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Abstract

In this paper we demonstrate a driver intent inference
system (DIIS) based on lane positional information, vehi-
cle parameters, and driver head motion. We present robust
computer vision methods for identifying and tracking free-
way lanes and driver head motion. These algorithms are
then applied and evaluated on real-world data collected in
a modular intelligent vehicle test-bed. Analysis of the data
for lane change intent is performed using a sparse Bayesian
learning methodology. Finally, the system as a whole is
evaluated using a novel metric and real-world data of ve-
hicle parameters, lane position, and driver head motion.

1 Introduction

Intelligent vehicles and driver support systems have the
potential to greatly enhance the safety of drivers and passen-
gers by alerting the driver to dangerous situations. However,
care must be taken to prevent the system from interfering
with the driver in the middle of a corrective action, caus-
ing unnecessary distractions. Consequently, it is important
for intelligent vehicles to not only recognize the situation,
but also the driver’s intended actions. In this paper, we will
explore a vision system that estimates driver intentions in
the specific area of lane changes, arguably one of the most
important actions relevant to intelligent support systems.

The driver intent inference system (DIIS) we propose is
composed of a few key components: the lane position track-
ing system, the driver head motion estimation module, the
vehicle parameter collection system, and the lane change
intent classifier. An overview of the system can be seen in
figure 1. This paper provides results from the intermediate
detection stages as well as overall classification results ana-
lyzed at various times preceding the lane change maneuver.

Head Motion )\ [ CAN busdata

Figure 1. Lane change intent analysis system flow
chart.

1.1 Relationship to Previous Work

Intelligent vehicle systems have been a topic of research
for some time and envelope a wide area of research topics
[3]. We will now address previous work related to driver
intent inference and describe the improvements afforded by
the proposed method. To begin, it is useful to make the
following distinction:

Driver Intent Inference (Ideal):
Inferring if/when a driver is knowingly or intentionally
about to execute a lane change.

Trajectory Forecasting (Practical):
Predicting if the vehicle trajectory is likely to cross the
lane boundary in the near future (irrespective of driver
awareness level).

Many current approaches, both data-driven [4] and
model-based [5], essentially perform trajectory forecasting,
using the results as a proxy for driver intent. More specifi-
cally, if the algorithm predicts that in the next few seconds
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the car will likely cross the lane boundary, then we must
presume he/she intends a lane change. Kuge et. al. [4] de-
veloped Hidden Markov Models (HMMs) using observa-
tions of vehicle parameters and lane positions to model tra-
jectories. In contrast, Salvucci et. al. [5] employed a tem-
plate matching technique inspired by a cognitive architec-
tures to model vehicle trajectories. While both techniques
are certainly much easier than predicting driver intent, dif-
ferences between trajectory forecasts and what a driver is
actually intending can be extremely problematic as we will
describe later.

To alleviate this problem, we have incorporated head
motion into the modeling process to provide the DIIS with
specific driver state information useful in addressing what
is potentially known and what is not. This is extremely use-
ful in differentiating deviant trajectories intended to change
lanes and those attributable to capricious drift while lane
keeping.

Next, we address the platform upon which data is col-
lected and algorithms are developed. Many previous works,
such as those mentioned above, are strictly simulator-based
methodologies. Simulator studies, however, do not account
for conditions encountered in real-world situations. Light-
ing changes, shadows, vibrations, and occlusions all con-
tribute to added noise not present in a simulator. To address
these issues, we have created an elaborate testbed using a
fully functional vehicle.

Oliver et. al [6] have also created a system for study-
ing driver behavior inside a real vehicle. Their work in-
cluded head pose data as well as vehicle and lane parame-
ters. Classification of various driving tasks (e.g., right turn,
left turn, passing, etc.) was performed using graphical mod-
els including hidden Markov models (HMM:s) and Coupled
HMMs. The results shown in this research were interesting
but failed to provide benchmark results for the null event,
i.e., lane keeping. Rather, classification was only performed
on small segments of data where an event was known to oc-
cur. Consequently, false alarm rates were not used to guide
model development, nor included in the recorded results,
making it impossible to evaluate the efficacy of this sys-
tem. In general, false alarm rates are absolutely essential for
human-machine interface modules because of the amount
of annoyance generated by an incorrect analysis. Our sys-
tem goes beyond the previous research by using receiver
operator characteristic (ROC) curves as the cornerstone of
a specially designed evaluation metric.

At a lower level of the system, lane tracking has also
been an active research area in computer vision. Algo-
rithms have been developed using techniques like Hough
transforms [7], neural networks [8], and stochastic meth-
ods [9]. These techniques do not account for different types
of lane markings (such as circular reflectors) or complex
shadowing (such as tree shadows). Gehrig et. al. [10] pro-

pose a method for detecting multiple types of lane markings
by combining different types of lane detectors. Our method
of lane detection unifies the detection of multiple types of
lane marking and provides robustness to shadowing.

Finally, given a large, diverse set of potential features
available for constructing a DIIS, it would extremely useful
to have a principled means of mapping candidate features
into intention probabilities. The recently developed field
of sparse Bayesian learning [12] provides a useful tool in
this respect. Our method relies heavily on this approach in
sifting through candidate features and discarding those that
are irrelevant.

2 Vision Systems for Driver Intent

Data needed to infer driver intent comes from a variety
of sources. In our system we have added sensors to a Infiniti
Q45. A data collection computer located in the trunk of the
car captures and synchronizes up to eight full frame video
streams, the vehicle’s CAN bus data, and GPS information.
More information on the hardware setup of the intelligent
vehicle test-bed used in this research is described in [1].

In order to create a feature vector for the classification
stage, a time series of data describing the vehicle’s sur-
round, the driver, and the vehicle’s internal state must be
created. Lane position, heading, and curvature information
is extracted from a forward looking rectilinear camera and
is described in section 2.1. Head motion is extracted from
a rectilinear camera viewing the driver as described in sec-
tion 2.2. Vehicle parameters such as vehicle speed, steering
angle, pedal positions, yaw rate, and lateral acceleration are
obtained via the vehicles CAN bus.

2.1 Lane Tracking

2.1.1 Lane Detection Using Steerable Filters

The lane tracking method used in this system uses steerable
filters [11] to enable the detection of multiple types of lane
markings. Specifically, steerable filters are well suited to
finding both lines and circular lane markings because filter
responses of any orientation can be calculated using a small
number of seperable filters. This paper extends the work
shown in [2] by adding improved curvature detection and a
more extensive evaluation.

The filterbank used in this system is composed of the
three filters. These filters correspond to second derivatives
of Gaussians and can be expressed by equations 1, 2, and 3.
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Gyy(z,y) = —5e" 7 3)

It has been shown that the response of any rotation of the
G, filter can be computed using equation 4 [11].

G2%(2,y) = Gux cos® 0+Gy, sin® 04+-Gy cosOsin 6 (4)

Taking the derivative of (4), setting it equal to 0, and solv-
ing for §, we can find the values of that correspond to the
minimum and maximum responses. These responses can be
computed by the formulas given in 5.

Gao — Gyy + A

w—)  ®

Ormin,maz = arctan(

where,

A= /G2, =96 Gyy + G2, +4Gey ()

Using the formulas 4 and 5, we can find the values and
angles of the minimum and maximum responses. This is
useful for detecting circular reflectors because the minimum
and maximum responses are relatively large. For detecting
lines, the response of the filterbank in the direction of the
lane should be near the maximum, and the minimum re-
sponse should be low. Therefore, the same filterbank can
be used to detect both circular reflectors and lines. Figure
2 shows a typical highway scene and the responses for both
circular reflectors and lines.

Figure 2. A typical highway scene in California (top),
response for circular reflectors (middle), and response
for solid line markings (bottom).

2.1.2 Road Curvature Detection

Circular reflectors become more difficult to detect when
they are far away from the car. This makes road curvature

Figure 3. Lane tracking results overlayed onto video,
aerial photograph of the road, and an inverse perspec-
tive warping of video.

detection based on circular reflectors difficult. Furthermore,
line markings are not always present to allow for curvature
detection based on lane markings alone. In order to com-
pensate for this, we use and alternate method for detecting
road curvature. Using an adaptive template of the lane, we
find the least square error parabolic fit to the lane ahead.
Template matching is performed up to 100 meters in front
of the vehicle. Results of this detection are presented in
figure 3.

2.1.3 Outlier Removal

In order to make the lane tracking more robust, outlier
removal is performed based on a prior knowledge of the
lanes. Specifically, detected markings are culled based on
their proximity to the estimated lane position, the statistics
of the detected markings, and the motion of the markings.
In general, lanes markings are approximately straight near
the vehicle. Therefore, the covariance of the detected lane
marking positions should have one large eigenvalue and one
small eigenvalue. Measurements for which the ratio of the
eigenvectors fall below a threshold are discarded.

For our system, the videos frames being captured are in-
terleaved. Because half of the frame is exposed one sixtieth
of a second after the other half, we can detect the motion
of detected lane markings by separating the even and odd
lines. Estimating the motion within the frame creates ro-
bustness to dropped frames, which is important at freeway
speeds. We then eliminate detected markings that are not
moving with the road plane.

2.1.4 Lane Tracking

Lane tracking is performed using a Kalman filter. The
Kalman state variables are updated using the measurements
from the lane detection along with measurements of steer-
ing angle and wheel velocity provided by the vehicle’s CAN
bus. The state vector is composed of the lane position, lane
heading, lane curvature, derivative of lane position, deriv-
ative of lane heading, lane width, vehicle speed, steering
angle, and vehicle acceleration.
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2.1.5 Experimental results for lane position

The lane detection and tracking systems were evaluated on
roads containing both circular markings and line markings.
The mean absolute positional error was found to be 10.16
cm and the standard deviation of the error 13.17cm. Fig-
ure 4 shows the positional information from the lane tracker
compared to the ground truth data used in testing. Ground
truth was obtained by hand marking the lanes from a sepa-
rate camera on the side of the vehicle.

Figure 4. Lane tracking results. Red: Ground Truth.
Blue: Detected Lane Position

2.2 Head Motion Estimation

Head pose is estimated using block matching. The
drivers head in the previous frame is matched to the cur-
rent frame, giving a disparity which can be considered inter-
frame motion. Figure 5 shows the head motion of a driver
plotted along with the lane position of the vehicle. It can
be seen that the driver’s head motion increases before and
during lane change maneuvers.

Figure 5. Lane position and head motion detection re-
sults. (7Top) Black lines denote lane boundaries while
the red line is the vehicle trajectory. (Bottom) Blue
line represents side-to-side head motion.

3 Driver Intent Inference: System Descrip-
tion

At its core, driver intent inference presents a challeng-
ing classification problem; namely, given a diverse array of
multi-modal features, how can we infer or classify driver
intentions. While certainly we may pose a large number
of candidate intentions, as already mentioned, we will fo-
cuss on two: lane changing (either right or left) and lane
keeping. This dichotomous problem is well-known to be of
far-reaching significance in the realm of intelligent vehicle
support systems [4].

In designing our DIIS classifier, we have at our disposal
the following types of variables: Vehicle State variables, in-
cluding gas pedal position, brake pedal depression, longitu-
dinal acceleration, vehicle speed, steering angle, yaw rate,
and lateral acceleration; Environment Variables, including
road curvature metric, heading, lateral lane position, lat-
eral lane position 10m ahead, and lateral lane position 20m
ahead; and Driver State Variables, including side-to-side
head movement and up/down head movement.

Given that each of these variables is a time series, the
set of possible candidate features is considerably large. As
such, we would like to have a method for judiciously select-
ing a small subset of features that are useful in classifying
driver intents. Moreover, we would like our model to output
class-membership probabilities rather than simply class la-
bels. An extremely effective paradigm for this task is sparse
Bayesian learning as described next.

3.1 Sparse Bayesian Learning

Sparse Bayesian learning (SBL) is a powerful approach
recently introduced into the machine learning literature for
solving regression and classification problems [12]. The
methodology relies on a parameterized prior that encour-
ages models with few nonzero weights. As such, SBL is
especially adept at pruning features, even when the number
of candidates is extremely large. Moreover, the sound prob-
abilistic underpinnings of SBL allow us to estimate class-
membership probabilities as desired.

The basic form of the actual SBL discriminant functions
we considered is given by

M
y(x) = Zw@i(m) ()

where x is an input feature vector (described below), the
w;’s are learned model weights, and the ¢;(-)’s are flex-
ible basis functions. y(x) is then applied to a sigmoidal
link function and a Bernoulli distribution is assumed for the
probability of class C, given x, i.e., P(C|x). If we choose
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¢i(-) = K(-,x;), where K (-, -) is a kernel function (or fea-
ture space mapping) and x; is a training example, we obtain
the relevance vector machine (RVM), a Bayesian competi-
tor to the popular support vector machine (SVM). However,
the SBL framework is much more general in that we can
consider overcomplete representations, i.e., the case where
M is greater than the number of training examples. This al-
lows us to employ multiple (complete) kernels and bases si-
multaneously while still controlling for overfitting. A more
comprehensive description of SBL can be found in [12]. For
our purposes, we only need to think of SBL as a principled
way of learning a robust mapping from large candidate fea-
ture sets to class-membership probabilities.

At any given time ¢, it seems reasonable that effective
driver intent inference must be based on current and previ-
ous values of the observable variables. To this end, the ac-
tual SBL algorithm is presented with temporal blocks from
each of the different variables (e.g., steering angle, speed,
etc.). In other words, at time ¢, the effective feature vector
x(t) becomes

x(t) = [LateralPos(t),...,LateralPos(t — N + 1);
Heading(t), ..., Heading(t — N + 1);

etc. |, (®)

where NN represents the number of past values of each vari-
able that have been stored internally. For our purposes, we
selected N such that the feature vector represented a one
second long sliding window of data. The SBL algorithm
then computes a sparse representation using these features
to estimate the probability of an imminent lane change. This
is followed by a quantile filter to smooth the result. Embed-
ded in this formulation is the fact that temporal variations in
maneuver execution are handled implicitly by SBL. Where
successful, this construction obviates the need for HMMs
since we are essentially creating a large, fixed-length fea-
ture space and entrusting the SBL with sorting out relevant
subspaces amenable to classification.

SBL is particularly well suited for computer vision appli-
cations for a number of reasons. First, the SBL methodol-
ogy naturally facilitates the assimilation of multiple modal-
ities of sensor information. By sifting through numerous,
possibly overcomplete, candidate inputs, SBL prunes irrel-
evant or redundant features to produce highly sparse repre-
sentations. From a practical standpoint, this frugal represen-
tation facilitates robust, real-time, frame-by-frame driver in-
tent classification using limited on-board hardware. More-
over, these sparse expansions permit greater interpretability,
which is important as we investigate which sensor modali-
ties are essential and which are expendable.

3.2 Evaluation Metrics

Appropriate evaluation metrics are an important com-
ponent of any DIIS system. Previous systems have relied
heavily on classification error or similar such measures. In
principle, we might like to simply report the classification
accuracy over a large sample of continuous driving. Unfor-
tunately, there are many problems with such an approach.
First, there is the problem of deciding when a “true” lane
change event occurs, i.e., when does it begin, end etc. While
we may logically choose to define the specific lane change
instant as the time when the vehicle center crosses the lane
boundary, it is unclear how far in advance of this time we
should consider an acceptable horizon to label as a true lane
change. Additionally, this procedure ignores significant in-
formation present in the probabilistic outputs afforded by
our SBL-based system. This information allows us to weigh
the relative importance of maximizing the detection proba-
bility with the desire to avoid false alarms.

In addressing these issues, we developed the following
performance metric. First, we created a large data set where
no attempt was made to change lanes, i.e., a strict lane keep-
ing data set. Next, we collected a second data set containing
numerous lane changes maneuvers. Now because our DIIS
outputs a bounded number between zero and one at every
time instant ¢, i.e., P (C|x (t)) where C represents the class
“lane change”, we may always pick some threshold 7" and
then decide:

IF P(Clz(t)) >7T — lane change is occurring

ELSE — lane keeping

By varying 7 from zero to one, we may create plots of the
following:

X - Probability of a false alarm at any given sample in the
lane keeping data set.

Y - Probability of detection n seconds before LC in the
lane change data set.

These modified receiver-operator-characteristic (ROC)
curves provide substantially more information than current
metrics presented in the literature. Moreover, it naturally
solves the problems raised above and, as discussed next, it
addresses specific DIIS ideological concerns.

3.3 Ideological Issues

The goal of our driver intent inference system is to pre-
dict when a driver knowingly or intentionally is about to
change lanes. We would like to distinguish this from cases
where a driver unknowingly or capriciously drifts over or
near lane boundaries.
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While at a high level we are distinguishing between two
classes, lane keeping and lane changing, there are actually
four implicit classes to consider:

i Intentional decision to change lanes followed by an ac-
tual lane change execution (common).

ii Alert lane keeping (common).

iii Intentional decision to change lanes, but the decision
is modulated by traffic patterns or other concerns and
the actual maneuver execution is delayed or abandoned
(less common).

iv Capricious lane keeping where a driver unintentionally
drifts near or across a lane boundary (less common).

With this taxonomy in place, several questions im-
mediately come to mind with regard to existing algo-
rithms/evaluation procedures. First, most previous works
have assumed that all intended lane changes are axiomat-
ically followed by immediate crossing of the lane bound-
ary. But what about case (iii)? In actual driving environ-
ments, these cases will likely be labeled as false alarms
even though they really are not. Our evaluation metric out-
lined above circumvents this problem by using a known,
pure lane keeping file (i.e., no case (i) or case (iii) exam-
ples) and a separate file with numerous lane changes, either
type (i) or (iii). By focussing only on the lane changes in
the latter, we need not worry about falsely categorizing the
type (iii) cases.

Secondly, suppose now that no examples of case (iii) ex-
ist, i.e., all lane change decisions are promptly followed by
an actual lane change maneuver. Thus, we only need con-
sider (i), (ii), and (iv). A robust DIIS should separate (i)
from (ii) and (iv), which are both lane keeping events; how-
ever, a trajectory-forecasting-based approach will often sep-
arate (i) and (iv) from (ii). Moreover, the algorithms will
incur a small penalty for this mistake since case (iv) is a
relatively rare occurrence.

While type (iv) events may be rare in practice, they are
of paramount concern in vehicle support systems.! Fortu-
nately, we have found that including driver state informa-
tion (e.g., head position data), facilitates bridging the gap
between trajectory forecasting and driver intent inference.

4 DIIS Results

To test our full DIIS system and compute the evalua-
tion statistics described above, we collected significant lane
keeping and lane changing datasets per the requirements set
forth above. These data were collected from three drivers

1Of course the severity of this problem is determined by how the DIIS
will ultimately be used.

over large stretches of significantly curved highways. Sig-
nificant curvature helps to create more type (iv)-like cases,
allowing us to better see the distinction between trajectory
forecasting and intent inference. Results are shown below
in Figures 6 and 7 which reflect prediction accuracy with
respect to various times before lane change occurrence. In
both cases, Area refers to the area under the ROC curve
while DP (for discrimination power) represents the point
along the curve at which 1 — X =Y. We note that as the
prediction horizon becomes larger, prediction fidelity de-
creases.

ROC Plot: Area =0.97, DP =0.95

——E

Detection probability 2.5 sec. before LC

0 I I I I I I I I I
[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

"False alarm rate on lane keeping data set

Figure 6. ROC curve obtained from 2.5 seconds be-
fore a lane change.

In contrast, when we exclude driver state information, re-
sults are significantly worse as expected. This is displayed
in Figures 8 and 9. This is most likely because the curved
nature of the highway made ideal lane keeping difficult, ren-
dering trajectory forecasting alone insufficient for predict-
ing driver intentions.

5 Summary and Conclusions

Accurately inferring driver intentions represents an im-
portant component of intelligent vehicle support systems.
When errors do occur with such an inference, we have three
potential culprits to contend with:

1. The lane tracker/ surround map failed,

2. The DIIS algorithm failed, or

3. The observable data was consistent with multiple
driver intents.
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ROC Plot: Area =0.91, DP =0.86
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Figure 7. ROC curve obtained from 3.0 seconds be-
fore a lane change.

In this paper, we have tried to address each of these is-
sues. First, by developing a more general lane tracker capa-
ble of robustly handling various types of lane markings, we
create a more accurate surround map. Secondly, by incorpo-
rating a state-of-the-art SBL classifier with well-motivated
evaluation metrics, we reduce the likelihood of DIIS algo-
rithmic failures. Thirdly, by incorporating driver state infor-
mation and moving away from simple trajectory forecast-
ing, we increase the likelihood that the observable data is
consistent with one and only one driver intent. Finally, by
utilizing an actual vehicle (as opposed to a simulator) for all
data collection and model development, we move one step
closer to a useable driver intent inference system.
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