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ABSTRACT 

Logs play an important role in the maintenance of large-scale 

online service systems. When an online service fails, engineers 

need to examine recorded logs to gain insights into the failure and 

identify the potential problems. Traditionally, engineers perform 

simple keyword search (such as “error” and “exception”) of logs 

that may be associated with the failures. Such an approach is often 

time consuming and error prone. Through our collaboration with 

Microsoft service product teams, we propose LogCluster, an 

approach that clusters the logs to ease log-based problem 

identification. LogCluster also utilizes a knowledge base to check 

if the log sequences occurred before. Engineers only need to 

examine a small number of previously unseen, representative log 

sequences extracted from the clusters to identify a problem, thus 

significantly reducing the number of logs that should be examined, 

meanwhile improving the identification accuracy. Through 

experiments on two Hadoop-based applications and two large-scale 

Microsoft online service systems, we show that our approach is 

effective and outperforms the state-of-the-art work proposed by 

Shang et al. in ICSE 2013. We have successfully applied 

LogCluster to the maintenance of many actual Microsoft online 

service systems. In this paper, we also share our success stories and 

lessons learned. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging - monitors, 

tracing. 

General Terms 

Measurement, Reliability 

Keywords 

Logs, Problem Identification, Log Clustering, Diagnosis, Online 

Service System. 

1. INTRODUCTION 
Large-scale online service systems, such as those of Microsoft, 

Google, and Amazon, are getting increasingly large and complex -

they often contain hundreds of distributed components and support 

a large number of concurrent users. Typically, engineers first test 

an online service system in a lab (testing) environment and then 

deploy the system in production (actual) environment. The lab 

environment often has a small, pseudo cloud setting with a limited 

amount of data, while the production environment has a large and 

complex cloud infrastructure supporting a huge amount of data. 

Because of the differences between the lab and production 

environments, online service systems often encounter unexpected 

problems, even they are well tested in the lab environment. 

As debugging tools (e.g., an IDE debugger), all too often, are 

inapplicable in production settings, logging has become a principal 

way to record the key runtime information (e.g., states, events) of 

the online service systems into console logs for postmortem 

analysis. As an example, a fragment of logs produced by a 

Microsoft online service system is as follows:  

2:26:00 PM   Connecting to SQL DB AM-DB-3202 

2:26:00 PM   System.Data.SqlClient.SqlException: A network-related error 

occurred while establishing a connection to SQL Server 

2:26:00 PM   Connecting to failover SQL DB #1 AM-DB-3203 

2:26:00 PM   Load user profile successfully, start to get user document No. 

33627349082 

In general, when an online service fails, engineers need to examine 

the recorded logs to gain insight into the failure, identify the 

problems, and perform troubleshooting. Traditionally, engineers 

perform simple keyword search to obtain logs that indicate runtime 

failures. Examples of keywords include “fail”, “kill”, etc. However, 

such an approach is time-consuming and ineffective in production 

environment, especially for large-scale online service systems. 

Through our collaboration with Microsoft service product teams 

over the past four years, we have identified the following 

characteristics of the logs of online service systems: 

 First, every day a vast number of logs are generated by the 

online service systems. As the service systems become 

increasingly complex, more and more logs are generated. For 

some large-scale systems that provide global services, the 

amount of daily log data could reach tens of TBs. A Microsoft 

service system even generates over 1PB of logs every day. As 

such, once a problem occurs, it is very time consuming to 

diagnose it through manual examination of the logs.  

 Second, modern online systems often incorporate the 

“faileover” mechanism [5], which dynamically allocates jobs 

among computing nodes considering factors such as 

availability and performance. The systems could proactively 

kill a job and restart it elsewhere, which causes many “kill” 

and “fail” keywords in logs. Therefore, simple keyword search 

will lead to a large number of false positives, and hinder the 

identification of real problems. 

 Third, there is a large number of recurrent issues reflected by 

the logs. For a traditional software system, if a bug is detected, 

it will be fixed and in most cases it will not appear in the new 

release. However, in a large-scale online service system, there 
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are many recurrent issues, which could lead to a lot of 

redundant effort in examining logs and diagnosing the 

previously known problems. The recurrent issues occur due to 

the following three reasons: a) When a service fails, a common 

practice is to restore the service as soon as possible by 

identifying a temporary workaround solution (such as 

restarting a server). Therefore, before the root cause is fixed, 

recurrent issues are expected; b) A large-scale online service 

usually contains a large number of components running in 

different computing environments. An issue occurs in one 

environment may appear in other environments; c) Many 

service failures are caused by environmental issues (such as 

machine down and network disconnection), which could occur 

from time to time. 

 Fourth, log messages are highly diverse. Because of the 

complexity of an online service, the execution paths that lead 

to a same type of failure could be different. The frequent 

changes to service features and environments also increase the 

diversity of log messages. Furthermore, not all log messages 

are equal in their importance for problem identification - some 

log messages appear in both normal and failure scenarios, 

while some log messages only appear in failed scenarios and 

are more likely to be related to the failures. It is thus 

challenging for engineers to effectively identify and 

differentiate various service problems through examining a 

large number of highly diverse logs.  

In recent years, some tools have been developed to help engineers 

identify a service problem through automated analysis of a large 

number of logs. For example, Shang et al. [18] proposed to group 

the related log messages into execution sequences. Engineers can 

compare the log sequences generated in production environment 

and the log sequences generated in lab environment. Their method 

not only significantly reduces the number of logs that should be 

verified, but also achieves much higher precision for identifying 

deployment problems than the traditional keyword search 

approach. However, the precision of their method is still rather low 

and could be further improved. Furthermore, their method does not 

consider the previous known problems, therefore may incur 

redundant effort in examining logs of recurrent issues. We will 

discuss more about the limitations of the ICSE’13 approach in 

Section 2. 

In this paper, we propose LogCluster, a log clustering based 

problem identification approach that considers all the 

characteristics of the logs of online service systems. In our work, 

we assign weights to log messages and group the similar log 

sequences into clusters. We then extract a representative log 

sequence from each cluster. The operation of LogCluster can be 

divided into two phases: construction phase and production phase. 

In the construction phase, we use the log sequences collected from 

the testing environment, cluster them to construct an initial 

knowledge base. In the production phase, we analyze the log 

sequences collected from the actual production environment, 

cluster them and check if the clusters can be found in the knowledge 

base. In this way, developer only need to examine a small number 

of representative log sequences from the clusters that are previously 

unseen. Therefore, LogCluster further reduces the total number of 

logs need to be manually examined and improves the effectiveness 

of problem identification. 

We have evaluated our method on two Hadoop applications and 

two Microsoft online service systems. The results show that the 

proposed method can effectively help engineers identify problems 

of online service systems. Our results also show that the proposed 

method outperforms the state-of-the-art method proposed by Shang 

et al. [18]. We have also successfully applied LogCluster to the 

maintenance of many actual Microsoft online service systems. 

The main contributions of this paper are as follows: 

 We propose LogCluster, which facilitates problem 

identification by clustering similar log sequences and 

retrieving recurrent issues. Our approach outperforms the 

state-of-the-art method [18]. 

 We have successfully applied LogCluster to many Microsoft 

online service systems and confirmed the effectiveness of our 

approach. 

 We share some success stories and lessons learned from the 

collaborations with multiple product teams across Microsoft 

over the past four years. 

The remainder of this paper is organized as follows: We introduce 

background and motivation of our work in Section 2. Section 3 

describes our approach. Section 4 presents our experimental design 

and results. In Section 5, we present the successful stories of our 

approach in industrial practice. In Section 6, we discuss our lessons 

learned. Section 7 surveys related work followed by Section 8 that 

concludes this paper. 

2. BACKGROUND AND MOTIVATION 

2.1 Logs and Log Parsing 
Large-scale software systems often generate logs for 

troubleshooting. The log messages are usually semi-structured text 

strings, which are used to record events or states of interest. In 

general, when a job fails, engineers can examine recorded log files 

to gain insight about the failure, and locate the potential root causes. 

Logging is particularly important for large-scale online services 

running in a Big Data environment with multiple clusters of servers 

and data centers, where other software debugging techniques are 

difficult to be applied. For example, it is impractical to attach a 

debugger to an online service system. 

Because of its importance, logging has been commonly used in 

practice. For example, Hadoop [9] prints job and task related logs 

to provide information about the inner working status of the 

platform. An empirical study also shows that logging is commonly 

used in Microsoft [4, 7], where engineers use several mechanisms 

such as ULS [22] to perform logging. 

Figure 1 shows an example of logs generated by a task of a Hadoop 

service. 

2015-09-29 10:38:40 INFO [ContainerLauncher #6] 
org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp

l: Processing the event EventType: 

CONTAINER_REMOTE_CLEANUP for container container_000006 
taskAttempt attempt_m_000004_0 

2015-09-29 10:38:43 INFO [ContainerLauncher #5] 

org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp
l: Processing the event EventType: 

CONTAINER_REMOTE_CLEANUP for container container_000008 

taskAttempt attempt_m_000006_0 

2015-09-29 10:38:43 INFO [ContainerLauncher #5] 
org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp

l: KILLING attempt_m_000006_0 

2015-09-29 10:38:43 INFO [AsyncDispatcher event handler] 

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl: 
attempt_m_000006_0 TaskAttempt Transitioned from 

SUCCESS_CONTAINER_CLEANUP to SUCCEEDED 



2015-09-29 10:38:43 INFO [AsyncDispatcher event handler] 

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskImpl: Task 

succeeded with attempt attempt_m_000006_0 

2015-09-29 10:38:43 INFO [AsyncDispatcher event handler] 

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskImpl: 

task_m_000006 Task Transitioned from RUNNING to SUCCEEDED 

2015-09-29 10:38:44 INFO [AsyncDispatcher event handler] 
org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl: 

Diagnostics report from attempt_m_000006_0: Container killed by the 

ApplicationMaster. 

Figure 1. An example of Hadoop logs 

A semi-structured log message contains two types of information: 

a free-form constant string that is used to describe a system status; 

and parameters that record some important system attributes. To 

facilitate analysis, a common practice is to parse the log messages 

into constant strings and parameters [6, 11, 12, 24] and form 

abstract log messages. An abstract log message is often called a log 

event, which represents generic log messages printed by the same 

log-print statement in the source code. The log events can be linked 

through the same task ID and form a log sequence. Figure 2 gives 

an example of log sequence (E1, E1, E2, E3, E4, E5, E6) obtained 

through parsing the log messages shown in Figure 1. 

E1: $DATE INFO [ContainerLauncher #$NUMBER] 

org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp
l: Processing the event EventType: 

CONTAINER_REMOTE_CLEANUP for container $CONTAINERID 

taskAttempt $ATTEMPTID 

E1: $DATE INFO [ContainerLauncher #$NUMBER] 

org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp

l: Processing the event EventType: 
CONTAINER_REMOTE_CLEANUP for container $CONTAINERID 

taskAttempt $ATTEMPTID 

E2: $DATE INFO [ContainerLauncher #$NUMBER] 
org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp

l: KILLING $ATTEMPTID 

E3: $DATE INFO [AsyncDispatcher event handler] 
org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl: 

$ATTEMPTID TaskAttempt Transitioned from 

SUCCESS_CONTAINER_CLEANUP to SUCCEEDED 

E4: $DATE INFO [AsyncDispatcher event handler] 

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskImpl: Task 

succeeded with attempt $ATTEMPTID 

E5: $DATE INFO [AsyncDispatcher event handler] 

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskImpl: $TASKID 

Task Transitioned from RUNNING to SUCCEEDED 

E6: $DATE INFO [AsyncDispatcher event handler] 

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl: 

Diagnostics report from $ATTEMPTID: Container killed by the 

ApplicationMaster. 

Figure 2. An example of log parsing 

2.2 Log-based Problem Identification  
Although important, log-based problem identification is not easy. 

Traditionally, when a service failure occurs, engineers identify 

problems by searching for “erroneous” jobs in the generated logs. 

They perform simple keyword search (such as “kill”, “fail”, 

“error”, and “exception”) of logs that may be associated with the 

failure. Due to the increasing scale and complexity of online service 

systems, the number of generated logs could be quickly 

overwhelming. Clearly, it can be very time consuming for a human 

operator to diagnose system problems by manually examining a 

huge number of log messages.  

Furthermore, modern online systems often incorporate the 

“failover” mechanism [5]. To ensure reliability, availability, and 

performance, the systems could dynamically allocate jobs among 

computing nodes by proactively killing a job and restart it 

elsewhere. Therefore there are many “kill” and “fail” keywords in 

logs. For example, the red lines in Figure 1 are log messages that 

contain the keyword “kill”. However, these lines actually indicate 

normal system behavior. Therefore, simple keyword search will 

lead to a large number of false positives, and hinder the 

identification of real problems. Because of the inefficiency and 

ineffectiveness of the traditional approach, it is essential to have 

automated tools that can assist log-based problem identification. 

To help engineers perform log-based problem identification, Shang 

et al. [18] proposed to examine the differences between the log 

sequences in testing (lab) environment and the log sequences in 

production (actual) environment. Their approach first abstracts the 

execution logs, recovers the execution sequences, and then 

compares the sequences between the testing and actual 

deployments. Ideally, these two sets should be identical. However, 

due to platform configurations and workload differences, the 

underlying platform may execute the applications differently. The 

delta sets of execution sequences between these two sets could 

reflect the potential deployment failures. Their experiments on 

three Hadoop applications show that their approach not only 

significantly reduces the number of logs (by 86% - 97%) that should 

be verified, but also improves effectiveness in identifying 

deployment failures when compared to the traditional keyword 

search approach. 

Although effective, the ICSE’13 approach has limitations too:  

1) Although it can reduce effort in manual examination of log 

sequences, its precision is still rather low. According to their 

experiments, the precision values range from 10% to 38%, which 

clearly could be improved. Our analysis finds that the ICSE’13 

approach simplifies the log sequences by only removing repetitions 

and permutations of the sequences. For example, both of the 

following two sequences: “E1, E2, E3, E3, E5, E6” and “E1, E3, 

E5, E2, E6” are reduced to the sequence “E1, E2, E3, E5, E6”. In 

this way, similar logs are grouped together and manual examination 

effort can be reduced. Such a kind of grouping is rather simple as it 

does not consider the potential similarity between two log 

sequences when they are not repetition or permutation of each other. 

As described in Section 1, our experience with real logs of online 

service systems show that log sequences are highly diverse and log 

events are not equal in importance. We believe that the precision of 

the ICSE’13 approach could be further improved by incorporating 

a more advanced clustering technique. 

2) It does not utilize the previous known failures. Currently, the 

ICSE’13 approach requires the engineers to examine all delta 

sequences that contain the failure-indicating keywords. As 

described in Section 1, our experience with real logs of online 

service systems shows that many of the failures are recurrent ones, 

whose mitigations/resolutions are already known to the engineers 

and whose corresponding logs need not to be examined again. 

Therefore, we could utilize the previous known failures to further 

reduce the number of log sequences that should be manually 

examined. 

In this paper, we describe our proposed approach, which utilizes 

the characteristics of logs of online service systems to facilitate log-

based problem identification. Our approach also addresses the 

limitations of the previous approaches (the keyword search 

approach and the ICSE’13 approach) and outperforms them. 



3. THE PROPOSED APPROACH 

3.1 Overview 
The overall structure of LogCluster is shown in Figure 3. The 

operations of LogCluster can be divided into two phases: 

construction phase and production phase. In the construction phase, 

we use the log sequences collected from the testing environment. 

We convert the log sequences into vectors and cluster them. We 

then select a representative sequence from each cluster and store 

the selected sequences and the associated mitigation solutions in a 

knowledge base. In the production phase, we analyze the log 

sequences collected from the actual production environment. After 

log vectorization and clustering (which are the same as those in the 

construction phase), we extract a representative sequence from 

each cluster and check if it represents a previously examined cluster 

stored in the knowledge base. The engineers are only required to 

manually examine the representative log sequences that are 

previously unseen. The knowledge base is also updated with the 

new clusters. In this way, LogCluster can further reduce the effort 

required for log-based problem identification. 

 

Figure 3. The overall structure of LogCluster 

The major steps shown in Figure 3 are as follows. We describe them 

in detail in this section: 

Log Vectorization: Before clustering log sequences, we first turn 

each log sequence into a vector. We believe that different log events 

have different importance in terms of problem identification. 

Therefore, we assign a weight to each event in a vector. More 

details are given in Section 3.2. 

Log Clustering: We calculate the similarity value between two log 

sequences and apply the Agglomerative Hierarchical clustering 

technique to group the similar log sequences into clusters. More 

details are given in Section 3.3. 

Extracting Representative Log Sequence: After log clustering, 

we get a number of clusters. We then select a representative log 

sequence from each cluster by choosing the centroid of the cluster. 

More details are given in Section 3.4. 

Checking Recurrence: LogCluster checks if a representative log 

sequence appears before by querying a knowledge base. Only new 

log sequences are required to be manually examined. More details 

are given in Section 3.5. 

3.2 Log Vectorization 
For the free-form raw log messages, LogCluster first parses them 

into log events using the log abstraction technique described in [6]. 

It then produces log sequences by removing the duplicate events 

and linking the events with the same task ID. A log sequence 

contains multiple unique events. We believe that different log 

events have different discriminative power for problem 

identification. We propose two methods to weight the log events. 

IDF-based Event Weighting: For each log event, we calculate its 

IDF (Inverse Document Frequency) values. IDF is commonly used 

as a term weighting technique in information retrieval [15].  We 

treat each event as a term and each log sequence as a document. 

Intuitively, if an event frequently appears in many log sequences, 

its discriminative power is lower than the event that only appears 

in a small number of log sequence. Formally, IDF is calculated as: 
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where N is the total number of log sequences, and nt denotes the 

number of sequences where the event t appears. Using IDF, the 

events that occur very frequently have lower weights and the events 

that occur rarely have higher weights.  

Contrast-based Event Weighting: When a new failure occurs, 

engineers often perform diagnosis by comparing the log sequences 

generated in production (actual) environment and the log sequences 

generated in lab (testing) environment. Intuitively, an event that 

appears in both lab and production environments has less 

discriminative power for problem identification than an event that 

only occurs in production environment. The events occur only in 

the production environment are more likely to reflect the failures, 

thus they can be weighted higher. In our approach, an event t is 

assigned with a weight of 1 if it only appears in production 

environment, otherwise, its weight is 0. 
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where ∆S indicates the set of log events that only appear in 

production environment. 

Vectorization: For a log event t, we combine its normalized IDF-

based weight and contrast-based weight together as follows: 

w(t) = 0.5 × Norm(widf(t)) + 0.5 × wcon(t) 

where Norm is the normalization function, which normalizes the  

IDF-based weight to a value between 0 and 1. We choose the 

commonly used Sigmoid function [30] as the normalization 

function. 

  
Figure 4. Log sequences represented as vectors 

After calculating the weight for each event, we can represent a log 

sequence as a vector of weight in an N-dimensional space, where N 

is the number of unique events. For example, suppose there are 4 

different events appearing in the three log sequences as shown in 

Figure 4. The log sequences can be represented as three 4-

dimensional vectors: [0.07, 0.80, 0.02, 0.35], [0.07, 0.0, 0.02, 0.35], 

[0.07, 0.80, 0.02, 0.0]. 

3.3 Log Clustering 
Having obtained the vector-representation of log sequences, we 

compute the cosine similarity between any two N-dimensional 

vectors Si and Sj as follows: 
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where 𝑆𝑖𝐸𝑘 stands for the kth event in the jth sequence vector. 

Having computed the similarity between two log sequences, we 

perform log clustering using the Agglomerative Hierarchical 

clustering technique [8]. At the beginning of the agglomerative 

hierarchical clustering, each log sequence belongs to its own 

cluster. Then, the closest pair of clusters is selected and merged. To 

decide which pair of clusters should be merged, the distance metric 

between the clusters should be defined. In our approach, we adopt 

the maximum distance of all element pairs between two clusters as 

the cluster distance metric. In other words, the cluster distance 

metric depends on the maximum distance between the log 

sequences in each cluster. We adopt a distance threshold θ as a 

stopping criterion for the clustering process. The value of θ is set 

empirically (in our experiments, we set it to 0.5. We will discuss 

the impact of θ on the effectiveness of LogCluster in Section 4). 

Once the maximum distance between a pair of clusters is above the 

distance threshold, the clustering process for this pair is stopped. 

For example, in Figure 5, two clusters (Cluster 1 and Cluster 2) are 

produced. In this way, similar log sequences are grouped into the 

same cluster. 

 

Figure 5. Illustration of the Agglomerative Hierarchical 

Clustering process 

3.4 Extracting Representative Log Sequence 
After log clustering, we get a number of clusters. For each cluster, 

we select a representative log sequence by choosing the centroid of 

the cluster. To do so, we compute the score of each log sequence i 

in a cluster based on its average distance to other log sequences in 

the same cluster: 

𝑆𝑐𝑜𝑟𝑒(𝑖) =
1

𝑛−1
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where n is the number of log sequences in the cluster. From each 

cluster, we select the log sequence with the minimal score as the 

representative sequence of the cluster.  The selected sequences are 

the candidates for manual examination. 

3.5 Checking Recurrence 
In practice, many failures that occur to an online service system are 

recurrent failures, which appeared in the past. For the recurrent 

failures, their mitigations/resolutions are already known to the 

engineers. Therefore, the corresponding log clusters need not to be 

examined again. LogCluster checks if a log cluster is a recurrent 

one by querying a knowledge base, which stores the historical log 

clusters (represented by the representative log sequences) obtained 

from the past executions. To check the recurrence of a cluster, the 

representative log sequence of the cluster is selected and the same 

cosine similarity measure in Section 3.3 is used to determine the 

similarity between the new cluster and all the clusters stored in the 

knowledge base (the distance threshold is also set to θ). If a cluster 

is deemed recurrent and corresponds to a known failure, the 

associated mitigation actions are retrieved from the knowledge base 

and returned to engineers. Only new representative log sequences 

(no matching sequence in knowledge base is found) are returned to 

engineers for manual examination. The knowledge base is also 

updated with the new sequences. In this way, LogCluster reduces 

the number of log sequences to be examined.  

4. EXPERIMENTS 
In this section, we describe our experiments for evaluating 

LogCluster. 

4.1 Setup 
In our experiments, we use the same two Hadoop-based Big Data 

applications that were used in [18]: 

 WordCount: an application that is released with Hadoop as an 

example of MapReduce programming. The WordCount 

application analyzes the input files and counts the number of 

occurrences of each word in the input files. 

 PageRank: a program that is used by a search engine for 

ranking Web pages.  

During the execution of these two applications, the underlying 

Hadoop platform generate logs. We first run the applications in the 

lab environment without injecting any failures. In order to simulate 

the service failures in production environment, we manually inject 

the following deployment failures: 

 Machine Down:  we turn off one server when the applications 

are running to simulate the machine failure. 

 Network Disconnection: we disconnect one server from the 

network to simulate the network connection failure. 

 Disk Full: we manually fill up one server’s hard disk when the 

applications are running to simulate the disk full failure. 

In addition, to further evaluate LogClutser on industrial systems, 

we chose two Microsoft online service systems (their actual names 

are anonymized due to confidentiality): 

 Microsoft Service X, which is a large-scale online service 

system serving millions of users globally. Designed with a 3-

tier architecture, Service X runs on a large number of 

machines, each of which continuously generates a huge 

number of logs. Service X works in a load balance mode, it 

accepts end user requests, and dispatches them to different 

front ends according to load balancing strategies. There are 

many components in application tier, each in charge of a 

dedicated functionality. Most components include a failover 

mechanism in order to tolerate failures. Most of the user 

requests involve multiple components on multiple servers. 

Each component records its own logs and all the logs are 

automatically uploaded to a distributed HDFS-like data 

storage.  

 Microsoft Service Y, which is also a large-scale online service 

system providing 7*24 basis, continuous service for tens of 

millions of end users worldwide. There is a SLA (service level 

agreement) for the service, such as 99.99% availability for the 

entire user purchased period. If SLA is violated, penalty could 

apply. The entire service is divided into multiple subsystems, 

each subsystem has its full set of front end, application tier, 

and database tier. Service Y produces a huge number of logs 

during runtime.  

For the two Microsoft service systems, we obtain the logs from the 

lab (testing) environment. We also collect half an hour of real logs 

of each system from the production (actual) environment, including 
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3.3 million raw log messages from Service X and 10 million raw 

log messages from Service Y. We then use these logs to evaluate 

LogCluster. 

All experiments were performed on a cluster of PC (a cluster with 

46 cores across five machines). Each PC has Intel(R) Core(TM) i7-

3770 CPU and 16GB RAM. 

4.2 Research Questions 
To evaluate our approach, we design experiments to address the 

following research questions: 

RQ1: How much effort reduction does LogCluster achieve? 

When a service failure occurs, engineers need to examine the 

generated logs for troubleshooting. The number of logs to be 

examined is thus an important indicator of the effort required for 

engineers. To evaluate LogCluster in terms of effort reduction, we 

use the log data generated by running the two Hadoop applications 

(WordCount and PageRank) and count the number of log 

sequences that are required to be manually examined. We also 

evaluate LogCluster using the real log data generated by the two 

Microsoft online service systems. 

To evaluate the effort required by traditional keyword search based 

approach, we count the number of log messages that contain the 

keywords (including “kill”, “fail”, “error”, and “exception”). We 

also compare LogCluster with the state-of-the-art approach 

proposed in ICSE’13 [18]. 

RQ2: How accurate is LogCluster in identifying problems? 

Besides effort reduction, we also measure the accuracy of our 

approach in problem identification. We count the number of true 

positives (the number of examined log sequences that are indeed 

associated with actual failures) and false positives (the number of 

examined log sequences that are not associated with actual 

failures), and then calculate the precision values achieved by 

LogCluster, the ICSE’13 approach, and the traditional approach, 

respectively.  

RQ3: The impact of the distance threshold 

As described in Section 3.3, LogCluster uses a hierarchical 

clustering algorithm to cluster the log sequences. Here a distance 

threshold θ is used to determine the number of clusters – a lower 

threshold leads to a larger number of clusters, which will in turn 

affect the total number of log sequences to be examined. 

Furthermore, the distance threshold θ is also used in Section 3.5 to 

retrieve recurrent sequences. In this RQ, we evaluate the impact of 

the distance threshold on the accuracy of LogCluster. 

4.3 EXPERIMENTAL DESIGN AND 

RESULTS 
This section presents our experimental design and results by 

addressing the research questions. 

RQ1: How much effort reduction does LogCluster achieve? 

For the Hadoop applications (WordCount and PageRank), we first 

inject three consecutive machine failures and count the number of 

log sequences need to be examined at each round. Table 1 shows 

the effort reduction achieved by LogCluster. We can see that using 

LogCluster, the number of log sequences that should be examined 

is significantly reduced. For example, when the first machine 

failure is injected when running WordCount, only 8 of them require 

manual examination. While using the ICSE’13 approach, we need 

to examine 29 log sequences. Using traditional keyword search, we 

need to examine 335 raw log messages. When the second machine 

failure is injected, using LogCluster we only need to examine 5 log 

sequences, while using the ICSE’13 approach and the traditional 

keyword search, we need to examine 40 log sequences and 818 raw 

log messages, respectively. When the third machine failure is 

injected, using LogCluster we only need to examine 3 log 

sequences, while using the ICSE’13 approach and the traditional 

keyword search, we need to examine 25 log sequences and 392 raw 

log messages, respectively. The results show that using LogCluster, 

the number of log sequences to be examined decreases when there 

are recurrent failures. These results confirm the effectiveness of the 

proposed approach as described in Section 3. The same results are 

observed when running the PageRank application (for the 3rd 

failure, LogCluster detects that the log sequences appear before by 

querying the knowledge base. Therefore, no manual examination is 

needed). 

We also evaluate LogCluster when there are multiple types of 

failures. For the Hadoop applications (WordCount and PageRank), 

we inject three failures of different types (Machine Down, Network 

Disconnection, and Disk Full) during runtime, and observe how 

LogCluster performs. Table 2 shows the results. When there are 

multiple failures, LogCluster still significantly reduces the number 

of log sequences that should be examined. For example, for 

WordCount, when the Network Disconnection failure is injected, 

using LogCluster we only need to examine 6 log sequences. While 

using the ICSE’13 approach and the traditional keyword search, we 

need to examine 20 log sequences and 8437 raw log messages, 

respectively. 

Table 1. The effort reduction under three consecutive machine failures1 

 1st Failure 2nd Failure 3rd Failure 

 Keyword Search ICSE’13  LogCluster Keyword Search ICSE’13  LogCluster Keyword Search ICSE’13  LogCluster 

WordCount 
335 

(16.7%) 
29 

(44.8%) 
8 

(100.0%) 
818 

(30.0%) 
40 

(65.0%) 
5 

(40.0%) 
392 

(10.0%) 
25 

(36.0%) 
3 

(66.7%) 

PageRank 

361 

(1.1%) 

18 

(5.6%) 

2 

(50.0%) 

372 

(0.3%) 

24 

(4.2%) 

2 

(50.0%) 

272 

(0.4%) 

21 

(4.8%) 

0 

(N/A) 

 

Table 2. The effort reduction under multiple types of failures1 

 Machine Down Network Disconnection Disk Full 

 Keyword Search ICSE’13  LogCluster Keyword Search ICSE’13  LogCluster Keyword Search ICSE’13  LogCluster 

WordCount 
335 

(16.7%) 
29 

(44.8%) 
8 

(100.0%) 
8437 

(97.0%) 
20 

(55.0%) 
6 

(66.7%) 
388 

(24.5%) 
26 

(50%) 
6 

(100.0%) 

PageRank 

361 

(1.1%) 

18 

(5.6%) 

2 

(50.0%) 

10250 

(14.0%) 

23 

(17.4%) 

6 

(66.7%) 

395 

(0.8%) 

24 

(4.2%) 

4 

(25.0%) 

                                                                    
1 Measured in terms of #log sequences to be examined. Numbers in brackets indicate the precision values (i.e., the percentage of examined log sequences that are associated with the 

actual failures).  



Table 3. Effort reduction for Microsoft Online Service 

Systems 

 
Raw Log 
Messages 

Keyword 
Search 

ICSE’13  LogCluster 

Service X 
3.3 million 

278,430 

(0.01%) 

522 

(0.77%) 

7 

(42.86%) 

Service Y 
10.0 million 

200,119  
(0.08%) 

2433 
(2.84%) 

40 
(55.00%) 

To further evaluate LogCluster on industrial systems, we use the 

real log messages (13.3 million in total) generated by Microsoft 

Service X and Y systems. Table 3 shows the results. LogCluster 

achieves significant effort reduction on real-world log data.  For 

example, for Service X, using LogCluster we only need to examine 

7 log sequences. While using the ICSE’13 approach and the 

traditional keyword search, we need to examine 522 log sequences 

and 278,430 raw log messages, respectively. 

RQ2: How accurate is LogCluster in identifying problems? 

Tables 1 - 3 also show the precision results achieved by LogCluster, 

which are the percentages of examined log sequences that are 

indeed associated with actual failures. In general, LogCluster can 

achieve much higher precision values than the ICSE’13 and 

keyword search approaches. For example, for the WordCount 

application, using LogCluster, 100.0% (8 out of 8) examined log 

sequences are indeed related to the actual Machine Down failure, 

while the ICSE’13 and the keyword search approaches achieve the 

precision value of 44.8% (13 out of 29) and 16.7% (56 out of 335), 

respectively. For the Network Disconnection failure to WordCount, 

the precision value (66.7%) achieved by LogCluster is lower than 

that achieved by the keyword search approach (97.0%). However, 

the number of log sequences required for manual examination is 

much smaller (6 vs. 8437). Similarly, although for some systems, 

the absolute precision values are low (e.g., 42.86% for Service X), 

the number of log sequences need to be examined is much smaller 

than the total number of raw messages. Therefore, LogCluster is 

still considered effective in these scenarios. Figure 6 shows the 

average of all precision results (as listed in Tables 1 - 3) achieved 

by all the three approaches. Clearly, LogCluster achieves the best 

overall accuracy. 

 
Figure 6. The average precision values 

 
Figure 7. The impact of distance threshold θ 

RQ3: The impact of the distance threshold 

As discussed in Sections 3.3 and 3.5, LogCluster uses a parameter θ 

as the distance threshold. We evaluate the impact of the distance 

threshold on the accuracy of LogCluster. Figure 7 shows the average 

precision values of all the experiments (as listed in Tables 1 - 3) 

achieved by different θ values. Generally, the accuracy of 

LogCluster is relatively stable when the θ value is between 0.2 and 

0.8. The experimental results show that LogCluster is insensitive to 

the distance threshold. 

We also use NMI (normalized mutual information) [15], which is 

one of the commonly used metrics to evaluate the quality of 

clustering. NMI is a number between 0 and 1. The higher the better. 

We manually examine the clusters and compute the NMI values. 

Table 4 shows the results when θ is 0.5. The NMI values are all 

above 80%, indicating good clustering quality.  

Table 4. The Evaluation of Clustering Quality  
 WordCount PageRank Service X Service Y 

NMI 90.42% 87.45% 83.48% 81.99% 

 

4.4 Threats to Validity 
We identify the following threats to validity: 

 Subject selection bias: In our experiment, we only use four 

systems as experimental subjects. However, these four 

systems include both representative Hadoop projects as well 

as real-world industrial systems. In future, we will evaluate 

LogCluster on more projects on a variety of Cloud computing 

platforms such as Dryad [10]. 

 Bugs in testing environment: In our approach, we assume 

that all the bugs revealed by service testing are fixed. 

Therefore, we consider the log sequences obtained from the 

lab environment the “correct” ones and use them to compare 

with the log sequences obtained in actual environment. Our 

approach cannot detect erroneous log sequences from the lab 

environment. 

 Performance failures: Our approach is effective in 

identifying functional or deployment failures. As we do not 

consider the temporal order of the events, our approach 

cannot identify performance related failures. We refer 

interested readers to our previous work [2] on log-based 

performance diagnosis.  

5. SUCCESS STORY 
Since 2013, LogCluster has been successfully applied to many 

projects in Microsoft. As an example, LogCluster has been used by 

Microsoft Service A team as a part of their log analysis engine. 

Service A is a globally deployed online service, serving millions of 

end users in 7*24 basis. The goal of the log analysis engine is to 

monitor the execution of Service A and to ensure its user perceived 

availability. Before adopting LogCluster, Service A team mainly 

used the Active Monitoring tool (also known as Synthetic 

Monitoring) [17] to monitor the health status of Service A. The 

Active Monitoring tool predefines and mimics end user requests, 

periodically sends these synthetic requests to the online service, and 

compares the content of the response with predefine correct results. 

Although useful, Active Monitoring fails to detect many problems 

because it is based on simulated user requests. LogCluster was used 

by the Service A team to complement Active Monitoring as it can 

recover actual user requests by mining execution logs. After 

integrating LogCluster, the Service A team is able to detect more 

problems and further shorten the mean time to recover the service. 

For example, in July 2014, due to a certain configuration fault, the 

component C of Service A kept calling a global topology server, 
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which maintains the latest topology status of the overall system and 

provides critical information to many system functions. The 

component C called the topology sever in an unexpected high rate 

of speed and caused the server to be overloaded. As a consequence, 

many user requests that depend on the topology server failed. Using 

LogCluster, the Service A team quickly identified and fixed the 

problem. Furthermore, they also found a similar problem in another 

deployment of Service A. Using LogCluster, the service team 

successfully recognized the known failure and retrieved the 

corresponding mitigation solution. 

LogCluster is also integrated into Product G, which is a product for 

root cause analysis of service issues. Using LogCluster, Product G 

builds clusters of similar log sequences mined from execution logs. 

Each identified cluster is assigned an anomaly score based on 

several criteria such as size of the cluster, age of cluster, and user 

provided feedback. When a service is experiencing a live site issue, 

engineers in the service team use Product G to examine the highest 

ranked anomalies that occurred around the same time as the service 

failure. Since many service failures manifest themselves as 

anomalous patterns in logs, engineers are able to quickly 

understand the details of the failures. This allows for more efficient 

root cause analysis, which in turn leads to improvement in key 

metrics like “Mean Time to Mitigate” and “Mean Time to Fix”. 

Another successful application of LogCluster is in the Product L, 

which is a distributed log analytic tool that can processes several 

TB log data every day. LogCluster is an integral component of 

Product L. Once Product L detects a service failure, it will 

automatically collect the typical log sequences and send them to 

service engineers for troubleshooting. Since its initial launch in July 

2014, Product L has already helped identify many service problems, 

which have all been confirmed and fixed. For example, Product L 

detected a service problem that was due to a misconfiguration about 

“default max document size”. Many users failed to upload their 

documents to Service B. This problem was not found in the testing 

environment but happened in the actual deployment of the service 

(with a large number of users). Product L successfully helped 

engineers diagnose this problem.  

LogCluster is also applied to Microsoft Service C, which is a hub 

that hosts over four hundred different services. It maintains data 

from multiple Microsoft teams. Given the complexity of the 

Service C system, the collected logs vary from one service to the 

other. The diversity of logs generated by various products and 

teams brings much challenge to our LogCluster approach.  

LogCluster was integrated into the Service C team’s log analysis 

pipeline. In the first month, the team successfully analyzed logs 

generated by 50 different services, without modifying any 

parameters. The log analysis engine was shown to be effective in 

assisting engineers with incident identification and diagnosis.  

LogCluster is now used by many Microsoft teams and has received 

many encouraging feedbacks. For example: 

“…the analysis pipeline is reliably running…The collaboration 

project was reviewed and got very positive feedback: a. from Mid-

April to Mid-May (for one month), top 10 detected clusters 100% 

accurately detected real service issues; b. with accumulated 

knowledge, repeated issues could be fixed quicker/easier…” --- a 

senior program manager from Service A. 

 “…The engine was able to identify 30 anomalous patterns in 

service logs. Of these 29 were legitimate failures of the service 

which is a very high precision… It was able to quickly discover both 

large scale outages as well as small anomalies in services that led 

to customer impacting failures…” --- a principle software manager 

from Product G.  

“…Since the launching of the analysis system, a good number of 

hidden issues were successfully identified and corresponding bugs 

were filed and fixed in the past week, which were unable to detect 

with other existing systems. For example, in one case, 282,904 user 

sessions were impacted by a config bug that direct to a wrong URL. 

The issue was there for more than 10 days undetected, until our 

analysis engine was launched and mined it out…” --- a senior 

developer from Service B. 

6. DISCUSSIONS AND LESSONS 

LEARNED  

6.1 Log Severity Levels 
Our study finds that, Microsoft developers, like developers for open 

source software, use verbosity levels (such as Verbose and Medium) 

to control the number of printed logs. They also label the severity 

level of logs (such as Warning, Debug, Error, and Critical). 

However, our experience shows that the log severity levels can only 

facilitate problem diagnosis to a certain extent. This is because 

developers of different components often have different views 

about the severity of a problem.  A typical online service system 

consists of a large number of distributed components. A failure that 

is considered critical to one component (such as network failure) 

may not significantly affect the overall system because of the fault-

tolerant designs. Therefore, a log with a high severity level (such 

as Exception, Error, and Critical) may not reflect an actual system 

failure. Similarly, developers of a component may not have a 

complete understanding of the implications of a program status for 

the entire system. Therefore, a log with a low severity level (such 

as INFO) may actually contain important information about a 

system failure. As an example, we examined logs generated by 

Microsoft Product K over a period of 6 months.  We found that only 

a small percentage (<10%) of high severe logs are related to the 

actual system failures, and many (>30%) failures are associated 

with logs that have low severity levels. Our proposed LogCluster 

does not rely on log severity levels. It is based on abstraction and 

clustering of log sequences, therefore avoiding the limitations of 

using log severity levels. 

6.2 Permutations of a Log Sequence 
Our approach, like the ICSE’13 work, does not consider the 

permutations of events in a log sequence. For example, we consider 

the following two sequences the same: “E1, E2, E3, E5, E6” and 

“E1, E3, E5, E2, E6”. This is because many tasks of an online 

service are multi-threading, which causes interleaving logs even for 

the same user request. Furthermore, a typical online service system 

consists of many distributed servers. The logs generated by each 

server are later consolidated and stored at a HDFS-like central place. 

However, due to the clock drift problem [21], the timestamps of 

events produced by different servers may loss synchronization, 

causing many different permutations of events for the same 

execution sequence. Therefore, in our work we do not consider the 

permutations of a log sequence.  

6.3 Deployment Failures of Online Service 

Systems 
Our experience shows that when an online service system is 

initially launched, many failures are related to functional features. 

Many new log clusters obtained by LogCluster correspond to new 

features. When the service system becomes stable, deployment 

failures account for a large percentage of failures of online service 

systems. The deployment failures are often caused by 

environmental issues, such as issues in network connection, DNS, 



configuration, hardware, etc. In production environment, the 

deployment of an online service system is typically performed in 

an incremental manner. The deployment topology is divided into 

multiple farms. The system is firstly deployed in a small number of 

farms and then gradually moved to other farms. At each 

deployment step, the scales of system and data are increased. If 

LogCluster detects a new cluster of log sequences in a new farm, it 

is likely that the new farm encountered a deployment issue. 

Furthermore, a deployment issue occurs in one farm could happen 

in other farms as well. Using LogCluster, developers can quickly 

detect the recurrent deployment failures and find mitigation 

solutions from the knowledge base, thus reducing diagnosis and 

maintenance effort. 

In ideal cases, engineers can identify the root cause of the incident 

and fix it quickly. However, in most cases, engineers are unable to 

identify and fix root causes within a short time. Thus, in order to 

recover the service as soon as possible, a common practice is to 

restore the service by identifying a temporary workaround solution 

(such as restarting a server) to restore the service. Then after service 

restoration, identifying and fixing the underlying root cause for the 

incident can be conducted via offline postmortem analysis. 

6.4 Log Event IDs 
Our experience shows that log parsing accounts for a large portion 

of computation time of LogCluster. During log parsing, we process 

the raw log messages, parse them, and convert them into log events. 

The log events can be regarded as the generic log messages printed 

by the same log-printing statement in the source code. Some of the 

Microsoft products we worked on provide directly the log event IDs 

- each log message contains an event ID, a log level, and log 

contents. In this way, much time and computing resource are saved 

during log analysis. We consider it a good practice to directly add 

a log event ID to each log-printing statement in source code. It is 

also possible to develop a tool to automatically scan the logging 

statements and generate a unique ID for each log message, before 

the source code is submitted to the version control repository. 

6.5 Distributed Computing 
For the Microsoft online services we worked on, the log data is 

usually at very large scale (TeraBytes or PetaBytes every day). The 

large amount of log data demands much computing resource. To 

reduce the computation time, in practice our analysis algorithm is 

deployed in an internal distributed computing environment, with 

tens to hundreds servers. Furthermore, we select algorithms that are 

more suitable for a distributed computing environment. For 

example, we have tried several commonly-used clustering 

algorithms such as K-Means, K-Medoids, DBSCAN, and 

hierarchical clustering. Finally, we select the hierarchical clustering 

algorithm because it works well in a distributed environment.  

7. RELATED WORK 
Logging is widely used for diagnosing failures of software-

intensive systems because its simplicity and effectiveness. 

Analyzing logs for problem diagnosis has been an active research 

area [12, 13, 16, 24, 25, 26]. These work retrieve useful information 

from logs (such as events, variable values, and locations of logging 

statements), and adopt data mining and machine learning 

techniques to analyze the logs for problem detection and diagnosis. 

For example, Lou et al. [12] mine invariants (constant linear 

relationships) from console logs. A service anomaly is detected if a 

new log message breaks certain invariants during the system 

execution. Xu et al. [24] preprocess the logs and detect anomalies 

using principal component analysis (PCA). The log-based anomaly 

detection algorithms can check whether a service is abnormal, but 

can hardly obtain the insights into the abnormal task. LogEnhancer 

[27] aims to enhance the recorded contents in existing logging 

statements by automatically identifying and inserting critical 

variable values into them. The work of [6] records the runtime 

properties of each request in a multi-tier Web server, and applies 

statistical learning techniques to identify the causes of failures. 

Unlike the above-mentioned work, our work facilitates problem 

identification for online service systems by clustering similar logs.  

Some log-based diagnosis work is also based on the similarity 

among log sequences. For example, Dickenson et al. [1] collected 

execution traces and used classification techniques to categorize the 

collected traces based on some string distance metrics. Then, an 

analyst can examine the traces of each category to determine 

whether or not the category represents an anomaly. Yuan et al. [26] 

proposed a supervised classification algorithm to categorize system 

traces based on the similarity to the traces of the known problems. 

Mirgorodskiy et al. [14] used string distance metrics to categorize 

function-level traces, and to identify outlier traces or anomalies that 

substantially differ from the others. Ding et al. [3, 4] designed a 

framework to correlate logs, system issues, and corresponding 

simple mitigation solutions when similar logs appear. In our work, 

we consider weights of different events and apply hierarchical 

clustering to cluster similar log sequences. We also compare the 

newly obtained log sequences with those of known failures. 

While most of research has focused on the usage of logs for 

problem diagnosis, recently much work has been conducted to 

understand the log messages and logging practices. For example, 

Yuan et al. [28], Shang et al. [19], and Fu et al. [7] reported 

empirical studies on logging practice in open source and industrial 

software. Zhu et al. [29] proposed a “learning to log” framework, 

which aims to provide informative guidance on logging. 

Additionally, Shang et al. [18] used a sequence of logs to provide 

context information when examining a log message. To facilitate 

the understanding of log messages, Shang et al. [20] further 

proposed to associate the development knowledge stored in various 

software repositories (e.g., code commits and issues reports) with 

the log messages. In our work, the obtained log clusters and 

representative log sequences could also help engineers understand 

different categories of log messages. 

8. CONCLUSIONS 
Online service systems generate a huge number of logs every day. 

It is challenging for engineers to identify a service problem by 

manually examining the logs. In this paper, we propose LogCluster, 

an approach that clusters the logs to ease log-based problem 

identification. LogCluster also utilizes a knowledge base to reduce 

the redundant effort incurred by previously examined log 

sequences. Through experiments on two representative Hadoop-

based apps and two Microsoft online service systems, we show that 

our approach is effective and outperforms the state-of-the-art work 

proposed in ICSE 2013 [18]. We have also described the successful 

applications of LogCluster to the maintenance of actual Microsoft 

online service systems, as well as the lessons learned. 

In the future, we will integrate LogCluster into an intelligent and 

generic Log Analytics engine. We will also investigate effective 

log-based fault localization and debugging tools, such as those 

described in [23].  
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