we represent an action sequence by a set of action-snippets which consist of a short sequence of consecutive 3D poses. A similar idea was used in (Schindler and Van Gool 2008) and we discuss the relations later. We represent the action-snippets by a new representation which we call activated simplices which give a tight approximation to the manifold of action snippets for each action class by an arrangement of simplices, see Figure 1. Simplices are points, line segments, triangles, and higher dimension analogs, see Figure 2. The activated simplices are learnt by a novel variant of sparse coding which we describe later. They are able to deal with variations in the data because action-snippets which project to the same simplex are treated the same during classification. In other words, the simplices provide a quantization of the manifold which reduces its sensitivity to the style variations discussed above.

Figure 1: A conceptual illustration of Activated Simplices and their use for classification. The yellow and gray structures approximate the manifolds (of action-snippets) of two action classes. Each manifold is represented by an arrangements of simplices (e.g., the triangles). The representation is tight, in the sense that action-snippets are close to one of the simplices of the manifold of the correct class (and not close to those of the wrong classes). The dots are action-snippets. We classify an action sequence by calculating the average distances of its action-snippets to the manifolds and classify by the closest manifold. Note that the manifolds may be disconnected and have simplices of varying dimensions.
the risk of over-fitting when training data is small.

There are two main contributions in this work. First, we propose a novel representation for 3D poses and action-snippets which we call activated simplices (and which can be applied to other forms of data). It approximates an action manifold in terms of an arrangement of simplices. This gives a tight representation enabling us to classify sequences based on the closest action manifold. Activated simplices is a variant of sparse coding which is able to approximate manifolds and which also relates to the mixture-of-structures representation (e.g., k-means). Second, we propose a new variant of action-snippets, which when coupled with activated simplices, yields a simple classifier which outperforms state-of-the-art methods by a large margin.

Related Work

We briefly review related work on action recognition and alternative representations to activated simplices.

3D Human Poses Based Action Recognition

There are three main approaches for action recognition from depth data. One approach, e.g. (Oreifej and Liu 2013; Wang et al. 2012a; Li, Zhang, and Liu 2010), extract features from dense depth maps and perform action classification. These methods give good results except in situations where the background is complex (e.g., it would be hard to segment the human from the background). We compare to these methods in the experiments.

A second approach represents actions by 3D joint locations. Leading methods include: (i) computing spatial histograms of 3D joint locations and extracting discriminative features by linear discriminant analysis (Xia, Chen, and Aggarwal 2012), (ii) computing pairwise joint position features and using data mining to select the joints relevant to class labels (Wang et al. 2012b), and (iii) representing poses using a set of dictionaries which are learned by group sparsity (Luo, Wang, and Qi 2014). There are also some work (Rubinstein and Elad 2014; Gu et al. 2014) learning discriminative dictionaries for classification tasks.

A third line of work groups body joints into body parts by proposing a spatial-temporal-part model to capture the differentiable configurations of body parts for classification (Wang, Wang, and Yuille 2013). A similar idea of learning mid-level action representations was explored in (Wang et al. 2015). Another leading method (Vemulapalli, Arrate, and Chellappa 2014) models the geometric relations between body parts using rotations and translations. Actions are treated as curves in Lie groups and classified by SVM.

Mixture-of-Structures Representations

Activated simplices represents a data manifold in terms of an arrangement of simplices. This can be thought of as a mixture-of-structures representation similar to k-means (i.e. the centroids are analogous to the simplices). Activated simplices is a novel variant of sparse coding which enables tight representations of data manifolds. It relates to methods which enforce group sparsity, but differs by learning structure automatically instead of manually imposing group structure (Bengio et al. 2009) or learning it by other techniques (Wang et al. 2011). We now describe related mixture-of-structures representations.

k-means partitions data into k Voronoi regions where each region is represented by its mean. k-means is not a natural way to represent manifolds (see later for a comparison to activated simplices). k-flats (Canas, Poggio, and Rosasco 2012) extends k-means by using a vocabulary of hyperplanes. The number of hyperplanes and their dimensions are parameters of the model. k-flats has limited ability to model curved manifolds because this requires many hyperplanes for accurate reconstruction. Sparse subspace clustering (Elhamifar and Vidal 2013) groups data into hyperplanes by analysing its self expression. The goal of Atlas (Pitelis, Russell, and Agapito 2013) is to fit the data by estimating local hyperplane charts. Archetypal Analysis (Cutler and Breiman 1994) learns a global convex model for the data which can cause problems if the data is not a convex set. Activated simplices is a novel mixture-of-structures representation which has advantages over these standard models for the data in this application (e.g., tightness of representation, ability to deal with disconnected manifolds with varying dimensions, and insensitivity to style variations).

Action-Snippets

The input to the action recognition task is a sequence of 3D poses \(\{y^{(1)}, \ldots, y^{(n)}\} \) where a pose \(y \in \mathbb{R}^{3p} \) is a vector of \(p \) body joint locations. Some actions, e.g., standing up and sitting down, are difficult to distinguish by only inspecting static poses. These two actions have similar poses and it is their temporal order that make them different.

We incorporate the temporal order by combining consecutive poses together to form an action-snippet \(\hat{y} \) (Schindler and Van Gool 2008) (ten poses give the best results, see later). Then we represent an action by a sequence of action-snippets: \(A = \{\hat{y}^{(1)}, \ldots, \hat{y}^{(n-9)}\} \) where each \(\hat{y}^{(i)} = [y^{(i)}, \ldots, y^{(i+9)}] \). Note that, unlike (Schindler and Van Gool 2008), our action-snippets overlap so the first action-snippet starts at pose one, the second at pose two, and so on. This is important if the pose sequences are not synchronized.

We learn a manifold for each action class, using activated simplices as described in the next section. We classify an action sequence by first projecting all its action-snippets onto each action manifold, as illustrated in Figure 1, and then calculating the projection error which we call the representation error. We select the action class which has smallest representation error when averaged over all the action-snippets in the action sequence.

Figure 2: Simplices of dimension 0, 1, 2 and 3. A 3-simplex (far right) is a solid tetrahedron. Points within the tetrahedron are convex combinations of the 4 vertices \(\alpha_1 x_1 + \cdots + \alpha_4 x_4 \), where \(\alpha_i \geq 0 \) and \(\sum \alpha_i = 1 \).
The Activated Simplices

Activated simplices represent data by an arrangement of simplices. It requires that the data has unit norm, which is a reasonable requirement if the data is a 3D pose or an action-snapshot. The algorithm learns a set of unit basis vectors so that the data is represented by simplices on the boundary of the convex hull of the basis vectors.

The Activated Simplices representation is built on a set of basis vectors \(X = \{x_1, \ldots, x_m\} \) which have norm one (e.g., \(\|x_i\|_2 = 1 \)). The convex hull of the basis vectors \(X \) is denoted by \(C_X \) and contains all points of form \(\sum_{i=1}^m \alpha_i x_i \), where \(\alpha_i \geq 0 \) for all \(i = 1, \ldots, m \) and \(\sum_{i=1}^m \alpha_i = 1 \). The boundary of the convex hull is \(\partial C_X \) and it consists of a set of boundary simplices \(F_0 \). Each boundary simplex \(\Delta_a \in F_0 \) has a set of basis vectors \(\{x^a_i : i = 1, \ldots, k_a\} \), where \(k_a \) is the number of basis vectors and \(k_a - 1 \) is its dimension. It consists of the set of points \(\sum_{i=1}^{k_a} \alpha_i x^a_i \), with \(\alpha_i \geq 0 \) for all \(i = 1, \ldots, k_a \) and \(\sum_{i=1}^{k_a} \alpha_i = 1 \). Boundary simplices of the convex hull \(\partial C_X \) have varying dimensions and can share bases. This is illustrated in Figure 3 where the simplices are either 1-simplices (lines) or 2-simplices (triangles).

The activated simplices \(F \) are a subset of the boundary simplices, \(F \subset F_0 \), which have a sufficient amount of data projected onto them. Note that most subsets of basis vectors do not generate boundary simplices (a typical simplex lies mostly within the convex hull \(C_X \)), see Figure 3. Indeed if there are \(m \) basis vectors in \(d \) dimensions then the ratio of the number of boundary simplices to the total number of simplices is less than \(m^{-d/2} \) (Ziegler 2012). Hence the number of activated simplices is typically much smaller than the total number of simplices which puts restrictions on the number of co-activation patterns of bases that can occur.

We apply activated simplices either to the poses \(y \) or to the action-snippets \(y \). For simplicity we will only describe activated simplices for pose data (i.e. for action-snippets replace \(y \) by \(y \)). We normalize each pose so that it lies on the unit sphere \(\|y\|_2 = 1 \). This normalization ensures that the convex hull \(C_X \) of the bases lies within the unit sphere which is essential to our approach.

First consider the inference problem of projecting \(y \) to the closest point on the convex hull \(C_X \) assuming that the bases \(X \) are known (we discuss learning the bases later). This projection is done by minimizing the representation error:

\[
\|y - \sum_{i=1}^m \alpha_i x_i\|^2, \quad \text{s.t. } \sum_{i=1}^m \alpha_i = 1, \quad \alpha_i \geq 0
\]

Recall that the data \(y \) has norm \(\|y\|_2 = 1 \) and lies on a sphere which is outside the convex hull. Hence to minimize the representation error, each pose \(y \) must project to the boundary (rather than to the interior) of the convex hull and hence to one of the boundary simplices \(\Delta_a \in F_0 \). Hence identifying which simplex the pose \(y \) projects to can simply be solved by first solving the problem (1) and then identifying the boundary simplex which contains the activated bases (i.e. those bases having non-zero \(\alpha \)'s). This specifies the inference algorithm which determines how to identify a set of simplices given training poses, if the bases \(X \) are known.

From another perspective, given a set of learned activated simplices \(F = \{\Delta_1, \ldots, \Delta_{|F|}\} \), the model represents a pose \(y \) by its closest simplex \(\Delta_a(y) : \Delta_a(y) = \arg\min_{\Delta_a \in F_0} \text{Dist}(\Delta_a, y) \) where \(\text{Dist}(\Delta_a, y) \) is the representation error of using simplex \(\Delta_a \) to represent \(y \). The representation error is computed as \(\text{Dist}(\Delta_a, y) = \min_{b} \|y - \sum_{i=1}^{k_a} \alpha_i x^a_i\|^2 \) with the non-negative and sum to one constraints on \(\alpha \).

We now address the task of learning the bases and hence the activated simplices from a set of training data \(\{y_\mu : \mu = 1, \ldots, N\} \). To learn the activated simplices we estimate the bases \(X \), which determines the convex hull \(C_X \), its boundary \(\partial C_X \), and then estimate which of the boundary simplices are activated. The bases \(X \) are estimated by minimizing the representation error of the training data:

\[
\sum_{\mu=1}^N \|y_\mu - \sum_{i=1}^m \alpha_i^\mu x_i\|^2, \quad \text{s.t. } \sum_{i=1}^m \alpha_i^\mu = 1, \quad \alpha_i^\mu \geq 0, \quad \text{for all } i \text{ and } \mu
\]

\[
\|x_i\|_2 \leq 1, \quad \text{for all } i, \quad \|y_\mu\|_2 = 1, \quad \text{for all } \mu
\]

Note that we impose the constraint \(\|x_i\|_2 \leq 1 \) but the resulting bases are guaranteed to obey \(\|x_i\|_2 = 1 \) (except for some degenerate cases, which are easy to deal with). The bases \(X \) directly determine the convex hull \(C_X \) and its boundary \(\partial C_X \). The activated simplices are the boundary simplices which correspond to a sufficient number of training data.

Solving the problem in equation (2) is equivalent to determining the bases \(X \) by minimizing the projection error of the training data onto the boundary of the convex hull:

\[
\sum_{\mu=1}^N \min_{\Delta_a \in F_0} \text{Dist}(\Delta_a, y_\mu) \]

At first sight, this second formulation seems much harder because it is highly non-linear in \(X \) (the boundary simplices \(F_0 \) are complex functions of the \(x_i \)'s) and involves a correspondence problem to determine the matching between the poses \(\{y_\mu\} \) and the boundary simplices \(\Delta_a \in F_0 \). But, as discussed above, the
The problem can be converted to an equivalent but easier problem which consists of two sub-problems: (i) learn the bases X, and (ii) identify the boundary simplices that are activated by the training poses which is a trivial task by inspecting the non-zero basis coefficients for each training pose.

In implementation, we initialize the basis vectors using k-means initialized by $k++$ (Arthur and Vassilvitskii 2007). The number of basis vectors is a parameter of the algorithm (similar to the number of means in k-means). We minimize (2) by an alternating algorithm adapted from sparse coding (Mairal et al. 2009) which alternates between updating bases X and coefficients α. When we fix alpha and update X, we get the same optimization problem as Mairal 2009. When we fix X and update alpha, we use an active-set method to optimize the QP problem with convex constraints. Then from analysis of the activated coefficients we determine the activated simplices.

Relation to Sparse Coding

Activated simplices is related to sparse coding. Both represent the data by a sparse linear combination of bases and the criteria to learn the bases, see equation (2), are very similar. But there are some critical differences. Activated simplices learns a mixture-of-structure representation (specified by the co-activation patterns of the bases) which approximates the data manifold, gives a tighter representation of the data than sparse coding, and has some invariance to style variations.

In the standard formulation of sparse coding (Tibshirani 1996), (Osborne, Presnell, and Turlach 2000) data Y are represented by bases X through the ℓ_1 penalized optimization:

\[
\min_{X,\alpha} \frac{1}{N} \sum_{\mu=1}^{N} \|y^{\mu} - X\alpha^{\mu}\|^2 + \lambda \|\alpha^{\mu}\|_1.
\]

(3)

Here $X\alpha^{\mu} = \sum_{i=1}^{m} \alpha_i^{\mu} x_i$, $\|\alpha^{\mu}\|_1 = \sum_{i=1}^{m} |\alpha_i^{\mu}|$. In this formulation there is no positivity constraint on the $\alpha's$.

But this formulation can be modified to introduce positivity constraints (Huggins 2005) by making a negative copy $(-x_i)$ of each basis vector x_i and representing $\alpha_i x_i$ by $\max(\alpha_i, 0)x_i + \max(-\alpha_i, 0)(-x_i)$.

With this modification, we can think of sparse coding as projecting the data onto the convex hull of the extended basis vectors $(X, -X)$. But, unlike activated simplices, the radius of the convex hull $\|\alpha^{\mu}\|_1$ varies depending on the datapoint y and on the penalty λ. In other words, different datapoints project to the convex hull of different scales.

Sparse coding and its variants, e.g., (Kyrillidis, Becker, and Cevher 2012), differ from activated simplices in several respects. First, we normalize the data to lie on a unit sphere. This seemingly trivial modification ensures that the data is projected onto the boundary of the convex hull of the bases and never into the interior. Second, the boundary of the convex hull consists of a set of simplices which determines the co-activation patterns of the bases and yields a mixture-of-structure representation. Hence activated simplices assign each datapoint to one of $|\mathcal{F}_0|$ labels. By contrast, sparse coding and its variants allow all combinations of basis vectors to be used provided their sum $\|\alpha^{\mu}\|$ is small. Thirdly, sparse coding yields a much less tight “prior” than activated simplices because there are many points $X\alpha$ with small values of $\|\alpha^{\mu}\|$ which do not correspond to real datapoints y (e.g. poses violating the bending angle constraints). This is because there are many configurations with small $\|\alpha^{\mu}\|_1$ which lie inside the convex hull \mathcal{C}_X while the data is close of the boundary $\partial \mathcal{C}_X$ (because it is normalized).

Figure 4 illustrates the difference between activated simplices and sparse coding. The data is the position of the hand as the elbow joint is flexed (a). The manifold of valid poses is an arc (b) of about 135 degrees. Panels (c,d) respectively show the basis functions learnt by activated simplices and sparse coding (three bases together with their negative counterparts). Activated simplices represents the data by an arrangement of two simplices on the boundary, see panel (e), while sparse coding represents the data by the convex hull of the bases in panel (f) paying a penalty $\|\alpha^{\mu}\|_1$ which encourages the data to lie near the center. Hence sparse coding represents (i.e. pays a small $\|\alpha^{\mu}\|_1$ penalty for) data which violates the constraint that arms cannot bend more than 135 degrees (h). By contrast, activated simplices can only represent data that are on the segments (e), which is a tighter approximation of the manifold (i.e. the black curve (b)).
Figure 6: This figure shows the reconstruction errors for pose sequences of action classes 8 and 9 evaluated on all the 20 classes. The x-axis is the class label and the y value is the average reconstruction error. Each curve (including 20 points) denotes the average reconstruction errors of a test sequence on the 20 action classes.

Experimental Results

We first evaluate how well activated simplices can represent data by computing the distance between a data point and its projection onto the nearest simplex. Then we present action recognition results on three standard benchmark datasets (Li, Zhang, and Liu 2010) (Seidenari et al. 2013) (Xia, Chen, and Aggarwal 2012). We also provide diagnostic analysis.

Human Pose Reconstruction

We conduct experiments on a large human pose dataset H3.6M (Ionescu et al. 2014). We use 11, 000 3D poses of 11 actions including “taking photo”, “smoking”, “purchases” “discussion”, etc from the dataset to evaluate our method.

We split the 11, 000 poses into training and testing subsets each containing 5, 500 poses of the 11 actions. We compare with two baseline methods: k-means and sparse coding. For k-means, we learn a dictionary consisting of all the cluster centers and reconstruct a pose by the nearest element in the dictionary. Similarly for sparse coding, we learn a dictionary of bases by the method of sparse coding (Mairal et al. 2009) and reconstruct a pose by the dictionary with ℓ_1-norm regularization on the coefficients α.

Figure 5 (left) shows the results. K-means method has the largest errors because the poses are coarsely quantized by the nearest centers. By contrast, sparse coding and activated simplices use combinations of the bases to represent the data more accurately. We see that activated simplices achieve almost the same performance as sparse coding, even though activated simplices restricts the co-activations of the bases.

Next we investigate how tightly activated simplices represents poses if we only have partial information. As discussed earlier, sparse coding makes no restrictions on the co-activations of the bases and hence can represent data that are not from the manifold; see Figure 4. This is a limitation for regularization tasks such as estimating the 3D pose with partial information. To illustrate this, we compare the performance of k-means, sparse coding, and activated simplices for reconstructing partially visible poses. In this experiment, we recover the depth component of the pose (i.e. we remove the depth information from the testing data). This is done by setting the z components of the poses to be zero as well as the corresponding components of the basis vectors. Lifting the data back onto the activated simplices recovers the z components. Figure 5 (right) shows the results. We can see that activated simplices performs better than sparse coding and k-means, hence justifying that it provides a tighter representation of the data manifold. This is an important property for classification tasks which we will discuss later.

Finally, we investigate the sensitivity of activated simplices to style variations. Figure 8 shows that action-snippets of the same action, performed by different people, are often projected onto the same simplices.

Action Recognition

Now we evaluate our approach on the action recognition task on three benchmark datasets: the MSR-Action3D dataset, the Florence dataset and the UTKinect dataset.

The MSR-Action3D Dataset This dataset (Li, Zhang, and Liu 2010) provides 557 human pose sequences of ten subjects performing 20 actions which are recorded with a depth sensor. Many works choose five subjects for training and the remaining subjects for testing, e.g. in (Li, Zhang, and Liu 2010), and report the result based on a single split. But it was shown in (Padilla-López, Chaaraoui, and Flórez-Revuelta 2014) that the choice of data splits (i.e. which five subjects were selected for training) has a large influence on the results. To make the results more comparable we experiment with all 252 possible splits and report the average accuracy.

We set the number of bases for each class to be 40 (by cross-validation). We obtain about 15 activated simplices, whose dimensions are five on average, for each class, activated simplices achieves recognition accuracy of 91.40%.

Figure 6 show the errors of projecting a pose sequence onto all the action classes (the lowest error occurs when we project onto the correct class). We can also determine which classes are most easy to confuse. For example, from Figure 6 we see that the class 8 and class 9 are difficult to distinguish between. The classes correspond to the “draw tick”
Table 1: Average action recognition accuracy of all 252 5-5 splits on MSR-Action3D.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HON4D (Oreifej and Liu 2013)</td>
<td>82.15</td>
</tr>
<tr>
<td>Rahmani et al. (Rahmani et al. 2014)</td>
<td>82.70</td>
</tr>
<tr>
<td>Tran et al. (Tran and Ly 2013)</td>
<td>84.54</td>
</tr>
<tr>
<td>Our Approach</td>
<td>91.40</td>
</tr>
</tbody>
</table>

and “draw circle” actions, which are indeed similar.

Comparison with Three Baselines: The first baseline uses nearest neighbors to classify the action-snippets. This has recognition accuracy of 85.16% which is lower than activated simplices (presumably because our method can handle performing style variations well; see Figure 8).

The second baseline is the k-means method. Given a sequence of action-snippets, we compute their distances to (nearest center of) each class and classify by the nearest class. The performance is about 79.30%. This is lower than our method which is mainly because of the coarse quantization.

The third baseline is sparse coding (and a variant). We learn independent bases for the 20 classes. The number of bases is the same as for activated simplices. We project the action-snippets onto the bases of 20 classes. The class that achieves the least average error is the prediction. The accuracy for sparse coding is 86.30% which is lower than our method (presumably because sparse coding is less tight). The accuracy for a variant of sparse coding with non-negative and sum to one constraint on coefficients, is 86.94% which is not significantly better than standard sparse coding. This is mainly because –Enforcing the constraints gives a tighter representation than standard sparse coding. But, it doesn’t identify, and so does not exploit, co-activation patterns (unlike our method).

We also evaluated the influence of the two main parameters in the model, i.e. the number of bases and the number of poses in each action snippet. We report the average performance based on ten random splits. Figure 7 shows the results. Activated simplices achieves better performance as the number of bases increases but the increase is small when the number exceeds 50. Sparse coding obtains best performance when the number is 20. The performance goes down quickly as we allow more bases, presumably because the sparse coding becomes less tight as the number of bases becomes big. The nearest neighbor method uses no bases hence the performance is constant. From the right sub-figure, we can see that increasing the number of poses in the action-snippets consistently improves the performance.

Comparison with the State-of-the-art: Table 1 compares activated simplices with state-of-the-art methods using the protocol of “average over all splits”. We can see that our method outperforms three state-of-the-art methods. In addition, our method is arguably the simplest.

Since some recent methods only provide results for a single split, we also provide these results. However, note that they are not directly comparable as they may choose different five subjects for training. For our method, the split using training subjects 1,3,5,7,9 achieves accuracy of 95.03% and our highest accuracy is 99.25%. (Luo, Wang, and Qi 2014) achieve recognition accuracy of 96.70% and (Vemulapalli, Arrate, and Chellappa 2014) achieve 89.48%.

The Florence Dataset This dataset (Seidenari et al. 2013) includes nine activities including wave, drink from a bottle, etc. The background is very cluttered in this dataset. Ten subjects were asked to perform the above actions. Following the dataset recommendation, we use a leave-one-actor-out protocol: we train the classifier using all the sequences from nine out of ten actors and test on the remaining one. We repeat this procedure for all actors and compute the average classification accuracy values of the ten actors.

We set the number of bases for each class to be 50 (450 in total) by cross-validation. Table 2 compares our method with the state-of-art methods on this dataset. Our approach achieves the highest recognition accuracy.

The UTKinect Dataset This dataset (Xia, Chen, and Aggarwal 2012) was captured using a single stationary Kinect. There are ten action types including walk, sit down, stand up, etc. Each action is performed by ten subjects.

We learn 40 bases and about 20 activated simplices for each action class. The dimension of the simplices is five on average. We use the standard “leave-one-sequence-out” protocol where one sequence is used for testing and the remaining are used for training. We repeat this process for all sequences and report the average accuracy. Table 3 shows the results. Our approach achieves the best performance.

Learning and Inference Efficiency Learning the bases and the activated simplices for the above three datasets takes several seconds. Inferring the class labels (i.e. projecting poses onto the activated simplices) can be done in real time.

Conclusion

This paper has two main contributions. The first is activated simplices which is a novel variant of sparse coding which yields a tight mixture-of-structure representation. The second contribution is the use of action-snippets. We evaluated our approach on three benchmark datasets and showed that it outperforms the state-of-the-arts.
Acknowledgements: We thank Xianjie Chen for helping improve the writing, and for support from the following research grants 973-2015CB351800, the Okawa Foundation Research Grant, NSFC-61272027, NSFC-61231010, NSFC-61527804, NSFC-61421062, NSFC-612100005, ONR grant N00014-15-1-2356 and ARO 62250-CS. We also thank NVIDIA Corporation for donating the GPUs.

References
Laptev, I. 2005. On space-time interest points. IJCV.
Luo, J.; Wang, W.; and Qi, H. 2014. Group sparsity and geometry constrained dictionary learning for action recognition from depth maps. In CVPR. IEEE.