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Abstract

Hierarchical models have been extensively
studied in various domains. However, existing
models assume fixed model structures or
incorporate structural uncertainty generatively.
In this paper, we propose Dynamic Hierarchical
Markov Random Fields (DHMRFs) to
incorporate  structural uncertainty in a
discriminative manner. DHMRFs consist of two
parts — structure model and class label model.
Both are defined as exponential family
distributions.  Conditioned on observations,
DHMREFs relax the independence assumption as
made in directed models. As exact inference is
intractable, a variational method is developed to
learn parameters and to find the MAP model
structure and label assignment. We apply the
model to a real-world web data extraction task,
which automatically extracts product items for
sale on the Web. The results show promise.

1. Introduction

The Web is a vast and rapidly growing repository of
information. There are various kinds of objects, such as
products, people, and conferences, embedded in
webpages. Our recent work on web data extraction (Zhu
et al., 2006) introduces an effective template-independent
method which makes it possible to use a single extraction
model to automatically extract information from all
webpages containing the same type of objects. Because of
the heterogeneity of webpages, template-independent web
object extraction is challenging. Hierarchical models have
great advantages in the reduction of extraction error by
integrating multi-scale web data extraction tasks (i.e. data
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record detection and attribute labeling), incorporating
long distance dependencies, and fusing multi-scale
features (Zhu et al., 2006). However, one problem with
this method is that the model structure is fixed by pre-
constructed vision-trees (here, a vision-tree is a modified
HTML tag tree which can represent the visual layout of a
webpage better). The fixed structures are not most
appropriate for web data extraction. This is because,
unaware of semantic labels, it cannot resolve all
ambiguities when constructing the model structures (i.e.
vision-trees). Some closely related nodes may be
separated significantly and only connected through a
remote ancestor node on the tree. Due to the model’s local
Markov assumption, it will lose some useful dependencies
and result in low accuracy. An extreme case is that the
attributes of different objects are intertwined. Fixed
hierarchical models are incapable of re-organizing them
correctly. This problem has been known as blocky artifact
issue in image processing (Irving et al., 1997).

Thus, effective web data extraction models should have
the capability to adapt their structures during the inference
process. In this paper, we propose an undirected graphical
model named Dynamic Hierarchical Markov Random
Fields (DHMRFs) to achieve the above goal. DHMRFs
consist of two parts — structure model and class label
model. Both parts are defined as exponential family
distributions. Compared to the directed Dynamic Trees
(Williams & Adams, 1999) which have been proposed in
image processing to address the blocky artifact issue, our
model representation is compact and parameter sharing is
easy. This is because conditional probability tables (CPTs)
are used in Dynamic Trees to represent transition from
parent nodes to child nodes. If different CPTs are used for
different nodes, it will easily lead to over-
parameterization. Thus, layer-wise CPT sharing is always
adopted. But in the scenario of web data, sharing CPTs
can be difficult because the hierarchical structures are not
as regular as the dyadic or quad trees in image processing.
Here, different pages can have quite different depths, and
nodes from different pages at the same depth can have
very diverse semantics. In contrast, DHMRFs define
probability distributions via a set of feature functions and
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Figure 1. The observations X (left) can be in a hierarchy or other structures, and the right is a DHMRF model denoted by S and Y .
Nodes are arranged in a layered structure, and vertical edges are selected by posterior probabilities p(s | x) . Dotted lines represent the
2D neighborhood system between nodes at the same layer. In both graphs empty nodes are inner nodes and filled nodes are leaf nodes.

weights. These feature functions depend much more on
observations and their labels than on the depths of the
nodes. Thus, the undirected model is more suitable for
diverse web data. Furthermore, as conditional models
(Lafferty et al., 2001), DHMRFs relax the independence
assumption as made in directed models. Finally, instead
of trees in which only parent-child dependencies are
assumed, DHMRFs take the triple-wise interactions
among neighboring sibling variables and their parent into
consideration. These triple-wise dependencies provide
more flexibility in encoding useful features.

In undirected dynamic models, parameter estimation is
generally intractable, especially when there are hidden
variables — both structures and inner variables are hidden
in our study. In this paper, a variational algorithm is
developed within the paradigm of contrastive divergence
mean field learning (Welling & Hinton, 2001) to do
parameter estimation and to find the maximum a posterior
assignment of labels and the most likely model structures.
The performance of our model is demonstrated on a web
data extraction task — production information extraction.
The results show that our model can achieve high
extraction accuracy without tedious manual labeling of
inner nodes which is required in the learning of fixed-
structured models (Zhu et al., 2006). Note that although
we have motivated and evaluated our model only in the
field of web data extraction, it could also be applied to
other fields since the model itself is general. We leave
further examinations as future work.

The rest of the paper is organized as follows. In the next
section, we discuss some related hierarchical models.
Section 3 describes Dynamic Hierarchical Markov
Random Fields, including an approximate inference
algorithm. Section 4 provides our empirical evaluation on
web data extraction. Section 5 brings this paper to a
conclusion, and finally, we give our acknowledgements.

2. Related Work

Multi-scale or hierarchical statistical modeling has shown
great promise in image labeling (Kato et al., 1993; Li et
al.,, 2002; He et al.,, 2004; Kumar & Hebert, 2005),
information extraction (Zhu et al., 2006), and human
activity recognition (Liao et al., 2005). Based on whether
data are observed at multiple scales, two scenarios exist in

which hierarchical modeling is appropriate. First, data are
observed at different spatial scales and a model is used to
integrate information from the different scales. Second,
data are observed only at the finest scale and a model is
used to induce a particular process at that scale. The
introduced intermediate processes or variables can
incorporate more complex dependencies to help the target
labeling. Another merit of hierarchical models is that they
admit more efficient inference algorithms compared to
flat models (Willsky, 2002).

Traditional hierarchical models always assume that model
structures are fixed or can be constructed via some
deterministic methods such as sub-sampling of images (Li
et al., 2002), segmentation of webpages (Zhu et al., 2006),
and the minimum spanning tree algorithm (Quattoni et al.,
2004) with a proper definition of distance. However, in
many applications this assumption may not hold. For
example, fixed models in image processing often lead to
the blocky artifact issue, and similar problem arises in
web data extraction due to the diversity of web data. To
address this problem some enhanced models have been
proposed such as the overlapping tree approach (Ivring et
al., 1997). Superior performance is achieved with the
improvement of the descriptive component of the model.
However, ultimate solutions should deal with the source
of the blockiness — fixed model structures. Based on this
intuition, Dynamic Trees (Williams et al., 1999) have
been proposed, which also consist of two parts — model of
structures and model of class labels. However, the key
difference between DHMRFs and Dynamic Trees is that
DHMREFs are defined as exponential family distributions
and thus admit several advantages as in the introduction.

Incorporation of evidence at various scales is examined in
a generative manner in (Todorovic & Nechyba, 2005).
But our model is discriminative and it can relax the
independence assumption among evidence as made in
generative models. This is the key idea underlying
Conditional Random Fields (Lafferty et al., 2001) which
have shown great promise in information extraction
(Culotta, et al., 2006; Zhu et al., 2006).

Modeling structural uncertainty has also been studied in
relational learning (Getoor et al., 2001). Here, we focus
on modeling the structural uncertainty within
independently and identically distributed (11D) samples.
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Our model is different from Dynamic CRFs (Sutton et al.,
2004) which are dynamic in terms of time, that is, they
have repetitive model structure and parameters over time,
and the structure at each time slice is fixed.

3. Dynamic Hierarchical Markov Random Fields

In this section, we present the detailed description of
Dynamic Hierarchical Markov Random Fields. An
approximate inference algorithm is developed to do
parameter estimation and to find the maximum a posterior
model structure and label assignment.

3.1 Model Description

Suppose we are given a set of N vertices, and each vertex
is associated with a set of observations. Also suppose the
vertices are arranged in a layered manner. Then,
hierarchical statistical modeling is a task to construct an
appropriate hierarchical model structure and carry out
inference about the labels of given observations.
Determining the number of layers and the number of
nodes at each layer is problem specific. We will give an
example of web data extraction in the experiment section.
Let S be random variables over hierarchical structures,
X be variables over the observations to be labeled, and
Y be variables over the corresponding labels. Each
component Y, is assumed to take values from a finite
discrete label space )’. Here, capitalized characters denote
random variables and corresponding lower cases are their
instances or configurations, e.g. y is a label assignment
and y, €. is one component label. Given observations
x , Dynamic Hierarchical Markov Random Fields define
a conditional probability distribution p(s,y|x) of
structure s and label assignment y . An example is shown
in Figure 1, where the left graph is observations and the
right is an instance of the dynamic model. Applying the
chain rule, we get p(s,y|x)=p(s|x)p(yls,x). Thus, the
model consists of two parts — structure model p(s|x) and
class label model p(y|s,x) . We explain them as follows:

Structure Model: Let s, be an indicator variable to
denote the connectivity between node i and another node
I which is at the direct above level. Here, leaf nodes can
be at any level except the root node that is taken as a
default node for an entire page. For leaf nodes, no child is
allowed. We call the parent-child connection vertical
connection. To retain the computational advantage of
tree-structured models, each node is allowed to have only
one parent in a particular structures. To consider the
dependencies between neighboring nodes descended from
a common parent, horizontal connection (i.e. connection
between nodes at the same level) is incorporated in S.
Let n, be an indicator variable to denote whether node i
and node j are adjacent to each other. Here, we assume
that the variables n; are independent of s, and can be
determined using some spatial ordering method. This
assumption holds in applications such as web data
extraction and image processing. As position information
is encoded in each node, deterministic spatial ordering

can decide the neighborhood system among a set of nodes.
In theory, the horizontal neighborhood system can be
arbitrary. We consider the 2D cases (Zhu et al., 2005),
that is, each node is horizontally connected to all the
nearest surrounding nodes in a 2D plane.

Conditioned on observations, the probability distribution
of structure model is an exponential family distribution,

PEIX)= 5, )exp{zukzs..s,.nugm J.l.x)}

ijl

where a triple (i, j,1) denotes a particular position in the
dynamic model. A position can be a time interval in time
series or a region of space in random fields. Here, i and
j are two nodes at the same layer and | is a node at the
direct above layer. g, (i, j,I,x) are feature functions
defined on the three nodes at position (i, j,1), and g, are
their weights. Z,(x) is a normalization factor and
depends on observations.

Class Label Model: A sample s from the structure model
defines a hierarchical Conditional Random Fields (CRFs)
(Lafferty et al., 2001). Let « be an indicator variable to
denote the variable Y, taking the class label y .Then, the
conditional probability of a label assignment y is,

p(Y|SrX):Z ( p{zﬂkzsns n;a;’ a‘lallyI fk(yiryjrylvx)}v

ijl
where f, (yi,yj,y,,x) are feature functions defined on the
labels y;, y;, and y, at position (i, j,1), and 2, are their
weights; Z,(s,x) is a normalization factor and depends
on both observations and the given model structure.

Although conditional models take observations as global
conditions, when defining feature functions they need to
know the “focused observations™ at a particular position.
For example, in linear-chain CRFs (Lafferty et al., 2001)
the observation at time t is among the focused
observations when defining feature functions related to
label y,. In general, let t be a position and x, be the set
of focused observations at that position. The mapping
function ¢ :t— x, defines the focused observations for
each position. In generative models like (Todorovic &
Nechyba, 2005), the mapping function is defined to
determine the observations generated by the states at a
particular position. Moreover, an additional constraint
vt=s,x,nX, =@ is also set due to their independence
assumption that observations at different positions are
conditionally independent given the states at those
positions. In conditional models, however, there is no
such constraint. The mapping function can be
deterministic or stochastic. We assume it to be
deterministic in this paper. Now, all feature functions take
an additional argument ¢, that is, the feature functions
are g, (i.j.1.x.¢) and f, (y,y;.4,.%¢).

Now, the joint distribution is also an exponential one,

p(sylx)
1 Zﬂkzsﬂsﬂ ugk I Jlllxé/)

i Zl(x)22 (S’X) Zik Zsllsjlnljaly 0.’ D”IyI fk (yiiyjiyl 1X1§) '

ijl
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In the sequel, we will use Z(x)=2,(x)Z,(s,x) to denote
the overall normalization factor.

3.2 Parameter Estimation and Labeling

Let ©={p, 1ttt i Pas Ao+ denote the whole set
of the model’s parameters leen a set of tramlng data
D={<x'y.>}" , where x' is a sample and y, are
observed labels. We consider the general case with both
hidden hierarchical structure s and hidden labels y, . For
example, in web data extraction only the labels of leaf
nodes are observable and both the hierarchical structures
and the labels of inner nodes are hidden. So the log-
likelihood of the data is incomplete,

:i;:Klog p(yelx')= Z |09(Z ICARAPY )]

Si¥h
This function does not have a closed form solution
because of the marginalization taking place within
logarithm. In the following, we derive an upper bound of
the negative log-likelihood. Then, contrastive divergence
learning (Hinton, 2002) is applied as an approximation.

Let q(s,y, |y..x) be an approximation of the distribution
p(s.yn Y. x) . With a little abuse of notations, we will use
a(s,y,) to denote q(s,y,|y..x) . We also ignore the
summation operator in the log-likelihood during the
following derivations as there is no essential difference
between one sample and a set of independently and
identically distributed (I1ID) samples. The optimal
approximation is the distribution that has the minimum
Kullback-Leibler ~divergence between q(sy,) and
p(s,Va |ye,x). The KL divergence is defined as

qa(s,y,)
L(allp)=> a(sy,)log———— .
§ " (s Yy Ve X)

Take p(s,y, Y., X)=p(S,¥y.Ye IX)/ P(Y, |X) into the above
equation and use the non-negativity of KL divergence, we
can easily derive an upper bound of the negative log-
likelihood -L(®)=-log p(y, |x), that is,

®)=2d(s,y,)[loga(s,y,)—-log p(s.y.Y. [X)] > -L(®)
S\Yh

By analogy with statistical physics, the upper bound,
which is actually a KL divergence, can be expressed as
the difference of two free energies: £(©)=F-F, ,
where the first term is the free energy when we use data
distribution with observable labels clamped to their values,
and the second F, =-logZ(x) is the free energy when we
use model distribution with all variables free.

Now, the problem is to optimize the upper bound. The
derivatives of £ (@) with respectto 4, are,

os(e)_ o
o4 0A

Z<s SNy > Z <ayay‘ay'> - f (¥.9;.9.%.8) - a;

=20 (381 )y 2 (aea) A (voypm %) -

~(~1ogp(s.yy.. 1%)),

(s.yn)

F,
ijl Yiyjy s ﬂ’k

@,

where (.) is the expectation under the distribution p .
The last equatlon holds because of the assumption that the
neighborhood system between sibling nodes is determined
independent of their parents.

Similarly, the derivatives with respect to 4, are,

oL (e oF,

n %:nll< il JI> (s.yn) g (I J,l,X;) (3,uk (2)
In (1) and (2), the derivatives of the equilibrium free
energy F, are essentially intractable in the case of
Dynamic Hierarchical Markov Random Fields. However,
by viewing the equilibrium distribution as the distribution
of a Markov chain at time t=o starting with data
distribution, Markov chain Monte Carlo (MCMC) method
can be used to reconstruct an approximation distribution
q; (s,yy,Y.) within several steps. This is the basic idea of
contrastive divergence learning (Hinton, 2002). Now, the
upper bound is approximated by,

£(©)=F,~F,
~Fy—F =KL(0q, Il p)— KL(q || p) 2 CR*",

where g, =q(s,y,) is optimized with observable labels
clamped to their values, and g, (s,y,.y.) is optimized with
all variables free starting with g,. As shown in (Hinton,
2002), CE** , known as contrastive divergence, is non-
negative. Some analyses of contrastive divergence
learning appear in (Yuille, 2004; Carreira-Perpinan &
Hinton, 2005). In the sequel, we will set i=1.

Now, the derivatives of CF**" with respect to the
model’s parameters are as in (1) and (2) but with the
derivatives of F_ replaced by,

25y 2 (W)

YiYiY

fk(yi'yjlyllxvg) )

(S YnYe)

and ->"n, (s, ,,) (oo 0 (i1 1:x.8) respectively.

ijl
Generally, stochastic sampling is quite time demanding in
constructing g,. In contrast, the deterministic mean field
variant (Welling & Hinton, 2001) is more efficient. The
learning procedure consists of two phases — wake phase
and sleep phase. Wake phase is to optimize g, and sleep
phase is to optimize q,. We address the wake phase first.

Assume the variational distribution can be factorized as
% =0(s,y»)=a(s)a(y,) , and we get,

KL(qy I p) =={log p(s,¥y.Ye [%)) ., — H (A(8)) = H (a(y,))

©)
where H(p)= <Iog p> is the entropy of distribution p .
To efficiently optlmlze d, » more assumptions need to be
made about the family of distributions of q(s) and q(y,).
Here, we adopt the naive mean field approximation. The
basic idea underlying mean field theory (Jordan et al.,
1999) is to make a distribution a factorized one by
introducing additional independence assumptions. This
factorized distribution leads to computational tractability.

The simplest naive mean field is to assume that interacted
variables are independent and the joint distribution is a
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product of single variable marginal probabilities. Let 4,
be the probability of node i being connected to node I,
and m? be the probability of variable Y; being at state y .
As we assume variables n; are determined independent
of s, , the mean field distributions® are,

Q(S):H[uﬂ]” and q(yh)=H[mﬂa‘y

iy
Substitute the above distributions into (3) and keep q(y,)
fixed, then we get

KL(do [ p)=~(logp(s.yy.y. X)), —H(a(s))+c,
where ¢ is a constant. Let the derivative over p, equal

zero, and we get log s, =s, (log p(s,y,.Y, |x)> ., +eonst.
Thus,

Z/uk I|Z<S > |]gk I Jrle)
Hy < EXP ‘

YiY2Ys

(4).

Normalization will lead to the desired probabilities g, .
Similarly, keep q(s) fixed and we get

KL(dy Il p)=—(log p(s. ¥y Y. 1X)), .., —H(a(yy)) +c

where ¢ is another constant. Let the derivative over mY
equal zero, and we get

My <Silsjl >q(s) <0‘jy10‘|y2 >q(yn) fi (y,yl,yz,x,,/)
my o Eszﬂy z +N; <Sjlsil >q(5) <05]l'/10‘|y2 >q(yn) fy (yl’y’yZ’X’é/)

k iy,

Ny <Sjisli>q(s) <0‘]'%05|y2 >q(yh) fi (yl,yz,y,X,g“)

(5)-
Equations (4) and (5) are a set of coupled equations, also
known as mean field equations. These equations are
iteratively solved for a fixed point solution. Intuitively,
parameters , are updated by expected contributions
from possible parents and neighbors, and similar for m?.
In (4) and (5), structure parameters ., depend on class
label assignments, and m? depend on expected structure
connectivity. Thus, model structure selection is integrated
with label assignment during the inference.

Now, we have presented a mean field approximation of
the wake phase. To finish the sleep phase, the same mean
field equations are enforced by coordinate descent
alternating between observable variables Y, and hidden
variables S and Y, . When first optimizing (5) for v, , the
initial distribution of hidden variables are set as the
optimal distribution at the end of wake phase. Then, take
the optimal distribution of the former step as initial

! Let s, denote the joint variable of vertical connection s, and s,
denote the joint variable of horizontal connection n; , then
a(s)=a(s,.s,)=a(s,)a(s, Is,) . Based on the assumption that s,
is independent of s, , q(sh |SV) is an indicator function, and takes all
the probability one if only if S, is the allowed structure.

Zﬂ' s|Iz<s > q(s) I] z <a|yla]yzaly3 >Q(Vn) fk (yl'yZ'yslxvg)

distribution of Y, and optimize (4) and (5) to get an
approximate distribution of hidden variables. For wake
phase, initial distributions can be random and
convergence is arrived. But for sleep phase, a few steps
are required to guarantee the improvement of CF* .

Thus, all the terms in (1), (2), (4), and (5) can be
calculated. The whole parameter estimation algorithm is
as follows. First apply (4) and (5) to iteratively compute
the marginal probabilities of both wake and sleep phases,
and CF*" and its derivatives with respect to model
parameters are calculated. Then, gradient-based
optimization algorithms are applied to update model
parameters. Here, we use the limited memory quasi-
Newton method (Liu & Nocedal, 1989). The learning
procedure is iterated until the relative change of CE** is
below some threshold. Although no guarantee exists that
global optimization will be achieved, empirical studies
show that this algorithm performs well.

As for labeling, when a testing example comes in,
equations (4) and (5) are iteratively solved with all
variables hidden for a fixed point solution. At the end of
convergence, the maximum a posterior model structure
can be constructed from the probabilities ., , and the
most likely label assignments can be found from the
marginal probabilities m? .

4. Experiments

In this section, we evaluate DHMRFs on a real-world web
data extraction task — production information extraction.
We compare our model with Hierarchical Conditional
Random Fields (HCRFs) (zZhu et al., 2006), Dynamic
Trees (Williams et al., 1999), and fixed tree models. The
results demonstrate the merits of our model. Empirical
studies about the inference algorithm are also presented.

4.1 Datasets and Methods

Web data extraction is an information extraction (IE) task
that identifies information of interest from webpages, and
production information extraction is a web data extraction
task that identifies product items for sale on the web. For
each product item, four attributes — Name, Image, Price,
and Description are extracted in our experiments. The
difference of web data extraction from traditional IE is
that various types of structural dependencies between the
HTML elements exist, e.g. the HTML tag tree is itself
hierarchical. Extending statistical models to handle these
structural dependencies has received great attention of
late. In this paper, we address the limitations of the fixed-
structured hierarchical model (Zhu et al., 2006). To
compare with that fixed-structured hierarchical model, we
use the same datasets as (Zhu et al., 2006). The datasets
consist of both list and detail pages. A list page contains
several structured data records while a detail page
contains only detailed information about a single record.
Examples of list and detail pages are illustrated in (Zhu et
al., 2006). The dataset LDST contains 771 list pages and
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Table 1. Performance of different models on production information extraction. Here, “Desc” denotes the attribute Description.

Data Sets LDST DDST
Models F-Trees D-Trees HCRFs DHMRFs | F-Trees D-Trees HCRFs DHMRFs

Name 0.890 0.879 0.911 0.952 0.829 0.785 0.835 0.874

p Image 0.959 0.951 0.966 0.988 0.972 0.928 0.978 0.978
Price 0.960 0.937 0.963 0.978 0.976 0.947 0.986 0.989

Desc 0.804 0.800 0.788 0.828 0.722 0.698 0.663 0.730

Name 0.842 0.744 0.882 0.928 0.779 0.684 0.761 0.799

R Image 0.908 0.805 0.936 0.958 0.868 0.809 0.892 0.898
Price 0.910 0.794 0.936 0.949 0.888 0.826 0.899 0.905

Desc 0.762 0.678 0.764 0.811 0.641 0.609 0.604 0.668

Name 0.865 0.806 0.896 0.940 0.803 0.731 0.796 0.835

F1 Image 0.933 0.872 0.951 0.973 0.917 0.864 0.933 0.936
Price 0.934 0.860 0.948 0.963 0.930 0.882 0.940 0.945

Desc 0.782 0.734 0.776 0.819 0.679 0.650 0.632 0.698

Avg F1 0.879 0.818 0.893 0.924 0.832 0.782 0.825 0.854
Blk_IA 0.869 0.837 0.890 0.940 0.809 0.762 0.817 0.853

the dataset DDST contains 450 detailed pages. Among all
these pages, 200 list pages and 150 detail pages are used
as training data in (Zhu et al., 2006). We use the same
setting for training and testing all the models.

We compare our model with HCRFs, Dynamic Trees (D-
Trees), and fixed-structured tree models (F-Trees). For
HCRFs and F-Trees, all training pages are hierarchically
labeled with leaf labels and inner labels as defined in (Zhu
et al., 2006). The training is complete, and exact message
passing algorithms are used to learn their parameters and
find MAP label assignments. For DHMRFs and D-Trees,
labels of leaf nodes are kept the same and inner labels are
hidden during learning. For the incomplete training, we
apply the variational method developed in this paper for
DHMRFs. Mean field approximation is also used for
Dynamic Trees. For DHMRFs and HCRFs, the same set
of feature functions are used for class label assignment.
Details about the definition of these feature functions are
presented in (Zhu et al., 2006).

To apply the dynamic models DHMRFs and D-Trees,
initial configuration of the model structure must be
carried out first. Basically, we need to initially set the
number of layers and the number of nodes at each layer. It
may be different for different application domains to set
the initial configuration. For image processing, it can be
done via sub-sampling or wavelet filtering. For web data
extraction, the data are represented as texts, images,
buttons, and so on. These atomic information units are
more expressive compared to image pixels. There is
definitely no benefit to view a webpage as a collection of
image pixels and then apply the methods in image
processing. Here, we use the same number of layers (and
the same number of nodes at each layer) in dynamic
models as in the fixed vision-trees (Zhu et al., 2006).

For D-Trees, two sets of parameters — conditional
probability tables (CPTs) and affinities, need to be set.
We keep the affinities fixed and learn the model’s CPTs.
To avoid over-parameterization, layer-wise CPT sharing

is adopted in previous work. However, for heterogeneous
web data, three-layer-wise sharing is better. That is, every
three layers from the top down share one CPT. To
incorporate evidence, we use the class-independent model
(Storkey et al., 2003) with emission distributions set as
the empirical frequencies in the training dataset. CPTs are
also initialized as frequencies. To avoid zero probabilities
of unseen samples, Laplace’s rule is used with
pseudocount set at one. Our study shows that when the
affinities are set as 0 for the natural parent, -1 for the
nearest neighbors of the natural parent, and -3 for the null
parent, better performance is achieved compared with
previously used settings. The CPTs used for our
experiments are achieved with 10 iterations.

4.2 Results and Discussions

4.2.1 EXTRACTION ACCURACY

Table 1 shows the extraction accuracy of different models.
We use the standard measures Precision, Recall, and their
harmonic mean F1 value. Two comprehensive measures
Average F1 (Avg_F1) and Block Instance Accuracy
(BIK_IA) (Zhu et al., 2005) are also used. Block Instance
Accuracy is the percentage of records whose Name,
Image, and Price are all correctly labeled. Note that each
product can have only one price which is the current price
for sale. Other prices detected are treated as errors.

From the results, we can see that DHMRFs achieve the
highest performance on both datasets. Compared to the
fixed HCRFs, on LDST about 3 points in Average F1 and
about 5 points in Block Instance Accuracy are gained. For
Name and Description, more than 4 points are achieved in
both precision and recall, and for Image and Price the
improvements are slightly smaller (about 2 points in F1).
This is because Image and Price are usually more
distinctive than the other attributes. So both models
perform quite well. On DDST, the improvements in Name
are about 4 points in both precision and recall, and for
Description the improvements are about 7 points in both
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Figure 2. Plot (a) shows the log posteriors of MAP dynamic structures against those of fixed structures. Samples in asterisks are from
LDST and those in circles are from DDST. Plot (b) is the change of average contrastive divergence with respect to iteration numbers.

precision and recall. Small improvements are achieved in
Image and Price due to the same reason as in list pages.

The improvements demonstrate the merits of DHMRFs.
First, DHMRFs can incorporate the two-dimensional
neighborhood dependencies among the nodes at the same
level, which have been shown to be useful in (Zhu et al.,
2005), while HCRFs must take a sequentialization to put
these nodes into a chain. By dynamically selecting
connections between different nodes, DHMRFs can bring
together the attributes of the same object (here, an object
is a product item), and thus the correlation between these
attributes can be strengthened. Second, DHMRFs can deal
with webpages with intertwined attributes (Zhai & Liu,
2005). For these webpages, the attributes of different
objects are intertwined in HTML tag trees. Unaware of
semantic labels, the constructed vision-trees (Zhu et al.,
2006) also have intertwined attributes. In these cases, the
fixed-structured HCRFs cannot correctly detect data
records by simply assigning labels to the nodes of a
vision-tree. Instead, as structure selection is integrated
with labeling in DHMRFs, the dynamic model can
properly group the attributes of the same object and at the
same time separate the attributes of different objects with
the help of semantic labels. The semantic labels have been
shown helpful in detecting data records (i.e. groups of
attributes) in (Zhu et al., 2006). Note that although
intertwined cases are usually fewer than non-intertwined
cases, they are not sparse samples in our model. This is
because although their edge connections in HTML tag
trees are somewhat different from non-intertwined ones,
the visual features they share are almost the same. Thus,
training samples with or without intertwined cases can
teach a good model.

Compared to the fixed F-Trees, the worse performance of
D-Trees is quite counter-intuitive. However, a close
examination of the results reveals that the reason for the
worse performance is due to the less discriminative power
of D-Trees. As we have stated, for diverse web data CPT
sharing can be difficult. Although empirical studies can
find a good sharing method, we couldn’t learn an optimal
model with a limited set of training samples. Furthermore,
its generative characteristic causes difficulty in encoding
useful features. In this way, more uncertainty in structure
selection couldn’t be resolved than that in DHMRFs. This

is evident if we look at the average log-likelihood of the
MAP connections over all samples and all nodes. For D-
Trees the average value is -0.4080, and for DHMRFs it is
-0.3170. In terms of probability, they are equivalent to
0.6650 and 0.7283 respectively. The less discriminative
power of D-Trees causes additional errors in constructing
model structures even for the non-intertwined cases, and
thus hurts the accuracy of record detection and attribute
labeling. So, D-Trees perform worse than F-Trees, which
can deal with the non-intertwined cases well. The results
also show that the directed tree models can perform well
on our datasets, but are inferior to HCRFs.

4.2.2 FITNESS OF MODEL STRUCTURE

Figure 2(a) compares the posterior probabilities of the
MAP structures constructed by DHMRFs with those of
the fixed structures. In terms of the number of nodes, the
sizes of webpages change from 39 to 576 (average 166) in
LDST, and the log posteriors change from -503.80 to -
4.49 (average -50.7). In DDST, sizes range from 14 to 705
(average 131), and log posteriors range from -184.40 to -
1.72 (average -42.47). Here, we only present the samples
whose log posteriors are between -200 and 0 because
most of the samples (>97%) fall into this interval. We can
see that the MAP structures by DHMRFs always appear
above the equal probability line. Thus, the structures
found by the dynamic model have higher posterior
probabilities. Another observation is that the distribution
of samples from DDST is more disperse than that of the
samples from LDST. The reason is that in list pages the
attributes of an object always concentrate into small
clusters while they can scatter anywhere in detail pages.

4.2.3 STUDY ABOUT THE INFERENCE ALGORITHM

Figure 2(b) shows the change of average contrastive
divergence with respect to iteration numbers in the
learning of DHMRFs. To initialize the algorithm, at the
wake phrase m? are set to a uniform distribution plus a
Gaussian noise with zero mean and variance 0.01, and g,
are set to a random distribution. The model weights are
initialized to zero. We can see that before 7 iterations
average contrastive divergence decreases stably. And
after 7, slight disturbances appear. But as for extraction
accuracy, marginal changes occur (no more than 0.5 point
in Block Instance Accuracy). Thus, the learning algorithm
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is quite stable. All the above results are achieved at
iteration 7. The same initialization is used in labeling, and
by running both learning and labeling many times, we
observe that the algorithm is insensitive to the random
initialization. Since the mean field equations are locally
calculated and their update can typically converge within
5 iterations, both the learning and labeling are efficient.

5. Conclusions

In this paper, we propose Dynamic Hierarchical Markov
Random Fields to discriminatively incorporate structural
uncertainty in hierarchical modeling. By dynamically
selecting connections between variables, it can address
the blocky artifact issue in diverse web data extraction.
Compared to directed models, DHMRFs are compact in
representation and powerful in encoding useful features.
The model admits efficient variational approximation
algorithms to learn parameters and to do labeling. We
apply the proposed model to web data extraction. The
results demonstrate great promise, and show that it is
possible to alleviate the burden of manual labeling of
inner nodes in learning fixed-structured models.
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