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Gamma函数的定义为:

Γ(x) =
∫ ∞

0
ux−1e−udu

Gama函数的性质：Γ(1) = 1; Γ(x + 1) = xΓ(x); Γ(x + 1) = x!;

参数为A⃗ = (a1, a2...aK)的Dirichlet分布的定义如下：

Dir(µ|A⃗) =
Γ(
∑K

k=1 ak)∏K
k=1 Γ(ak)

K∏
k=1

µak−1
k

给定数据集D，K个不同类型出现的次数向量M⃗，当Dirichlet分布作为先验分布式时：

p(µ|A⃗, M⃗) = Dir(µ|A⃗ + M⃗) =
Γ(
∑K

k=1 (ak + mk))∏K
k=1 Γ(ak + mk)

K∏
k=1

µak+mk−1
k

即：给定一个Dirichlet分布的先验和一个多项式分布的条件概率，可以得到一

个Dirichlet分布的一个后验。
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整个训练语料库为w⃗，文档数为M，文档m中词的个数为Nm，则第m个文档第n词

为wm,n。w⃗的似然函数为：

p(w⃗|α⃗, β⃗) =
∑

z⃗

p(w⃗, z⃗|α⃗, β⃗) =
∑

z⃗

p(w⃗|⃗z, β⃗)p(⃗z|α⃗)

主题数为K，词表大小V，则主题产生词的概率表ϕ⃗为一个K × V的一个矩阵，且

每个主题（k）的概率表ϕ⃗k服从参数为β⃗的Dirichlet分布：

p(ϕ⃗|β⃗) =
K∏

k=1

p(φ⃗k|β⃗) =
K∏

k=1

Γ(
∑V

t=1 βt)∏V
t=1 Γ(βt)

V∏
t=1

φ
βt−1
k,t



给定主题产生词的概率表ϕ⃗以及M个文档中所有词的主题编号向量矩阵z⃗（文档

数为M，文档m中词的个数为Nm，则第m个文档第n词的主题编号为zm,n）。矩阵z⃗跟文

档w⃗是等大小一一对应的一个矩阵。 p(w⃗|⃗z, ϕ⃗)的定义为:

p(w⃗|⃗z, ϕ⃗) =
M∏

d=1

p(w⃗d |⃗zd, ϕ⃗) =
M∏

d=1

Nd∏
n=1

φzd,n,wd,n =

K∏
k=1

V∏
t=1

φn(k,t)
k,t

其中，φzd,n,wd,n表示第d个文档的第n个位置的主题zd,n产生词wd,n的概率。nk,t指的是在

所有文档中主题k产生词t的次数。

给定p(ϕ⃗|β⃗)和p(w⃗|⃗z, ϕ⃗)，则p(w⃗|⃗z, β⃗)的定义为：

p(w⃗|⃗z, β⃗) =
∫

p(w⃗|⃗z, ϕ⃗)p(ϕ⃗|β⃗)dϕ⃗

=

∫ K∏
k=1

Γ(
∑V

t=1 βt)∏V
t=1 Γ(βt)

V∏
t=1

φ
βt−1
k,t ·

K∏
k=1

V∏
t=1

φn(k,t)
k,t dφk,t

=

∫ K∏
k=1

Γ(
∑V

t=1 βt)∏V
t=1 Γ(βt)

V∏
t=1

φ
n(k,t)+βt−1
k,t dφk,t

=

∫ K∏
k=1

△(n⃗k + β⃗)

△(β⃗)

1

△(n⃗k + β⃗)

V∏
t=1

φ
n(k,t)+βt−1
k,t dφk,t ⇐=

1

△(β⃗)
=
Γ(
∑V

t=1 βk)∏V
t=1 Γ(βt)

=

K∏
k=1

△(n⃗k + β⃗)

△(β⃗)

∫
1

△(n⃗k + β⃗)

V∏
t=1

φ
n(k,t)+βt−1
k,t dφk,t︸                                    ︷︷                                    ︸∫

Dir(φ⃗|⃗nk+β⃗)dφ⃗=1

=

K∏
k=1

△(n⃗k + β⃗)

△(β⃗)

文档数为M，主题数为K，则文档产生主题的概率表θ⃗为一个M × K的矩阵，且

第d个文档的概率表θ⃗d服从参数为α⃗的Dirichlet分布：

p(θ⃗|α⃗) =
M∏

d=1

p(θ⃗d |α⃗) =
M∏

d=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
d,k

给定文档产生主题的概率表θ⃗, p(⃗z|⃗θ)的定义为:

p(⃗z|⃗θ) =
M∏

d=1

p(⃗zd |⃗θd) =
M∏

d=1

Nd∏
n=1

θd,zd,n =

M∏
d=1

K∏
k=1

θn(d,k)
d,k

其中，zd,n是第d个文档第n个单词的主题。 θ⃗中存放了d个文档产生主题zd,n的概

率θd,zd,n。n(d, k)表示第d个文档中词的主题是k的个数。



给定θ⃗和p(⃗z|⃗θ)，则p(⃗z|α⃗)的定义为：

p(⃗z|α⃗) =
∫

p(⃗z|⃗θ)p(θ⃗|α⃗)dθ⃗

=

∫ M∏
d=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
d,k ·

M∏
d=1

K∏
k=1

θn(d,k)
d,k dθ⃗d,k

=

∫ M∏
d=1

Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θn(d,k)+αk−1
d,k dθ⃗d,k

=

∫ M∏
d=1

△(n⃗d + α⃗)
△(α⃗)

1
△(n⃗d + α⃗)

K∏
k=1

θn(d,k)+αk−1
d,k dθ⃗d,k

=

M∏
d=1

△(n⃗d + α⃗)
△(α⃗)

∫
1

△(n⃗d + α⃗)

K∏
k=1

θn(d,k)+αk−1
d,k dθ⃗d,k︸                                      ︷︷                                      ︸∫

Dir(θ⃗|⃗nd+α⃗)dθ⃗=1

=

M∏
d=1

△(n⃗d + α⃗)
△(α⃗)

w⃗的似然函数为：

p(w⃗|α⃗, β⃗) =
∑

z⃗

p(w⃗|⃗z, β⃗)p(⃗z|α⃗)

=
∑

z⃗

(
K∏

k=1

△(n⃗k + β⃗)

△(β⃗)
·

M∏
d=1

△(n⃗d + α⃗)
△(α⃗)

)

=
∑

z⃗

(
K∏

k=1

∏V
t=1 Γ((n⃗k + β⃗)t)

Γ(
∑V

t=1 (n⃗k + β⃗)t)
·
Γ(
∑V

t=1 β⃗t)∏V
t=1 Γ(β⃗t)

·
M∏

d=1

∏K
k=1 Γ((n⃗d + α⃗)k)

Γ(
∑K

k=1 (n⃗d + α⃗)k
·
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

)

其中，待优化参数为n⃗k和n⃗d。 n⃗k是主题k产生单词的计数表，总共有K个不同的n⃗k，

每个n⃗k的维度为词表大小。 n⃗d是文档d产生主题的计数表，总共有M个不同的n⃗d，每

个n⃗d的维度为主题数。

为了能够进行采样，我们需要计算产生第i = (m, n)个词（即:第m个文档的第n个

词）的主题为k的条件概率：p(zi = k|⃗z¬i, w⃗, α⃗, β⃗).我们定义如下符号：n⃗k,¬i 表示将主题

为k的主题到词的计数n⃗k中把第i个词的计数删掉。故而(n⃗k + β⃗)i = (n⃗k,¬i + β⃗)i + 1，从而

有：



Γ(
∑V

t=1 (n⃗k,¬i + β⃗)t)

Γ(
∑V

t=1 (n⃗k + β⃗)t)
=
Γ(
∑V

t=1;t,i (n⃗k + β⃗)t + (n⃗k,¬i + β⃗)i)

Γ(
∑V

t=1;t,i (n⃗k + β⃗)t + (n⃗k + β⃗)i)

=
Γ(
∑V

t=1;t,i (n⃗k + β⃗)t + (n⃗k,¬i + β⃗)i)

Γ(
∑V

t=1;t,i (n⃗k + β⃗)t + (n⃗k,¬i + β⃗)i + 1)

=
1∑V

t=1;t,i (n⃗k + β⃗)t + (n⃗k,¬i + β⃗i)
=

1∑V
t=1 (n⃗k,¬i + β⃗)t

同样的n⃗m,¬i表示在第m个文档中产生词的主题的计数n⃗m中把第i个词对应的主题计数

删掉。故而(n⃗m + α⃗)k = (n⃗m,¬i + α⃗)k + 1，从而有：

Γ(
∑K

k′=1 (n⃗m,¬i + α⃗)k′)

Γ(
∑K

k′=1 (n⃗m + α⃗)k′)
=

1∑K
k′=1 (n⃗m,¬i + α⃗)k′

p(w⃗¬i|z⃗¬i, α⃗, β⃗)和p(⃗z¬i|α⃗, β⃗)表示将第i = (m, n)个词删掉，从而产生一个新的语料。

新的语料同原始语料的区别仅仅在于第m个文档中不包含第n个词，故而其产生过程

中也不需要生成对应的zi。我们记第i个term的ID为t，第i个词的主题为k。

p(w⃗¬i|z⃗¬i, β⃗) =
K∏

k′=1;k′,k

△(n⃗k′ + β⃗)

△(β⃗)
) · △(n⃗k,¬i + β⃗)

△(β⃗)

p(⃗z¬i|α⃗) =
M∏

d=1;d,m

△(n⃗d + α⃗)
△(α⃗)

· △(n⃗m;¬i + α⃗)
△(α⃗)



p(zi = k|⃗z¬i, w⃗, α⃗, β⃗) =
p(w⃗, z⃗|α⃗, β⃗)

p(w⃗, z⃗¬i|α⃗, β⃗)

=
p(w⃗|⃗z, α⃗, β⃗)p(⃗z|α⃗, β⃗)

p(w⃗¬i|z⃗¬i, α⃗, β⃗)p(z⃗¬i|α⃗, β⃗)p(wi |⃗z¬i, α⃗, β⃗)

=
p(w⃗|⃗z, β⃗)

p(w⃗¬i|z⃗¬i, β⃗)p(wi|α⃗, β⃗)
· p(⃗z|α⃗)

p(⃗z¬i|α⃗)

∝ p(w⃗|⃗z, β⃗)
p(w⃗¬i|z⃗¬i, β⃗)

· p(⃗z|α⃗)
p(⃗z¬i|α⃗)

⇐= p(wi|α⃗, β⃗) = C

=

∏K
k′=1

△(n⃗k′+β⃗)
△(β⃗)

(
∏K

k′=1;k′,k
△(n⃗k′+β⃗)
△(β⃗)

) · △(n⃗k,¬i+β⃗)
△(β⃗)

·
∏M

d=1
△(n⃗d+α⃗)
△(α⃗)∏M

d=1;d,m
△(n⃗d+α⃗)
△(α⃗) ·

△(n⃗m;¬i+α⃗)
△(α⃗)

=
△(n⃗k + β⃗)

△(n⃗k,¬i + β⃗)
· △(n⃗m + α⃗)
△(n⃗m;¬i + α⃗)

=
Γ(
∑V

t′=1 (n⃗k,¬i + β⃗)t′) ·
∏V

t′=1 Γ((n⃗k + β⃗)t′)∏V
t′=1 Γ((n⃗k,¬i + β⃗)t′) · Γ(

∑V
t′=1 (n⃗k + β⃗)t′)

·
Γ(
∑K

k′=1 (n⃗m,¬i + α⃗)k′) ·
∏K

k′=1 Γ(n⃗m + α⃗)k′

Γ(
∑K

k′=1 (n⃗m + α⃗)k′) ·
∏K

k′=1 Γ(n⃗m,¬i + α⃗)k′

=

∏V
t′=1 Γ((n⃗k + β⃗)t′)∏V

t′=1 Γ((n⃗k,¬i + β⃗)t′) ·
∑V

t′=1 (n⃗k,¬i + β⃗)t′
·

∏K
k′=1 Γ(n⃗m + α⃗)k′∏K

k′=1 Γ(n⃗m,¬i + α⃗)k′ ·
∑K

k′=1 (n⃗k′,¬i + α⃗)k′

=
Γ((n⃗k + β⃗)t)

Γ((n⃗k,¬i + β⃗)t) ·
∑V

t′=1 (n⃗k,¬i + β⃗)t′
· Γ((n⃗m + α⃗)k)
Γ((n⃗m,¬i + α⃗)k) ·∑K

k′=1 (n⃗k′,¬i + α⃗)k′

=
(n⃗k,¬i + β⃗)t∑V

t′=1 (n⃗k,¬i + β⃗)t′
· ((n⃗m,¬i + α⃗)k∑K

k′=1 (n⃗k′,¬i + α⃗)k′

由Dirichlet分布的期望公式得：

φ̂kt =
(n⃗k,¬i + β⃗)t∑V

t′=1 (n⃗k,¬i + β⃗)t′

θ̂mk =
((n⃗m,¬i + α⃗)k∑K

k′=1 (n⃗k′,¬i + α⃗)k′

给定α⃗作为先验，我们使用模型来产生了一批数据，这批数据除了没有产生

第m个文档的第n个词，其余同原始数据一样，即z⃗¬i以及w⃗¬i，那么θ⃗m 的后验概率

仍然为一个Dir概率分布，故而有p(θ⃗m |⃗z¬i, w⃗¬i) = Dir(θ⃗m |⃗nm,¬i + α⃗)。同理p(φ⃗k |⃗z¬i, w⃗¬i) =

Dir(φ⃗k |⃗nk,¬i + β⃗)。基于这两个公式，我们可以用另一个方法进行证明：



p(zi = k|⃗z¬i, w⃗) = p(zi = k|⃗z¬i,wi = t, w⃗¬i)

=
p(zi = k,wi = t|⃗z¬i, w⃗¬i)

p(wi = t)

∝ p(zi = k,wi = t|⃗z¬i, w⃗¬i)

=

∫
p(zi = k,wi = t, θ⃗m, φ⃗k |⃗z¬i, w⃗¬i)dθ⃗mdφ⃗k

=

∫
p(zi = k, θ⃗m |⃗z¬i, w⃗¬i)p(wi = t, φ⃗k |⃗z¬i, w⃗¬i)dθ⃗mdφ⃗k

=

∫
p(zi = k|⃗θm)p(θ⃗m |⃗z¬i, w⃗¬i)p(wi = t|φ⃗k)p(φ⃗k |⃗z¬i, w⃗¬i)dθ⃗mdφ⃗k

=

∫
p(zi = k|⃗θm)p(θ⃗m |⃗z¬i, w⃗¬i)dθ⃗m

∫
p(wi = t|φ⃗k)p(φ⃗k |⃗z¬i, w⃗¬i)dφ⃗k

=

∫
p(zi = k|⃗θm)Dir(θ⃗m |⃗nm,¬i + α⃗)dθ⃗m ·

∫
p(wi = t|φ⃗k)Dir(φ⃗k |⃗nk,¬i + β⃗)dφ⃗k

=

∫
θmkDir(θ⃗m |⃗nm,¬i + α⃗)dθ⃗m ·

∫
φktDir(φ⃗k |⃗nk,¬i + β⃗)dφ⃗k

= E(θmk) · E(φkt)

= θ̂mk · φ̂kt



1 � initialization:

2 zero all count variables, n(k)
m , nm, n(t)

k , nk

3 for all documents m ∈ [1,M] do

4 for all words n ∈ [1,Nm] in document m do

5 sample topic index zm,n = k ∼ Mult(1/K)

6 increment document-topic count:n(k)
m + 1

7 increment document-topic sum: nm + 1

8 increment topic-term count: n(t)
k + 1

9 increment topic-term sum: nk + 1

10 end

11 end

12 � Gibbs sampling over burn-in period and sampling period:

13 while not finished do

14 for all documents m ∈ [1,M] do

15 for all words n ∈ [1,Nm] in document m do

16 � for the current assignment of k to a term t for word wm,n:

17 decrement counts and sums: n(k)
m − 1, nm − 1, n(t)

k − 1, nk − 1;

18 � multinomial sampling (decrements from previous step):

19 sample topic index k̃ ∼ p(zi |⃗z¬i, w⃗);

20 � use the new assigment of zm,n to the term t for word wm,n:

21 increment counts and sums: n(k̃)
m − 1, nm − 1, n(t)

k̃
− 1, nk̃ − 1;

22 end

23 end

24 � Check convergence and read out parameters:

25 if converged and L sampling iterations since last read out then

26 � the different parameters read outs are averaged:

27 read out parameters set ϕ⃗

28 read out parameters set θ⃗

29 end

30 end


