How to write a great
research paper

Simon Peyton Jones
Microsoft Research Cambridge

B Microsoft "

Seven simple, actionable
suggestions

that will make your papers better.

1. Don't walt: write

Writing
Dapers:
model

Do
research

Writing
Dapers:
model 2

Writing
Dapers:
model 2

Do
research

e Forces us to be clear, focused
o Crystallises what we don't understana

« Opens the way to dialogue with
others: reality check, critique, anad
collaboration

Writing DO
o pers: research
model /2

Writing papers is a primary mechanism for
doing research (not just for reporting it)

2. l[dentity your key idea

Your goal:
{0 convey a
useful ana
re-usable

idea

« You want to infect the mind of your
reader with , like a virus

« Papers are far more durable than
programs (think Mozart)

The greatest ideas are (literally)

worthless it you keep them to yourselt

Do not be

intimidated You need to have a fantastic idea before

you can write a paper. (Everyone else
seems to.)

Write a paper, and give a talk, about

any idea, no matter how weedy and
insignificant it may seem to you

Do not be » Writing the paper is how you develop
intimidated

the idea in the first place

e |t usually turns out to be more
interesting and challenging that it
seemed at first

Write a paper, and give a talk, about

any idea, no matter how weedy and
insignificant it may seem to you

The ides » Your paper should have just one
‘ning”;
 You may not know exactly what the

ping is when you start writing; but you
dea: must know when you finish

e | you have lots of ideas, write lots of
papers

A re-usable insight,
useful to the reader

Can you
hear the

Ilpingll?
o

R

» Many papers contain good ideas, but
do not distil what they are.

« Make certain that the reader is in no
doubt what the idea is. Be 100%
explicit:
 "The main idea of this paper is...”

« “In this section we present the main contributions
of the paper”

Thanks to Joe Touch for “one ping”

3. Tell a story

YOour Imagine you are explaining at a whiteboard
narrative

« Here is a problem
¢ e |t's an interesting problem
OW . It's an unsolved problem

« My idea works (details, data)

« Here's how my idea compares to
other people's approaches

Structure
(conference

paper)

Title (1000 readers)

Abstract (4 sentences, 100 readers)
Introduction (1 page, 100 readers)
The problem (1 page, 10 readers)
My idea (2 pages, 10 readers)

The details (5 pages, 3 readers)
Related work (1-2 pages, 10 readers)

Conclusions and further work (0.5
pages)

4. Nail your contributions
to the mast

The
introduction

(1 page)

..and that is all

ONE PAGE!

Describe
the problem

1 Introduction

There are two basic ways to implement function application in
a higher-order language., when the function is unknown: the
pitsh/enter model or the eval/upply model [11]. To illustrate the
difterence, consider the higher-order function zipWith, which zips
together two lists, using a function k to combine corresponding list
elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]

zipWith k [] 0 1
zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys

Here k is an unknown function, passed as an argument; global flow
analysis aside, the compiler does not know what function k is bound
to. How should the compiler deal with the call k x y in the body
of zipWith? It can’t blithely apply k to two arguments, because
k might in reality take just one argument and compute for a while
before returning a function that consumes the next argument; or k
might take three arguments, so that the result of the zipWithis a
list of functions.

Use an
example to

introduce
the problem

Molenills
NOt
mountains

Example: "Computer programs often have bugs. Itis
very important to eliminate these bugs [1,2]. Many
researchers have tried [3,4,5,6]. It really is very
important!

Yawn!

Example: “Consider this program, which has an
interesting bug. <brief description>. We will show
an automatic technique for identifying and removing
such bugs”

Cool!

State your » Write the list of contributions first
contributions

- the paper substantiates
the claims you have made

 Reader thinks “gosh, if they can really
deliver this, that's be exciting; I'd better
read on”

Which of the two is best in practice? The trouble is that the eval-

Sta te yO u r nation model has a pervasive effect on the implementation, so it is

too much work to implement both and pick the best. Historically,

. . compilers for strict languages (using call-by-value) have tended to

C O n t rl b u t | O n S use eval/apply, while those for lazy languages (using call-by-need)

have often used push/enter, but this is 90% historical accident —ei-

ther approach will work in both settings. In practice, implementors

choose one of the two approaches based on a qualitative assessment
of the trade-offs. 1n this paper we put the choice on a firmer basis:

DO I’]OJ[|eave J[he e We explain precisely what the two models are, in a common BU”eted ||St
notational framework (Section 4). Surprisingly, this has not
reader to guess what R, of

your contributions are! e The choice of evaluation model affects many other design . :
choices in subtle but pervasive ways. We identify and dis- COﬂtFIbUtIOﬂS
cuss these effects in Sections 5 and 6. and contrast them in
Section 7. There are lots of nitty-gritty details here, for which
we make no apology — they were far from obvious to us, and
articulating these details is one of our main contributions.

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, principally be-
cause push/enter requires a stack like no other: stack-walking

Contributions

should be
refutable

We describe the WizZWoz system.
It is really cool.

We study its properties

We have used WizWoz in practice

We give the syntax and semantics of
a language that supports concurrent
processes (Section 3). Its innovative
features are...

We prove that the type system is
sound, and that type checking is
decidable (Section 4)

We have built a GUI toolkit in
WizWoz, and used it to implement a
text editor (Section 5). The result is
half the length of the Java version.

Fvidence « Your introduction makes claims
» The body of the paper provides

o Check each claim in the introduction,
identify the evidence, and forward-
reference it from the claim

 "Evidence” can be: analysis and
comparison, theorems, measurements,
case studies

NoO “rest of » Not.

"The rest of this paper is structured as follows. Section

J[I"HS pa per 2 introducﬂes the problem. Section 3 ...Finally, Section 8
concludes”.

. //

5. » Instead,

. The
introduction (including the contributions)
should survey the whole paper, and
therefore forward reference every
important part.

5. Related work: later

Structure

Abstract (4 sentences)
Introduction (1T page)

The problem (1 page)
My idea (2 pages)
The details (5 pages)

Conclusions and further
work (0.5 pages)

Structure

Abstract (4 sentences)
Introduction (1T page)
The problem (1 page)
My idea (2 pages)
The details (5 pages)

Conclusions and further
work (0.5 pages)

No related
work yet!

E

Your reader Your idea

We adopt the notion of transaction from Brown [1], as
modified for distributed systems by White [2], using the
four-phase interpolation algorithm of Green [3]. Our work
differs from White in our advanced revocation protocal,
which deals with the case of priority inversion as described
by Yellow [4].

No related
work yet!

- the reader knows nothing
about the problem yet; so your (highly
compressed) description of various
technical tradeofts is absolutely
incomprehensible

- describing alternative
approaches gets between the reader
and your idea

Credit

To make my work look good, | have to
make other people’s work look bad.

The truth: . Warmly acknowledge people who

credit is not
ike money

have helped you

« Be generous to the competition.

“In his inspiring paper [Foo98] Foogle shows.... We
develop his foundation in the following ways..”

« Acknowledge weaknesses in your
approach

Giving credit to others does not diminish

the credit you get from your paper

0. Put your readers first

Structyre . Abstract (4 sentences)
» Introduction (1 page)

» Related work (1-2 pages)

« Conclusions and further work (0.5
pages)

3. The idea

Consider a bifircuated semi-lattice D, over a hyper-modulated
signature S. Suppose pi is an element of D. Then we know
for every such pi there is an epi-modulus j, such that p;< p:.

Structure

 Sounds impressive...but

 Sends readers to sleep, and/or makes
them feel stupid

Presenting
the idea

Explain it as it you were speaking to
someone using a whiteboarad

, NOt
secondary
Once your reader has the intuition, she

can follow the details (but not vice
Versa)

Even it she skips the details, she still
takes away something valuable

Conveying

AN ntroduce the problem, and your
the intuition

idea, using and only
then present the general case

« Remember: explain it as if you were
speaking to someone using a
whiteboard

Using
examples

The Simon PJ question:

is there any typewriter
font?

2 Background

To set the scene for this paper, we begin with a brief overview of
the Scrup your boilerplute approach to generic programming. Sup-
pose that we want to write a function that computes the size of an
arbitrary data structure. The basic algorithm is “for each node, add .
the sizes of the children. and add 1 for the node itself”. Here is the Exam p|e Hg ht

entire code for gsize:

away

gsize :: Data a =»> a -> Int

gsize t = 1 + sum (gmanl gsize t)
The type for gsize says that it works over any type a, provided a
is a data type — that is, that it is an instance of the class Data!
The definition of gsize refers to the operation gmapQ, which is a
method of the Data class:

class Typeable a => Data a where

...0ther methods of class Data...
gmapQ :: (ferall b. Data b => b -> r) -> a -> [r]

Put’[ing the : recapitulate your personal
reader first

journey of discovery. This route may
be soaked with your blood, but that is
not interesting to the reader.

e |nstead, choose the most direct route
to the idea.

/. Listen to your readers

Gettmg he\p » Experts are good
« Non-experts are also very good

« Each reader can only read your paper
for the first time once! So use them
carefully

 Explain carefully what you want ("l got
ost here” Is much more important
than “Jarva is mis-spelt”)

Get your paper read by as many friendly

guinea pigs as possible

' « A good plan: when you think you are

Gettmg done, send the draft to the

expert he‘p competition saying “could you help me
ensure that | describe your work
fairly?”

o Often they will respond with helpful
critique (they are interested in the
area)

 They are likely to be your referees
anyway, so getting their comments or
criticism up front is Jolly Good.

_istening

O YOUF Be (truly) grateful for criticism as
"EVIEWEIS well as praise

This is really, really, really hard

But it’s really, really, really, really, really,
really, really, really, really, really important

Listening » Read every criticism as a positive
suggestion for something you could
to your explain more clearly

reviewers « DO NOT respond ”

« INSTEAD: fix the paper so that X is
apparent even to the stupidest reader.

« Thank them warmly. They have given
up their time for you.

Don't wait: write

[dentify your key idea

. Tell a story

Nail your contributions

Related work: later

Put your readers first (examples)
_isten to your readers

summary

~N o vk W

More: www.microsoft.com/research/people/simonpj

Language and Style

Basic styff « Submit by the deadline
 Keep to the length restrictions
« Do not narrow the margins

« On occasion, supply supporting evidence (e.q.
experimental data, or a written-out proof) in an

appendix
 Always use a spell checker

\AISVE] « Give strong visual structure to your

structure

paper using

 sections and sub-sections
 bullets

* italics

« |aid-out code

» Find out how to draw pictures, and use
them

Visual
structure

Info pointer

Fayload

Info table
&——» Enfrycode

Object type

Layout info

Ty pe-specific
fields
AN vy

Tigure 3. A heap object

The thiee cases above do not exhaust the possible forms of £ 1t
might also be a THUNK, but we have aleady dealt with that case
(tule THUNEK). 1t might be a CON, in which case there cannot be any
pending arguments on the stack, and rules UPDATE ot RET apply.

4.3 The eval/apply model

The last bleck of Figare 2 shows how the eval/apply model deals
with function application. The first three rules all deal with the case
of a FUWN applied to some arguments:

o 1fthere aic cuactly the nght nomber of arguments, we behave
exactly like rule KNOWWCALL, by tailcalling the function.
Rule EXACT s stillnecessary — and indeed has a diect coun-
terpatt in the implementation — because the function might
not be statically known.

o 1f there ate too many aguments, rule CALLK pushes a calf

remainder of the object 1s called the paviowd, and may consist of
a minture of pointers and non-pointers. For example, the object
CON(C ay ...ay) would be tepresented by an object whose info
pointer represented the constructor © and whose payload is the ar-
guments ¢y . ..y,

The infotable contains:

e Fuecutable code for the object. For example, a FUN object
has code for the function body.

e An object-type ficld, which distinguishes the varions kinds of
objects (FUN, PAP, CON etc) from each other.

o Layout information for garbage collection purposes, which
desciibes the size and layout of the payload. By “layout™ we
mean which fields contain pointers and which contain non-
pointers, information that 15 essential for accumte garbage col-
lection.

® Type-specific information, which varies depending on the ob-
ject type. For example, a FUN object contains its anty; a
CON object contains its constiuctor tag, a small integer that
distinguishes the different constructors of a data type; and so
on.

1n the case of a PAP, the size of the object is not fined by its info
table; instead, its size 15 stored 11 the object itself. The layout of its
ficlds (c.g. which ate pointers) 15 desciibed by the (imtial segment
of) an argnment-descriptor field in the info table of the FUN object
which is always the first field of a PAP. The other kinds of heap
object all have a size that is statically fixed by their info table.

A very common operation 1s to jump to the entry code forthe object,
so GHC uses a shghtly-optimised version of the ropresentation in
Figure 3. GHC places the info table at the addresses immediarely

Use the
active volce

The passive voice is
"respectable” but it
deadens your paper.
Avoid it at all costs.

el

It can be seen that...

34 tests were run

These properties were thought
desirable

It might be thought that this
would be a type error

We can see that...
We ran 34 tests

We wanted to retain these
properties

You might think this would be a type
error

Use simple,
direct
language

el

The object under study was
displaced horizontally

On an annual basis
Endeavour to ascertain
It could be considered that the

speed of storage reclamation left
something to be desired

The ball moved sideways

Yearly
Find out

The garbage collector was really
slow

crosoft

© Copyright Microsoft Corporation. All rights reserved.

	How to write a great research paper
	Seven simple, actionable suggestions��that will make your papers better.
	1. Don’t wait: write
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	2. Identify your key idea
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	3. Tell a story
	Slide Number 15
	Slide Number 16
	4. Nail your contributions �	to the mast
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	5. Related work: later
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	6. Put your readers first
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	7. Listen to your readers
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Language and Style
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

