
Log Clustering based Problem Identification for Online
Service Systems

Qingwei Lin†, Hongyu Zhang†, Jian-Guang Lou†, Yu Zhang§, Xuewei Chen†
†
Microsoft Research, Beijing 100080, China

§
Microsoft Corporation, Redmond, WA, USA

{qlin, honzhang, jlou, yugzhang, v-xuewc}@microsoft.com

ABSTRACT

Logs play an important role in the maintenance of large-scale

online service systems. When an online service fails, engineers

need to examine recorded logs to gain insights into the failure and

identify the potential problems. Traditionally, engineers perform

simple keyword search (such as “error” and “exception”) of logs

that may be associated with the failures. Such an approach is often

time consuming and error prone. Through our collaboration with

Microsoft service product teams, we propose LogCluster, an

approach that clusters the logs to ease log-based problem

identification. LogCluster also utilizes a knowledge base to check

if the log sequences occurred before. Engineers only need to

examine a small number of previously unseen, representative log

sequences extracted from the clusters to identify a problem, thus

significantly reducing the number of logs that should be examined,

meanwhile improving the identification accuracy. Through

experiments on two Hadoop-based applications and two large-scale

Microsoft online service systems, we show that our approach is

effective and outperforms the state-of-the-art work proposed by

Shang et al. in ICSE 2013. We have successfully applied

LogCluster to the maintenance of many actual Microsoft online

service systems. In this paper, we also share our success stories and

lessons learned.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging - monitors,

tracing.

General Terms

Measurement, Reliability

Keywords

Logs, Problem Identification, Log Clustering, Diagnosis, Online

Service System.

1. INTRODUCTION
Large-scale online service systems, such as those of Microsoft,

Google, and Amazon, are getting increasingly large and complex -

they often contain hundreds of distributed components and support

a large number of concurrent users. Typically, engineers first test

an online service system in a lab (testing) environment and then

deploy the system in production (actual) environment. The lab

environment often has a small, pseudo cloud setting with a limited

amount of data, while the production environment has a large and

complex cloud infrastructure supporting a huge amount of data.

Because of the differences between the lab and production

environments, online service systems often encounter unexpected

problems, even they are well tested in the lab environment.

As debugging tools (e.g., an IDE debugger), all too often, are

inapplicable in production settings, logging has become a principal

way to record the key runtime information (e.g., states, events) of

the online service systems into console logs for postmortem

analysis. As an example, a fragment of logs produced by a

Microsoft online service system is as follows:

2:26:00 PM Connecting to SQL DB AM-DB-3202

2:26:00 PM System.Data.SqlClient.SqlException: A network-related error

occurred while establishing a connection to SQL Server

2:26:00 PM Connecting to failover SQL DB #1 AM-DB-3203

2:26:00 PM Load user profile successfully, start to get user document No.

33627349082

In general, when an online service fails, engineers need to examine

the recorded logs to gain insight into the failure, identify the

problems, and perform troubleshooting. Traditionally, engineers

perform simple keyword search to obtain logs that indicate runtime

failures. Examples of keywords include “fail”, “kill”, etc. However,

such an approach is time-consuming and ineffective in production

environment, especially for large-scale online service systems.

Through our collaboration with Microsoft service product teams

over the past four years, we have identified the following

characteristics of the logs of online service systems:

 First, every day a vast number of logs are generated by the

online service systems. As the service systems become

increasingly complex, more and more logs are generated. For

some large-scale systems that provide global services, the

amount of daily log data could reach tens of TBs. A Microsoft

service system even generates over 1PB of logs every day. As

such, once a problem occurs, it is very time consuming to

diagnose it through manual examination of the logs.

 Second, modern online systems often incorporate the

“faileover” mechanism [5], which dynamically allocates jobs

among computing nodes considering factors such as

availability and performance. The systems could proactively

kill a job and restart it elsewhere, which causes many “kill”

and “fail” keywords in logs. Therefore, simple keyword search

will lead to a large number of false positives, and hinder the

identification of real problems.

 Third, there is a large number of recurrent issues reflected by

the logs. For a traditional software system, if a bug is detected,

it will be fixed and in most cases it will not appear in the new

release. However, in a large-scale online service system, there

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

ICSE '16 Companion, May 14-22, 2016, Austin, TX, USA

© 2016 ACM. ISBN 978-1-4503-4205-6/16/05…$15.00

DOI: http://dx.doi.org/10.1145/2889160.2889232

are many recurrent issues, which could lead to a lot of

redundant effort in examining logs and diagnosing the

previously known problems. The recurrent issues occur due to

the following three reasons: a) When a service fails, a common

practice is to restore the service as soon as possible by

identifying a temporary workaround solution (such as

restarting a server). Therefore, before the root cause is fixed,

recurrent issues are expected; b) A large-scale online service

usually contains a large number of components running in

different computing environments. An issue occurs in one

environment may appear in other environments; c) Many

service failures are caused by environmental issues (such as

machine down and network disconnection), which could occur

from time to time.

 Fourth, log messages are highly diverse. Because of the

complexity of an online service, the execution paths that lead

to a same type of failure could be different. The frequent

changes to service features and environments also increase the

diversity of log messages. Furthermore, not all log messages

are equal in their importance for problem identification - some

log messages appear in both normal and failure scenarios,

while some log messages only appear in failed scenarios and

are more likely to be related to the failures. It is thus

challenging for engineers to effectively identify and

differentiate various service problems through examining a

large number of highly diverse logs.

In recent years, some tools have been developed to help engineers

identify a service problem through automated analysis of a large

number of logs. For example, Shang et al. [18] proposed to group

the related log messages into execution sequences. Engineers can

compare the log sequences generated in production environment

and the log sequences generated in lab environment. Their method

not only significantly reduces the number of logs that should be

verified, but also achieves much higher precision for identifying

deployment problems than the traditional keyword search

approach. However, the precision of their method is still rather low

and could be further improved. Furthermore, their method does not

consider the previous known problems, therefore may incur

redundant effort in examining logs of recurrent issues. We will

discuss more about the limitations of the ICSE’13 approach in

Section 2.

In this paper, we propose LogCluster, a log clustering based

problem identification approach that considers all the

characteristics of the logs of online service systems. In our work,

we assign weights to log messages and group the similar log

sequences into clusters. We then extract a representative log

sequence from each cluster. The operation of LogCluster can be

divided into two phases: construction phase and production phase.

In the construction phase, we use the log sequences collected from

the testing environment, cluster them to construct an initial

knowledge base. In the production phase, we analyze the log

sequences collected from the actual production environment,

cluster them and check if the clusters can be found in the knowledge

base. In this way, developer only need to examine a small number

of representative log sequences from the clusters that are previously

unseen. Therefore, LogCluster further reduces the total number of

logs need to be manually examined and improves the effectiveness

of problem identification.

We have evaluated our method on two Hadoop applications and

two Microsoft online service systems. The results show that the

proposed method can effectively help engineers identify problems

of online service systems. Our results also show that the proposed

method outperforms the state-of-the-art method proposed by Shang

et al. [18]. We have also successfully applied LogCluster to the

maintenance of many actual Microsoft online service systems.

The main contributions of this paper are as follows:

 We propose LogCluster, which facilitates problem

identification by clustering similar log sequences and

retrieving recurrent issues. Our approach outperforms the

state-of-the-art method [18].

 We have successfully applied LogCluster to many Microsoft

online service systems and confirmed the effectiveness of our

approach.

 We share some success stories and lessons learned from the

collaborations with multiple product teams across Microsoft

over the past four years.

The remainder of this paper is organized as follows: We introduce

background and motivation of our work in Section 2. Section 3

describes our approach. Section 4 presents our experimental design

and results. In Section 5, we present the successful stories of our

approach in industrial practice. In Section 6, we discuss our lessons

learned. Section 7 surveys related work followed by Section 8 that

concludes this paper.

2. BACKGROUND AND MOTIVATION

2.1 Logs and Log Parsing
Large-scale software systems often generate logs for

troubleshooting. The log messages are usually semi-structured text

strings, which are used to record events or states of interest. In

general, when a job fails, engineers can examine recorded log files

to gain insight about the failure, and locate the potential root causes.

Logging is particularly important for large-scale online services

running in a Big Data environment with multiple clusters of servers

and data centers, where other software debugging techniques are

difficult to be applied. For example, it is impractical to attach a

debugger to an online service system.

Because of its importance, logging has been commonly used in

practice. For example, Hadoop [9] prints job and task related logs

to provide information about the inner working status of the

platform. An empirical study also shows that logging is commonly

used in Microsoft [4, 7], where engineers use several mechanisms

such as ULS [22] to perform logging.

Figure 1 shows an example of logs generated by a task of a Hadoop

service.

2015-09-29 10:38:40 INFO [ContainerLauncher #6]
org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp

l: Processing the event EventType:

CONTAINER_REMOTE_CLEANUP for container container_000006
taskAttempt attempt_m_000004_0

2015-09-29 10:38:43 INFO [ContainerLauncher #5]

org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp
l: Processing the event EventType:

CONTAINER_REMOTE_CLEANUP for container container_000008

taskAttempt attempt_m_000006_0

2015-09-29 10:38:43 INFO [ContainerLauncher #5]
org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp

l: KILLING attempt_m_000006_0

2015-09-29 10:38:43 INFO [AsyncDispatcher event handler]

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl:
attempt_m_000006_0 TaskAttempt Transitioned from

SUCCESS_CONTAINER_CLEANUP to SUCCEEDED

2015-09-29 10:38:43 INFO [AsyncDispatcher event handler]

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskImpl: Task

succeeded with attempt attempt_m_000006_0

2015-09-29 10:38:43 INFO [AsyncDispatcher event handler]

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskImpl:

task_m_000006 Task Transitioned from RUNNING to SUCCEEDED

2015-09-29 10:38:44 INFO [AsyncDispatcher event handler]
org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl:

Diagnostics report from attempt_m_000006_0: Container killed by the

ApplicationMaster.

Figure 1. An example of Hadoop logs

A semi-structured log message contains two types of information:

a free-form constant string that is used to describe a system status;

and parameters that record some important system attributes. To

facilitate analysis, a common practice is to parse the log messages

into constant strings and parameters [6, 11, 12, 24] and form

abstract log messages. An abstract log message is often called a log

event, which represents generic log messages printed by the same

log-print statement in the source code. The log events can be linked

through the same task ID and form a log sequence. Figure 2 gives

an example of log sequence (E1, E1, E2, E3, E4, E5, E6) obtained

through parsing the log messages shown in Figure 1.

E1: $DATE INFO [ContainerLauncher #$NUMBER]

org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp
l: Processing the event EventType:

CONTAINER_REMOTE_CLEANUP for container $CONTAINERID

taskAttempt $ATTEMPTID

E1: $DATE INFO [ContainerLauncher #$NUMBER]

org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp

l: Processing the event EventType:
CONTAINER_REMOTE_CLEANUP for container $CONTAINERID

taskAttempt $ATTEMPTID

E2: $DATE INFO [ContainerLauncher #$NUMBER]
org.apache.hadoop.mapreduce.v2.app.launcher.ContainerLauncherImp

l: KILLING $ATTEMPTID

E3: $DATE INFO [AsyncDispatcher event handler]
org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl:

$ATTEMPTID TaskAttempt Transitioned from

SUCCESS_CONTAINER_CLEANUP to SUCCEEDED

E4: $DATE INFO [AsyncDispatcher event handler]

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskImpl: Task

succeeded with attempt $ATTEMPTID

E5: $DATE INFO [AsyncDispatcher event handler]

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskImpl: $TASKID

Task Transitioned from RUNNING to SUCCEEDED

E6: $DATE INFO [AsyncDispatcher event handler]

org.apache.hadoop.mapreduce.v2.app.job.impl.TaskAttemptImpl:

Diagnostics report from $ATTEMPTID: Container killed by the

ApplicationMaster.

Figure 2. An example of log parsing

2.2 Log-based Problem Identification
Although important, log-based problem identification is not easy.

Traditionally, when a service failure occurs, engineers identify

problems by searching for “erroneous” jobs in the generated logs.

They perform simple keyword search (such as “kill”, “fail”,

“error”, and “exception”) of logs that may be associated with the

failure. Due to the increasing scale and complexity of online service

systems, the number of generated logs could be quickly

overwhelming. Clearly, it can be very time consuming for a human

operator to diagnose system problems by manually examining a

huge number of log messages.

Furthermore, modern online systems often incorporate the

“failover” mechanism [5]. To ensure reliability, availability, and

performance, the systems could dynamically allocate jobs among

computing nodes by proactively killing a job and restart it

elsewhere. Therefore there are many “kill” and “fail” keywords in

logs. For example, the red lines in Figure 1 are log messages that

contain the keyword “kill”. However, these lines actually indicate

normal system behavior. Therefore, simple keyword search will

lead to a large number of false positives, and hinder the

identification of real problems. Because of the inefficiency and

ineffectiveness of the traditional approach, it is essential to have

automated tools that can assist log-based problem identification.

To help engineers perform log-based problem identification, Shang

et al. [18] proposed to examine the differences between the log

sequences in testing (lab) environment and the log sequences in

production (actual) environment. Their approach first abstracts the

execution logs, recovers the execution sequences, and then

compares the sequences between the testing and actual

deployments. Ideally, these two sets should be identical. However,

due to platform configurations and workload differences, the

underlying platform may execute the applications differently. The

delta sets of execution sequences between these two sets could

reflect the potential deployment failures. Their experiments on

three Hadoop applications show that their approach not only

significantly reduces the number of logs (by 86% - 97%) that should

be verified, but also improves effectiveness in identifying

deployment failures when compared to the traditional keyword

search approach.

Although effective, the ICSE’13 approach has limitations too:

1) Although it can reduce effort in manual examination of log

sequences, its precision is still rather low. According to their

experiments, the precision values range from 10% to 38%, which

clearly could be improved. Our analysis finds that the ICSE’13

approach simplifies the log sequences by only removing repetitions

and permutations of the sequences. For example, both of the

following two sequences: “E1, E2, E3, E3, E5, E6” and “E1, E3,

E5, E2, E6” are reduced to the sequence “E1, E2, E3, E5, E6”. In

this way, similar logs are grouped together and manual examination

effort can be reduced. Such a kind of grouping is rather simple as it

does not consider the potential similarity between two log

sequences when they are not repetition or permutation of each other.

As described in Section 1, our experience with real logs of online

service systems show that log sequences are highly diverse and log

events are not equal in importance. We believe that the precision of

the ICSE’13 approach could be further improved by incorporating

a more advanced clustering technique.

2) It does not utilize the previous known failures. Currently, the

ICSE’13 approach requires the engineers to examine all delta

sequences that contain the failure-indicating keywords. As

described in Section 1, our experience with real logs of online

service systems shows that many of the failures are recurrent ones,

whose mitigations/resolutions are already known to the engineers

and whose corresponding logs need not to be examined again.

Therefore, we could utilize the previous known failures to further

reduce the number of log sequences that should be manually

examined.

In this paper, we describe our proposed approach, which utilizes

the characteristics of logs of online service systems to facilitate log-

based problem identification. Our approach also addresses the

limitations of the previous approaches (the keyword search

approach and the ICSE’13 approach) and outperforms them.

3. THE PROPOSED APPROACH

3.1 Overview
The overall structure of LogCluster is shown in Figure 3. The

operations of LogCluster can be divided into two phases:

construction phase and production phase. In the construction phase,

we use the log sequences collected from the testing environment.

We convert the log sequences into vectors and cluster them. We

then select a representative sequence from each cluster and store

the selected sequences and the associated mitigation solutions in a

knowledge base. In the production phase, we analyze the log

sequences collected from the actual production environment. After

log vectorization and clustering (which are the same as those in the

construction phase), we extract a representative sequence from

each cluster and check if it represents a previously examined cluster

stored in the knowledge base. The engineers are only required to

manually examine the representative log sequences that are

previously unseen. The knowledge base is also updated with the

new clusters. In this way, LogCluster can further reduce the effort

required for log-based problem identification.

Figure 3. The overall structure of LogCluster

The major steps shown in Figure 3 are as follows. We describe them

in detail in this section:

Log Vectorization: Before clustering log sequences, we first turn

each log sequence into a vector. We believe that different log events

have different importance in terms of problem identification.

Therefore, we assign a weight to each event in a vector. More

details are given in Section 3.2.

Log Clustering: We calculate the similarity value between two log

sequences and apply the Agglomerative Hierarchical clustering

technique to group the similar log sequences into clusters. More

details are given in Section 3.3.

Extracting Representative Log Sequence: After log clustering,

we get a number of clusters. We then select a representative log

sequence from each cluster by choosing the centroid of the cluster.

More details are given in Section 3.4.

Checking Recurrence: LogCluster checks if a representative log

sequence appears before by querying a knowledge base. Only new

log sequences are required to be manually examined. More details

are given in Section 3.5.

3.2 Log Vectorization
For the free-form raw log messages, LogCluster first parses them

into log events using the log abstraction technique described in [6].

It then produces log sequences by removing the duplicate events

and linking the events with the same task ID. A log sequence

contains multiple unique events. We believe that different log

events have different discriminative power for problem

identification. We propose two methods to weight the log events.

IDF-based Event Weighting: For each log event, we calculate its

IDF (Inverse Document Frequency) values. IDF is commonly used

as a term weighting technique in information retrieval [15]. We

treat each event as a term and each log sequence as a document.

Intuitively, if an event frequently appears in many log sequences,

its discriminative power is lower than the event that only appears

in a small number of log sequence. Formally, IDF is calculated as:

t

idf
n

N
tw log)(

where N is the total number of log sequences, and nt denotes the

number of sequences where the event t appears. Using IDF, the

events that occur very frequently have lower weights and the events

that occur rarely have higher weights.

Contrast-based Event Weighting: When a new failure occurs,

engineers often perform diagnosis by comparing the log sequences

generated in production (actual) environment and the log sequences

generated in lab (testing) environment. Intuitively, an event that

appears in both lab and production environments has less

discriminative power for problem identification than an event that

only occurs in production environment. The events occur only in

the production environment are more likely to reflect the failures,

thus they can be weighted higher. In our approach, an event t is

assigned with a weight of 1 if it only appears in production

environment, otherwise, its weight is 0.

otherwise 0

Sin appears if 1
)(

t

twcon

where ∆S indicates the set of log events that only appear in

production environment.

Vectorization: For a log event t, we combine its normalized IDF-

based weight and contrast-based weight together as follows:

w(t) = 0.5 × Norm(widf(t)) + 0.5 × wcon(t)

where Norm is the normalization function, which normalizes the

IDF-based weight to a value between 0 and 1. We choose the

commonly used Sigmoid function [30] as the normalization

function.

Figure 4. Log sequences represented as vectors

After calculating the weight for each event, we can represent a log

sequence as a vector of weight in an N-dimensional space, where N

is the number of unique events. For example, suppose there are 4

different events appearing in the three log sequences as shown in

Figure 4. The log sequences can be represented as three 4-

dimensional vectors: [0.07, 0.80, 0.02, 0.35], [0.07, 0.0, 0.02, 0.35],

[0.07, 0.80, 0.02, 0.0].

3.3 Log Clustering
Having obtained the vector-representation of log sequences, we

compute the cosine similarity between any two N-dimensional

vectors Si and Sj as follows:

Representative Log
Sequences

Log
Vectorization

S1: [1,1,1,2,5,3]
S2: [1,3,3,3,6,3]
S3: [1,2,2,2,4,2]
S4: [1,1,1,2,5,3]
… …

Log
Clustering

Log sequences
from production

New
Sequence

Construct

Check
Recurrence

Retrieve Historical
Mitigation Actions

Recurrent

Knowledge
Base

Log
Vectorization

S1: [1,1,1,2,5,3]
S2: [1,3,3,3,6,3]
S3: [1,2,2,2,4,2]
S4: [1,2,2,2,4,2]
… …

Log sequences
from testing

Representative Log
Sequences

Log
Clustering

Update

Construction Phase

Production Phase

Log Sequences for
Manual Examination

S1 = [E1,E4,E6,E7,E11]
S2 = [E1,E3,E6,E7,E12]
S3 = [E2,E4,E5,E6,E8,E11]

S1 = [E1,E4,E6,E7,E11]
S2 = [E1,E3,E6,E7,E12]
S3 = [E2,E4,E5,E6]

Event1 - 0.07

Event2 – 0.80

Event3 – 0.02

Event4 – 0.35

Event1 – 0.07

Event3 – 0.02

Event4 – 0.35

Event1 – 0.07

Event2 – 0.80

Event3 – 0.02

Log Sequence 1 Log Sequence 2 Log Sequence 3

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝑖 , 𝑆𝑗) =
𝑆𝑖 ∙ 𝑆𝑗

∥ 𝑆𝑖 ∥∥ 𝑆𝑗 ∥

=
∑ 𝑆𝑖𝐸𝑘 × 𝑆𝑗𝐸𝑘

𝑛
𝑘=1

√∑ (𝑆𝑖𝐸𝑘)2 𝑛
𝑘=1 × √∑ (𝑆𝑗𝐸𝑘)2 𝑛

𝑘=1

where 𝑆𝑖𝐸𝑘 stands for the kth event in the jth sequence vector.

Having computed the similarity between two log sequences, we

perform log clustering using the Agglomerative Hierarchical

clustering technique [8]. At the beginning of the agglomerative

hierarchical clustering, each log sequence belongs to its own

cluster. Then, the closest pair of clusters is selected and merged. To

decide which pair of clusters should be merged, the distance metric

between the clusters should be defined. In our approach, we adopt

the maximum distance of all element pairs between two clusters as

the cluster distance metric. In other words, the cluster distance

metric depends on the maximum distance between the log

sequences in each cluster. We adopt a distance threshold θ as a

stopping criterion for the clustering process. The value of θ is set

empirically (in our experiments, we set it to 0.5. We will discuss

the impact of θ on the effectiveness of LogCluster in Section 4).

Once the maximum distance between a pair of clusters is above the

distance threshold, the clustering process for this pair is stopped.

For example, in Figure 5, two clusters (Cluster 1 and Cluster 2) are

produced. In this way, similar log sequences are grouped into the

same cluster.

Figure 5. Illustration of the Agglomerative Hierarchical

Clustering process

3.4 Extracting Representative Log Sequence
After log clustering, we get a number of clusters. For each cluster,

we select a representative log sequence by choosing the centroid of

the cluster. To do so, we compute the score of each log sequence i

in a cluster based on its average distance to other log sequences in

the same cluster:

𝑆𝑐𝑜𝑟𝑒(𝑖) =
1

𝑛−1
∑ (1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑆𝑖 , 𝑆𝑗)𝑛

𝑗 =1)

where n is the number of log sequences in the cluster. From each

cluster, we select the log sequence with the minimal score as the

representative sequence of the cluster. The selected sequences are

the candidates for manual examination.

3.5 Checking Recurrence
In practice, many failures that occur to an online service system are

recurrent failures, which appeared in the past. For the recurrent

failures, their mitigations/resolutions are already known to the

engineers. Therefore, the corresponding log clusters need not to be

examined again. LogCluster checks if a log cluster is a recurrent

one by querying a knowledge base, which stores the historical log

clusters (represented by the representative log sequences) obtained

from the past executions. To check the recurrence of a cluster, the

representative log sequence of the cluster is selected and the same

cosine similarity measure in Section 3.3 is used to determine the

similarity between the new cluster and all the clusters stored in the

knowledge base (the distance threshold is also set to θ). If a cluster

is deemed recurrent and corresponds to a known failure, the

associated mitigation actions are retrieved from the knowledge base

and returned to engineers. Only new representative log sequences

(no matching sequence in knowledge base is found) are returned to

engineers for manual examination. The knowledge base is also

updated with the new sequences. In this way, LogCluster reduces

the number of log sequences to be examined.

4. EXPERIMENTS
In this section, we describe our experiments for evaluating

LogCluster.

4.1 Setup
In our experiments, we use the same two Hadoop-based Big Data

applications that were used in [18]:

 WordCount: an application that is released with Hadoop as an

example of MapReduce programming. The WordCount

application analyzes the input files and counts the number of

occurrences of each word in the input files.

 PageRank: a program that is used by a search engine for

ranking Web pages.

During the execution of these two applications, the underlying

Hadoop platform generate logs. We first run the applications in the

lab environment without injecting any failures. In order to simulate

the service failures in production environment, we manually inject

the following deployment failures:

 Machine Down: we turn off one server when the applications

are running to simulate the machine failure.

 Network Disconnection: we disconnect one server from the

network to simulate the network connection failure.

 Disk Full: we manually fill up one server’s hard disk when the

applications are running to simulate the disk full failure.

In addition, to further evaluate LogClutser on industrial systems,

we chose two Microsoft online service systems (their actual names

are anonymized due to confidentiality):

 Microsoft Service X, which is a large-scale online service

system serving millions of users globally. Designed with a 3-

tier architecture, Service X runs on a large number of

machines, each of which continuously generates a huge

number of logs. Service X works in a load balance mode, it

accepts end user requests, and dispatches them to different

front ends according to load balancing strategies. There are

many components in application tier, each in charge of a

dedicated functionality. Most components include a failover

mechanism in order to tolerate failures. Most of the user

requests involve multiple components on multiple servers.

Each component records its own logs and all the logs are

automatically uploaded to a distributed HDFS-like data

storage.

 Microsoft Service Y, which is also a large-scale online service

system providing 7*24 basis, continuous service for tens of

millions of end users worldwide. There is a SLA (service level

agreement) for the service, such as 99.99% availability for the

entire user purchased period. If SLA is violated, penalty could

apply. The entire service is divided into multiple subsystems,

each subsystem has its full set of front end, application tier,

and database tier. Service Y produces a huge number of logs

during runtime.

For the two Microsoft service systems, we obtain the logs from the

lab (testing) environment. We also collect half an hour of real logs

of each system from the production (actual) environment, including

A

B

C

D

E

C D

A B

C D E

Cluster 1

Cluster 2

Step 1 Step 2 Step 3

3.3 million raw log messages from Service X and 10 million raw

log messages from Service Y. We then use these logs to evaluate

LogCluster.

All experiments were performed on a cluster of PC (a cluster with

46 cores across five machines). Each PC has Intel(R) Core(TM) i7-

3770 CPU and 16GB RAM.

4.2 Research Questions
To evaluate our approach, we design experiments to address the

following research questions:

RQ1: How much effort reduction does LogCluster achieve?

When a service failure occurs, engineers need to examine the

generated logs for troubleshooting. The number of logs to be

examined is thus an important indicator of the effort required for

engineers. To evaluate LogCluster in terms of effort reduction, we

use the log data generated by running the two Hadoop applications

(WordCount and PageRank) and count the number of log

sequences that are required to be manually examined. We also

evaluate LogCluster using the real log data generated by the two

Microsoft online service systems.

To evaluate the effort required by traditional keyword search based

approach, we count the number of log messages that contain the

keywords (including “kill”, “fail”, “error”, and “exception”). We

also compare LogCluster with the state-of-the-art approach

proposed in ICSE’13 [18].

RQ2: How accurate is LogCluster in identifying problems?

Besides effort reduction, we also measure the accuracy of our

approach in problem identification. We count the number of true

positives (the number of examined log sequences that are indeed

associated with actual failures) and false positives (the number of

examined log sequences that are not associated with actual

failures), and then calculate the precision values achieved by

LogCluster, the ICSE’13 approach, and the traditional approach,

respectively.

RQ3: The impact of the distance threshold

As described in Section 3.3, LogCluster uses a hierarchical

clustering algorithm to cluster the log sequences. Here a distance

threshold θ is used to determine the number of clusters – a lower

threshold leads to a larger number of clusters, which will in turn

affect the total number of log sequences to be examined.

Furthermore, the distance threshold θ is also used in Section 3.5 to

retrieve recurrent sequences. In this RQ, we evaluate the impact of

the distance threshold on the accuracy of LogCluster.

4.3 EXPERIMENTAL DESIGN AND

RESULTS
This section presents our experimental design and results by

addressing the research questions.

RQ1: How much effort reduction does LogCluster achieve?

For the Hadoop applications (WordCount and PageRank), we first

inject three consecutive machine failures and count the number of

log sequences need to be examined at each round. Table 1 shows

the effort reduction achieved by LogCluster. We can see that using

LogCluster, the number of log sequences that should be examined

is significantly reduced. For example, when the first machine

failure is injected when running WordCount, only 8 of them require

manual examination. While using the ICSE’13 approach, we need

to examine 29 log sequences. Using traditional keyword search, we

need to examine 335 raw log messages. When the second machine

failure is injected, using LogCluster we only need to examine 5 log

sequences, while using the ICSE’13 approach and the traditional

keyword search, we need to examine 40 log sequences and 818 raw

log messages, respectively. When the third machine failure is

injected, using LogCluster we only need to examine 3 log

sequences, while using the ICSE’13 approach and the traditional

keyword search, we need to examine 25 log sequences and 392 raw

log messages, respectively. The results show that using LogCluster,

the number of log sequences to be examined decreases when there

are recurrent failures. These results confirm the effectiveness of the

proposed approach as described in Section 3. The same results are

observed when running the PageRank application (for the 3rd

failure, LogCluster detects that the log sequences appear before by

querying the knowledge base. Therefore, no manual examination is

needed).

We also evaluate LogCluster when there are multiple types of

failures. For the Hadoop applications (WordCount and PageRank),

we inject three failures of different types (Machine Down, Network

Disconnection, and Disk Full) during runtime, and observe how

LogCluster performs. Table 2 shows the results. When there are

multiple failures, LogCluster still significantly reduces the number

of log sequences that should be examined. For example, for

WordCount, when the Network Disconnection failure is injected,

using LogCluster we only need to examine 6 log sequences. While

using the ICSE’13 approach and the traditional keyword search, we

need to examine 20 log sequences and 8437 raw log messages,

respectively.

Table 1. The effort reduction under three consecutive machine failures1

 1st Failure 2nd Failure 3rd Failure

 Keyword Search ICSE’13 LogCluster Keyword Search ICSE’13 LogCluster Keyword Search ICSE’13 LogCluster

WordCount
335

(16.7%)
29

(44.8%)
8

(100.0%)
818

(30.0%)
40

(65.0%)
5

(40.0%)
392

(10.0%)
25

(36.0%)
3

(66.7%)

PageRank

361

(1.1%)

18

(5.6%)

2

(50.0%)

372

(0.3%)

24

(4.2%)

2

(50.0%)

272

(0.4%)

21

(4.8%)

0

(N/A)

Table 2. The effort reduction under multiple types of failures1

 Machine Down Network Disconnection Disk Full

 Keyword Search ICSE’13 LogCluster Keyword Search ICSE’13 LogCluster Keyword Search ICSE’13 LogCluster

WordCount
335

(16.7%)
29

(44.8%)
8

(100.0%)
8437

(97.0%)
20

(55.0%)
6

(66.7%)
388

(24.5%)
26

(50%)
6

(100.0%)

PageRank

361

(1.1%)

18

(5.6%)

2

(50.0%)

10250

(14.0%)

23

(17.4%)

6

(66.7%)

395

(0.8%)

24

(4.2%)

4

(25.0%)

1 Measured in terms of #log sequences to be examined. Numbers in brackets indicate the precision values (i.e., the percentage of examined log sequences that are associated with the

actual failures).

Table 3. Effort reduction for Microsoft Online Service

Systems

Raw Log
Messages

Keyword
Search

ICSE’13 LogCluster

Service X
3.3 million

278,430

(0.01%)

522

(0.77%)

7

(42.86%)

Service Y
10.0 million

200,119
(0.08%)

2433
(2.84%)

40
(55.00%)

To further evaluate LogCluster on industrial systems, we use the

real log messages (13.3 million in total) generated by Microsoft

Service X and Y systems. Table 3 shows the results. LogCluster

achieves significant effort reduction on real-world log data. For

example, for Service X, using LogCluster we only need to examine

7 log sequences. While using the ICSE’13 approach and the

traditional keyword search, we need to examine 522 log sequences

and 278,430 raw log messages, respectively.

RQ2: How accurate is LogCluster in identifying problems?

Tables 1 - 3 also show the precision results achieved by LogCluster,

which are the percentages of examined log sequences that are

indeed associated with actual failures. In general, LogCluster can

achieve much higher precision values than the ICSE’13 and

keyword search approaches. For example, for the WordCount

application, using LogCluster, 100.0% (8 out of 8) examined log

sequences are indeed related to the actual Machine Down failure,

while the ICSE’13 and the keyword search approaches achieve the

precision value of 44.8% (13 out of 29) and 16.7% (56 out of 335),

respectively. For the Network Disconnection failure to WordCount,

the precision value (66.7%) achieved by LogCluster is lower than

that achieved by the keyword search approach (97.0%). However,

the number of log sequences required for manual examination is

much smaller (6 vs. 8437). Similarly, although for some systems,

the absolute precision values are low (e.g., 42.86% for Service X),

the number of log sequences need to be examined is much smaller

than the total number of raw messages. Therefore, LogCluster is

still considered effective in these scenarios. Figure 6 shows the

average of all precision results (as listed in Tables 1 - 3) achieved

by all the three approaches. Clearly, LogCluster achieves the best

overall accuracy.

Figure 6. The average precision values

Figure 7. The impact of distance threshold θ

RQ3: The impact of the distance threshold

As discussed in Sections 3.3 and 3.5, LogCluster uses a parameter θ

as the distance threshold. We evaluate the impact of the distance

threshold on the accuracy of LogCluster. Figure 7 shows the average

precision values of all the experiments (as listed in Tables 1 - 3)

achieved by different θ values. Generally, the accuracy of

LogCluster is relatively stable when the θ value is between 0.2 and

0.8. The experimental results show that LogCluster is insensitive to

the distance threshold.

We also use NMI (normalized mutual information) [15], which is

one of the commonly used metrics to evaluate the quality of

clustering. NMI is a number between 0 and 1. The higher the better.

We manually examine the clusters and compute the NMI values.

Table 4 shows the results when θ is 0.5. The NMI values are all

above 80%, indicating good clustering quality.

Table 4. The Evaluation of Clustering Quality
 WordCount PageRank Service X Service Y

NMI 90.42% 87.45% 83.48% 81.99%

4.4 Threats to Validity
We identify the following threats to validity:

 Subject selection bias: In our experiment, we only use four

systems as experimental subjects. However, these four

systems include both representative Hadoop projects as well

as real-world industrial systems. In future, we will evaluate

LogCluster on more projects on a variety of Cloud computing

platforms such as Dryad [10].

 Bugs in testing environment: In our approach, we assume

that all the bugs revealed by service testing are fixed.

Therefore, we consider the log sequences obtained from the

lab environment the “correct” ones and use them to compare

with the log sequences obtained in actual environment. Our

approach cannot detect erroneous log sequences from the lab

environment.

 Performance failures: Our approach is effective in

identifying functional or deployment failures. As we do not

consider the temporal order of the events, our approach

cannot identify performance related failures. We refer

interested readers to our previous work [2] on log-based

performance diagnosis.

5. SUCCESS STORY
Since 2013, LogCluster has been successfully applied to many

projects in Microsoft. As an example, LogCluster has been used by

Microsoft Service A team as a part of their log analysis engine.

Service A is a globally deployed online service, serving millions of

end users in 7*24 basis. The goal of the log analysis engine is to

monitor the execution of Service A and to ensure its user perceived

availability. Before adopting LogCluster, Service A team mainly

used the Active Monitoring tool (also known as Synthetic

Monitoring) [17] to monitor the health status of Service A. The

Active Monitoring tool predefines and mimics end user requests,

periodically sends these synthetic requests to the online service, and

compares the content of the response with predefine correct results.

Although useful, Active Monitoring fails to detect many problems

because it is based on simulated user requests. LogCluster was used

by the Service A team to complement Active Monitoring as it can

recover actual user requests by mining execution logs. After

integrating LogCluster, the Service A team is able to detect more

problems and further shorten the mean time to recover the service.

For example, in July 2014, due to a certain configuration fault, the

component C of Service A kept calling a global topology server,

0%

10%

20%

30%

40%

50%

60%

70%

Keyword Search ICSE’13 LogCluster

A
ve

ra
ge

 P
re

ci
si

o
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 P
re

ci
si

o
n

Threshold (θ)

which maintains the latest topology status of the overall system and

provides critical information to many system functions. The

component C called the topology sever in an unexpected high rate

of speed and caused the server to be overloaded. As a consequence,

many user requests that depend on the topology server failed. Using

LogCluster, the Service A team quickly identified and fixed the

problem. Furthermore, they also found a similar problem in another

deployment of Service A. Using LogCluster, the service team

successfully recognized the known failure and retrieved the

corresponding mitigation solution.

LogCluster is also integrated into Product G, which is a product for

root cause analysis of service issues. Using LogCluster, Product G

builds clusters of similar log sequences mined from execution logs.

Each identified cluster is assigned an anomaly score based on

several criteria such as size of the cluster, age of cluster, and user

provided feedback. When a service is experiencing a live site issue,

engineers in the service team use Product G to examine the highest

ranked anomalies that occurred around the same time as the service

failure. Since many service failures manifest themselves as

anomalous patterns in logs, engineers are able to quickly

understand the details of the failures. This allows for more efficient

root cause analysis, which in turn leads to improvement in key

metrics like “Mean Time to Mitigate” and “Mean Time to Fix”.

Another successful application of LogCluster is in the Product L,

which is a distributed log analytic tool that can processes several

TB log data every day. LogCluster is an integral component of

Product L. Once Product L detects a service failure, it will

automatically collect the typical log sequences and send them to

service engineers for troubleshooting. Since its initial launch in July

2014, Product L has already helped identify many service problems,

which have all been confirmed and fixed. For example, Product L

detected a service problem that was due to a misconfiguration about

“default max document size”. Many users failed to upload their

documents to Service B. This problem was not found in the testing

environment but happened in the actual deployment of the service

(with a large number of users). Product L successfully helped

engineers diagnose this problem.

LogCluster is also applied to Microsoft Service C, which is a hub

that hosts over four hundred different services. It maintains data

from multiple Microsoft teams. Given the complexity of the

Service C system, the collected logs vary from one service to the

other. The diversity of logs generated by various products and

teams brings much challenge to our LogCluster approach.

LogCluster was integrated into the Service C team’s log analysis

pipeline. In the first month, the team successfully analyzed logs

generated by 50 different services, without modifying any

parameters. The log analysis engine was shown to be effective in

assisting engineers with incident identification and diagnosis.

LogCluster is now used by many Microsoft teams and has received

many encouraging feedbacks. For example:

“…the analysis pipeline is reliably running…The collaboration

project was reviewed and got very positive feedback: a. from Mid-

April to Mid-May (for one month), top 10 detected clusters 100%

accurately detected real service issues; b. with accumulated

knowledge, repeated issues could be fixed quicker/easier…” --- a

senior program manager from Service A.

 “…The engine was able to identify 30 anomalous patterns in

service logs. Of these 29 were legitimate failures of the service

which is a very high precision… It was able to quickly discover both

large scale outages as well as small anomalies in services that led

to customer impacting failures…” --- a principle software manager

from Product G.

“…Since the launching of the analysis system, a good number of

hidden issues were successfully identified and corresponding bugs

were filed and fixed in the past week, which were unable to detect

with other existing systems. For example, in one case, 282,904 user

sessions were impacted by a config bug that direct to a wrong URL.

The issue was there for more than 10 days undetected, until our

analysis engine was launched and mined it out…” --- a senior

developer from Service B.

6. DISCUSSIONS AND LESSONS

LEARNED

6.1 Log Severity Levels
Our study finds that, Microsoft developers, like developers for open

source software, use verbosity levels (such as Verbose and Medium)

to control the number of printed logs. They also label the severity

level of logs (such as Warning, Debug, Error, and Critical).

However, our experience shows that the log severity levels can only

facilitate problem diagnosis to a certain extent. This is because

developers of different components often have different views

about the severity of a problem. A typical online service system

consists of a large number of distributed components. A failure that

is considered critical to one component (such as network failure)

may not significantly affect the overall system because of the fault-

tolerant designs. Therefore, a log with a high severity level (such

as Exception, Error, and Critical) may not reflect an actual system

failure. Similarly, developers of a component may not have a

complete understanding of the implications of a program status for

the entire system. Therefore, a log with a low severity level (such

as INFO) may actually contain important information about a

system failure. As an example, we examined logs generated by

Microsoft Product K over a period of 6 months. We found that only

a small percentage (<10%) of high severe logs are related to the

actual system failures, and many (>30%) failures are associated

with logs that have low severity levels. Our proposed LogCluster

does not rely on log severity levels. It is based on abstraction and

clustering of log sequences, therefore avoiding the limitations of

using log severity levels.

6.2 Permutations of a Log Sequence
Our approach, like the ICSE’13 work, does not consider the

permutations of events in a log sequence. For example, we consider

the following two sequences the same: “E1, E2, E3, E5, E6” and

“E1, E3, E5, E2, E6”. This is because many tasks of an online

service are multi-threading, which causes interleaving logs even for

the same user request. Furthermore, a typical online service system

consists of many distributed servers. The logs generated by each

server are later consolidated and stored at a HDFS-like central place.

However, due to the clock drift problem [21], the timestamps of

events produced by different servers may loss synchronization,

causing many different permutations of events for the same

execution sequence. Therefore, in our work we do not consider the

permutations of a log sequence.

6.3 Deployment Failures of Online Service

Systems
Our experience shows that when an online service system is

initially launched, many failures are related to functional features.

Many new log clusters obtained by LogCluster correspond to new

features. When the service system becomes stable, deployment

failures account for a large percentage of failures of online service

systems. The deployment failures are often caused by

environmental issues, such as issues in network connection, DNS,

configuration, hardware, etc. In production environment, the

deployment of an online service system is typically performed in

an incremental manner. The deployment topology is divided into

multiple farms. The system is firstly deployed in a small number of

farms and then gradually moved to other farms. At each

deployment step, the scales of system and data are increased. If

LogCluster detects a new cluster of log sequences in a new farm, it

is likely that the new farm encountered a deployment issue.

Furthermore, a deployment issue occurs in one farm could happen

in other farms as well. Using LogCluster, developers can quickly

detect the recurrent deployment failures and find mitigation

solutions from the knowledge base, thus reducing diagnosis and

maintenance effort.

In ideal cases, engineers can identify the root cause of the incident

and fix it quickly. However, in most cases, engineers are unable to

identify and fix root causes within a short time. Thus, in order to

recover the service as soon as possible, a common practice is to

restore the service by identifying a temporary workaround solution

(such as restarting a server) to restore the service. Then after service

restoration, identifying and fixing the underlying root cause for the

incident can be conducted via offline postmortem analysis.

6.4 Log Event IDs
Our experience shows that log parsing accounts for a large portion

of computation time of LogCluster. During log parsing, we process

the raw log messages, parse them, and convert them into log events.

The log events can be regarded as the generic log messages printed

by the same log-printing statement in the source code. Some of the

Microsoft products we worked on provide directly the log event IDs

- each log message contains an event ID, a log level, and log

contents. In this way, much time and computing resource are saved

during log analysis. We consider it a good practice to directly add

a log event ID to each log-printing statement in source code. It is

also possible to develop a tool to automatically scan the logging

statements and generate a unique ID for each log message, before

the source code is submitted to the version control repository.

6.5 Distributed Computing
For the Microsoft online services we worked on, the log data is

usually at very large scale (TeraBytes or PetaBytes every day). The

large amount of log data demands much computing resource. To

reduce the computation time, in practice our analysis algorithm is

deployed in an internal distributed computing environment, with

tens to hundreds servers. Furthermore, we select algorithms that are

more suitable for a distributed computing environment. For

example, we have tried several commonly-used clustering

algorithms such as K-Means, K-Medoids, DBSCAN, and

hierarchical clustering. Finally, we select the hierarchical clustering

algorithm because it works well in a distributed environment.

7. RELATED WORK
Logging is widely used for diagnosing failures of software-

intensive systems because its simplicity and effectiveness.

Analyzing logs for problem diagnosis has been an active research

area [12, 13, 16, 24, 25, 26]. These work retrieve useful information

from logs (such as events, variable values, and locations of logging

statements), and adopt data mining and machine learning

techniques to analyze the logs for problem detection and diagnosis.

For example, Lou et al. [12] mine invariants (constant linear

relationships) from console logs. A service anomaly is detected if a

new log message breaks certain invariants during the system

execution. Xu et al. [24] preprocess the logs and detect anomalies

using principal component analysis (PCA). The log-based anomaly

detection algorithms can check whether a service is abnormal, but

can hardly obtain the insights into the abnormal task. LogEnhancer

[27] aims to enhance the recorded contents in existing logging

statements by automatically identifying and inserting critical

variable values into them. The work of [6] records the runtime

properties of each request in a multi-tier Web server, and applies

statistical learning techniques to identify the causes of failures.

Unlike the above-mentioned work, our work facilitates problem

identification for online service systems by clustering similar logs.

Some log-based diagnosis work is also based on the similarity

among log sequences. For example, Dickenson et al. [1] collected

execution traces and used classification techniques to categorize the

collected traces based on some string distance metrics. Then, an

analyst can examine the traces of each category to determine

whether or not the category represents an anomaly. Yuan et al. [26]

proposed a supervised classification algorithm to categorize system

traces based on the similarity to the traces of the known problems.

Mirgorodskiy et al. [14] used string distance metrics to categorize

function-level traces, and to identify outlier traces or anomalies that

substantially differ from the others. Ding et al. [3, 4] designed a

framework to correlate logs, system issues, and corresponding

simple mitigation solutions when similar logs appear. In our work,

we consider weights of different events and apply hierarchical

clustering to cluster similar log sequences. We also compare the

newly obtained log sequences with those of known failures.

While most of research has focused on the usage of logs for

problem diagnosis, recently much work has been conducted to

understand the log messages and logging practices. For example,

Yuan et al. [28], Shang et al. [19], and Fu et al. [7] reported

empirical studies on logging practice in open source and industrial

software. Zhu et al. [29] proposed a “learning to log” framework,

which aims to provide informative guidance on logging.

Additionally, Shang et al. [18] used a sequence of logs to provide

context information when examining a log message. To facilitate

the understanding of log messages, Shang et al. [20] further

proposed to associate the development knowledge stored in various

software repositories (e.g., code commits and issues reports) with

the log messages. In our work, the obtained log clusters and

representative log sequences could also help engineers understand

different categories of log messages.

8. CONCLUSIONS
Online service systems generate a huge number of logs every day.

It is challenging for engineers to identify a service problem by

manually examining the logs. In this paper, we propose LogCluster,

an approach that clusters the logs to ease log-based problem

identification. LogCluster also utilizes a knowledge base to reduce

the redundant effort incurred by previously examined log

sequences. Through experiments on two representative Hadoop-

based apps and two Microsoft online service systems, we show that

our approach is effective and outperforms the state-of-the-art work

proposed in ICSE 2013 [18]. We have also described the successful

applications of LogCluster to the maintenance of actual Microsoft

online service systems, as well as the lessons learned.

In the future, we will integrate LogCluster into an intelligent and

generic Log Analytics engine. We will also investigate effective

log-based fault localization and debugging tools, such as those

described in [23].

Acknowledgement
We thank the intern students Can Zhang and Bowen Deng for

the helpful discussions and the initial experiments. We thank

our product team partners for their collaboration and

suggestions on the applications of LogCluster.

9. REFERENCES
[1] W. Dickinson, D. Leon, and A. Podgurski, Finding Failures

by Cluster Analysis of Execution Profiles. In Proc. of the 23rd

International Conference on Software Engineering (ICSE

2001), May 2001. pp. 339 - 348.

[2] R. Ding, H. Zhou, J. Lou, H. Zhang, Q. Lin, Q. Fu, D.

Zhang, T. Xie. Log2: A Cost-Aware Logging Mechanism for

Performance Diagnosis. In Proc. of the 2015 USENIX

Annual Technical Conference (USENIX ATC '15), Santa

Clara, CA, USA. pp. 139-150, July 2015.

[3] R. Ding, Q. Fu, J. Lou, Q. Lin, D. Zhang, J. Shen, and T.

Xie, Healing online service systems via mining historical

issue repositories. In Proceedings of the 27th IEEE/ACM

International Conference on Automated Software

Engineering (ASE 2012), Essen, Germany, September 2012,

318-321.

[4] R. Ding, Q. Fu, J. Lou, Q. Lin, D. Zhang, and T. Xie, Mining

historical issue repositories to heal large-scale online service

systems. In Proc. 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN

2014), Atlanta, GA, USA, pp. 311–322.

[5] Failover mechanism, https://en.wikipedia.org/wiki/Failover

[6] Q. Fu, J. Lou, Y. Wang, and J. Li, Execution anomaly

detection in distributed systems through unstructured log

analysis. In Proc. of the 9th IEEE International Conference

on Data Mining (ICDM 2009) Miami, Florida, USA,

December 2009. pp. 149-158.

[7] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang,

and T. Xie. Where do developers log? an empirical study on

logging practices in industry. In Proc. of the 36th

International Conference on Software Engineering (ICSE

2014), June 2014, pp. 24-33.

[8] J. C. Gower, G. J. S. Ross, "Minimum spanning trees and

single linkage cluster analysis", Journal of the Royal

Statistical Society, Series C 18 (1): 54–64, 1969.

[9] Hadoop. http://hadoop.apache.org/core.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:

Distributed Data-Parallel Programs from Sequential Building

Blocks”, In Proc. of EuroSys 2007, Mar 2007.

[11] Z. M. Jiang, A. E. Hassa, P. Flora, and G. Hamann,

“Abstracting Execution Logs to Execution Events for

Enterprise Applications”, in Proc. of the 8th International

Conference on Quality Software (QSIC 2008), pp.181-186,

2008.

[12] J. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, Mining invariants

from console logs for system problem detection. In

Proceedings of USENIX Annual Technical Conference

(USENIX ATC'10), Boston, MA, USA, June 2010.

[13] D. Lo, H. Cheng, J. Han, S. C. Khoo, and C. Sun,

Classification of software behaviors for failure detection: a

discriminative pattern mining approach. In Proc. of the 15th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD 2009), Paris, France, June

2009, pp. 557-566.

[14] A.V. Mirgorodskiy, N. Maruyama, and B.P. Miller, “Problem

Diagnosis in Large-Scale Computing Environments”, In

Proceedings of the ACM/IEEE SC 2006 Conference, Nov.

2006.

[15] C. D. Manning, P. Raghavan and H. Schütze. Introduction to

Information Retrieval, Cambridge University Press, 2008.

[16] T. Reidemeister, M. Jiang, and P. Ward, Mining unstructured

log files for recurrent fault diagnosis. In Proc. of the 12th

IFIP/IEEE International Symposium on Integrated Network

Management, Dublin, Ireland, May 2011, pp. 377-384.

[17] Active Monitoring, available at:

https://en.wikipedia.org/wiki/Synthetic_monitoring

[18] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan,

P. Martin, "Assisting developers of Big Data Analytics

Applications when deploying on Hadoop clouds," in Proc. of

the 35th International Conference on Software Engineering

(ICSE 2013), pp.402-411, May 2013.

[19] W. Shang, M. Nagappan, and A. E. Hassan. Studying the

relationship between logging characteristics and the code

quality of platform software. Empirical Software Engineering,

20(1), Feb 2015, pp. 1-27.

[20] W. Shang; M. Nagappan, A. E. Hassan, Z. M. Jiang,

Understanding Log Lines Using Development Knowledge. In

Proc. IEEE International Conference on Software

Maintenance and Evolution (ICSME 2014), Sept 2014, pp.21-

30.

[21] A. Tanenbaum and van S. Maarten, Distributed Systems :

Principles and Paradigms, Prentice Hall, 2002.

[22] ULS (Unified Logging Service), available at:

http://weblogs.asp.net/erobillard/sharepoint-trace-logs-and-

the-unified-logging-service-uls

[23] R. Wu, H. Zhang, S. C. Cheung, and S. Kim, CrashLocator:

locating crashing faults based on crash stacks. In Proc. of the

2014 International Symposium on Software Testing and

Analysis (ISSTA 2014), pp. 204-214, July 2014.

[24] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan.

Detecting large-scale system problems by mining console logs.

In Proc. of the 22nd ACM Symposium on Operating Systems

Principles (SOSP 2009), Big Sky, Montana, USA, October

2009, pp. 117-132.

[25] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan,

Experience mining Google’s production console logs.

Proceedings of SLAML, Vancouver, Canada, October 2010.

[26] C. Yuan, N. Lao, J.R. Wen, J. Li, Z. Zhang, Y.M. Wang, and

W. Y. Ma, “Automated Known Problem Diagnosis with Event

Traces”, In Proceeding of EuroSys 2006, April 2006.

[27] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage,

Improving software diagnosability via log enhancement. In

ACM Transactions on Computer Systems, 30(1), Feb. 2012.

[28] D. Yuan, S. Park, and Y. Zhou, Characterizing logging

practices in open-source software. In Proceedings of the

2012 International Conference on Software Engineering

(ICSE 2012), Zurich, Switzerland, June 2012, pp. 102-112.

[29] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, D. Zhang,

Learning to Log: Helping Developers Make Informed

Logging Decisions, In Proc. of the 37th International

Conference on Software Engineering (ICSE 2015), Florence,

Italy, May 2015.

[30] Sigmoid function, available at:

https://en.wikipedia.org/wiki/Sigmoid_function.

