SPATIAL AUDIO FOR AUGMENTED REALITY

Mark Billinghurst
mark.billinghurst@unisa.edu.au

July 14th 2016
Augmented Reality

1. **Combines Real and Virtual Images**
 - Both can be seen at the same time

2. **Interactive in real-time**
 - The virtual content can be interacted with

3. **Registered in 3D**
 - Virtual objects appear fixed in space

Pokemon GO ..

- Handheld AR, touch input, GPS/compass sensors
How We Look to Pokemon GO …
Hololens

- Head Mounted Augmented Reality
 - Speech, gesture input, stereo view
How We Look to Hololens
2 Eyes + 2 Ears = AR Spatial Interface

- **Visual interface**
 - See through HMD has ~ 30° – 90° Field of View
- **Audio interface**
 - Binaural headphone has 360° Field of Hearing
Wearable Spatial Audio Interfaces

- Previous research
 - Audio only interfaces
 - Navigation, visually disabled, gaming, mobile UI
- Little work in Hybrid Interfaces
 - Small wearable display + spatial AR
Benefits of Adding Spatial Audio to AR

• Cognitive
 • More information display without additional cognitive load
 • Different visual/auditory systems

• Information
 • Simultaneous information display using multiple modalities
 • Use appropriate modality for information

• Interface
 • Overcome limitations of limited visual display
 • Small screen size, Divided attention
 • Increase interface design options
Example AR Applications of Spatial Audio

• **Information Presentation**
 - Wearable information space (Billinghurst 1999)
 - Attention Redirection (Barde 2016)

• **Remote Collaboration**
 - Wearable AR conferencing (Billinghurst 1998)
 - Hybrid conferencing spaces (Bleeker 2013)

• **Location Based Audio**
 - High Street Stories (Lee 2013)

• **Authoring/Annotation**
 - Audio Stickies (Langlotz 2013)
 - Augmented Sound Reality (Dobler 2002)
Wearable Information Spaces (1998)

- Exocentric wearable information space
 - See through HMD
 - Wearable computer
 - Spatial audio/visual cues
 - Body stabilized information displays

User Evaluation

- **Task**
 - Finding target icon on pages of icons

- **Conditions**
 - Head stabilized vs. body stabilized
 - Additional spatial audio/visual cues for guidance

- **Results**
 - Body stabilized 30% faster performance
 - Spatial audio reduces search time by further 35%
 - No difference between spatial audio/visual cues
Attention Redirection (2016)

- Use dynamic spatial audio cues to direct attention
 - Audio moving in direction of target position
- Experimental Test
 - Divided attention task (wearable screen, projection screen)
 - Use no cue, static audio, dynamic moving spatial cue
 - Directing user attention to one of four target positions

Experimental Results

- Dynamically moving audio cue significantly reduces onset time
 - 30-40% faster than static audio cue for targets out of view
 - Up to 50% faster than no audio cue
Wearable AR Conferencing (1998)

Concept
- mobile video conferencing
- spatial audio/visual cues
- body-stabilized data

Implementation
- see-through HMD
- head tracking
- static images, spatial audio

User Evaluation

- Speaker discrimination task
 - 1, 3, 5 speakers saying almost same phrase at same time
 - Spatial vs. non-spatial cues

- Results
 - Spatial performance significantly better, more highly rated
 - Even simple spatial visual cues (radar display) produced improvement
Using HHD and HMD (2013)

- Use tablet to interact with AR conf. people
- Exo-centric view of conference space
- AE Spatial audio gives sense of direction

Location Based - High Street Stories (2013)

- Christchurch 2011 earthquake
 - Destroyed High Street, historical heart of city

- High Street Stories
 - Mobile AR app with minimal visual cues
 - Geolocated spatial audio cues – stories from locals
 - See http://www.highstreetstories.co.nz/
Location Based Information

- High Street Stories Interface
 - Map + AR View (GPS, compass interface)
 - Virtual tags showing geo-located stories
 - Spatial audio browsing based on viewpoint
 - Click to play complete story, view images
Demo Video
Authoring - Audio Stickies (2013)

- Mobile AR browser
 - Outdoor AR, GPS/compass tracking, panorama tracking
- User’s can add spatial audio annotations
 - Precise placement of spatial audio notes

Building Annotation

- Use mobile AR to view virtual buildings on site
 - View alternative AR designs
- Viewer can add audio comments
 - Simple tap and record interface
- Users can browse audio notes of others
 - Only play audio clips when in view
Demo Video
User Feedback

• 30 users tried system
 • 4 AR buildings viewed and commented on
 • Tested in two cities (Dunedin, Graz)

• Main feedback
 • Audio annotations seen as very useful
 • System easy to learn and use
 • Usable in noisy natural environment
 • Spatial audio supported discrimination between notes
 • Audio clutter an issue
Augmented Sound Reality (2002)

- Wearable interface for placing spatial audio cue
 - Virtual icons representing audio cues
 - 3D stylus for direct manipulation of sound sources
 - Viewing on stereo video see-through HMD
 - Spatial audio playback

Lessons Learned

• Spatial audio helps with information presentation
 • Out of view information, multimodal presentation

• Spatial audio can direct user attention
 • Dynamic audio cues

• Spatial audio cues can improve AR conferencing
 • Speaker discrimination, localization, social presence

• Tools can be developed for spatial audio authoring
 • Recording, manipulation audio cues

• Spatial audio enables richer AR experiences
 • Engages more sensors, reduces cognitive load
Directions for Future Research

- **User interface metaphors**
 - How to interaction with hybrid interfaces?
 - How to present information between modalities?

- **Collaborative Interfaces**
 - Using spatial audio for sharing communication cues
 - Recording and sharing spatial audio

- **Applications/Tools**
 - Which AR applications should use spatial audio?
 - AR spatial audio development tools

- **Technology**
 - Using headphones vs. bone conducting transducers/other tech.
 - Spatial audio algorithms (individual HRTF vs. generic HRTF, etc)
Conclusions

• AR is becoming commonly available
 • Handheld, head mounted

• Spatial audio can significantly improve AR experience
 • User interface
 • Information presentation
 • Remote collaboration

• However there are still significant areas for research
 • User interface, algorithms, collaboration, applications, etc