
Wireless Protocol Validation Under Uncertainty

Jinghao Shi1, Shuvendu K. Lahiri2, Ranveer Chandra2, and Geoffrey Challen1

1 University at Buffalo, Buffalo, NY 14120, USA
{jinghaos, challen}@buffalo.edu

2 Microsoft Research, Redmond, WA 98052, USA
{shuvendu, ranveer}@microsoft.com

Abstract. Runtime validation of wireless protocol implementations can-
not always employ direct instrumentation of the device under test (DUT).
The DUT may not implement the required instrumentation, or the in-
strumentation may alter the DUT’s behavior when enabled. Wireless
sniffers can monitor the DUT’s behavior without instrumentation, but
they introduce new validation challenges. Losses caused by wireless prop-
agation mean that sniffers cannot perfectly reconstruct the actual DUT
packet trace. As a result, accurate validation requires distinguishing be-
tween specification deviations that represent implementation errors from
those caused by sniffer uncertainty.
We present a new approach that enables sniffer-based validation of wire-
less protocol implementation. Beginning with the original protocol mon-
itor state machine, we automatically and completely encode sniffer un-
certainty by selectively adding non-deterministic transitions. We charac-
terize the NP-completeness of the resulting decision problem and provide
an exhaustive algorithm for searching over all mutated traces, as well as
more practical protocol-oblivious heuristics for searching over the most
likely mutated traces. We have implemented our framework and show
that it can accurately distinguish most implementation errors.

1 Introduction

Custom wireless protocols are being designed and deployed to meet the spe-
cific performance and power needs of special-purpose wireless devices such as
Google Iris contact lenses [11], Xbox One wireless controllers [24], and Google
Chromecast [23]. Validating that these devices correctly implement the protocol
is crucial to achieve the design goals of the protocol and also prevent bugs in
shipping products [6,9,7].

Runtime validation of the protocol implementations on such devices is chal-
lenging because collecting traces from the device under test (DUT) is often in-
feasible. The resource limitations of embedded or battery-powered devices may
cause them to not provide trace collecting capabilities. Devices may include pro-
prietary hardware or firmware that hides the implementation details. This may
occur when development has been performed by a third-party that considers
the implementation proprietary, or when multiple devices from different vendors
are being tested for interoperability. And even when direct instrumentation is

possible, the overhead it causes may alter the behavior of the DUT due to the
observer effect [19], threatening the validation results.

An attractive alternative is to use wireless sniffers to record traffic generated
by the DUTs during testing. Sniffers do not require direct access to the DUT
or alter its behavior. However, due to the fundamentally unpredictable nature
of wireless communications, the packets captured by the sniffer will not exactly
match those received by the DUT. The sniffer may miss packets that the DUT
received, or receive packets that the DUT missed. This is true even when us-
ing multiple sniffers [5,17,3], sniffer with multiple antennas [21], or in isolated
wireless environments.

Since the sniffer trace does not perfectly match the actual trace, uncertainty
arises during protocol implementation validation. For example, if the DUT fails
to respond correctly to a packet in the sniffer trace, it may be because (a)
the DUT’s implementation is incorrect, (b) the DUT did not actually receive
the packet or (c) the DUT’s response was missed by the sniffer. Whenever the
DUT’s behavior does not match the specification, there are now two potential
explanations: either the DUT’s implementation is wrong, or the sniffer trace is in-
complete. Accurate validation requires distinguishing between these two causes.

We present a new technique enabling validation of protocol implementation
using wireless sniffers. Given a monitor state machine representing the protocol
being validated, we propose a systematic transformation that adds nondeter-
ministic transitions to incorporate uncertainty introduced by the sniffer. This
augmented validation state machine processes the sniffer trace into a set of mu-
tated traces, each satisfying the original state machine with certain probability.
If the set is empty, the implementation definitely violates the protocol. If the
set contains only low-probability traces, then the implementation probably vio-
lates the protocol. Searching over all the mutated traces is NP-complete, but the
approach can be made practical by applying protocol-oblivious heuristics that
limit the search to likely mutated traces.

Our paper makes the following contributions:

1. To the best of our knowledge, we are the first to identify the uncertainty
problem caused by sniffer in validating wireless protocol implementations.

2. We formalize the problem using a nondeterministic state machine that sys-
tematically and completely encodes the uncertainty of the sniffer trace.

3. We characterize the NP-completeness of the validation problem, and present
two protocol-oblivious heuristics to prune the search space and make valida-
tion possible in practice.

4. We implement the validation framework and evaluate it using NS-3 network
simulator [20]. Our framework accurately identifies both introduced and pre-
viously unknown violations in NS-3’s implementations of the 802.11 protocol.

Due to space limitation, we provide the full proof of lemmas and theorems
presented in this paper in the appendices.

2 Background and Motivating Example

We encounter this problem while testing the protocol implementation of a pop-
ular game controller. To meet the low latency and low power consumption goals,
custom wireless communication protocol was designed. The protocol specifica-
tion was then handed over to wireless chipset vendors for implementation, which
is common industry practice. However, neither implementation details nor trace
collection capabilities are provided in the shipped firmware due to Intellectual
Property constraints and device resource limitation. Hence using sniffers to val-
idate the protocol implementation is the natural and only option.

The testing has been performed via manual spot-checking of the sniffer trace.
We developed a tool to automatically validate certain protocol properties in the
sniffer trace, yet often found outrageous amounts of false alarms due to the
incompleteness of the sniffer traces, making the tool virtually useless.

To better understand the incompleteness of sniffer trace, consider the IEEE
802.11 (as known as Wi-Fi) transmitter (DUT) state machine shown in Fig. 1.
After the DUT sends DATAi—a data packet with sequence number i (s0 →
s1), it starts a timer and waits for the acknowledgment packet—Ack. Either it
receives Ack within time To (s1 → s0), or it sends DATA′i—retransmission of
DATAi (s1 → s2). Similarly, either it receives the Ack within To (s2 → s0) or
aborts transmission and moves on to next packet3 (s2 → s1).

i :=0
s1

DATA i

c :=0

i :=(i+1)%N

DATA 'i ;T o<c≤Tm

c :=0

Ack ;c≤T o

DATA(i+1)%N ;c>T o

s2s0

i :=(i+1)%N

init

Fig. 1: Monitor State Machine for 802.11 Transmitter.

Given the DUT’s internal log of packet transmission and reception events, it
is trivial to feed such log into the state machine in Fig. 1 and validate the cor-
rectness of DUT’s protocol implementation. In this paper, however, we assume
the DUT implementation is a black box and its internal events are not available.
And we seek to validate the DUT implementation using sniffers.

Two fundamental properties in wireless communication bring uncertainty to
sniffer’s observation: packet loss and physical diversity. The sniffer could either
missing packets from the DUT (packet loss), or overhear packets that are sent
to but missed by the DUT (physical diversity).

3 We assume in this example that the DUT will retry at most once to succinctly
present the state machine. In practice, multiple retransmissions will be made before
aborting.

Time

DATA0 DATA '0 AckTrDUT

Tr1

DATA0 DATA '0 AckAck

DATA0 DATA '0 AckAck

TrOTA

Tr2 AckDATA0

Fig. 2: Uncertainty of Sniffer Observations. TrOTA is the chronological se-
quence of packets sent by the DUT and the receiver. TrDUT is DUT’s internal
events. Tr1 and Tr2 are two possible observations of the sniffer.

Consider a correct packet exchange sequence and a few sniffer observations
shown in Fig. 2. The DUT first sends DATA0. Suppose the receiver receives
DATA0 and sends the Ack which the DUT does not receive. Eventually the
DUT’s timer fires and it sends DATA′0. This time the DATA′0 reaches receiver
and the DUT also receives the Ack.

In first possible sniffer observation Tr1 where the sniffer overhears the first
Ack packet, a validation uncertainty arises when the sniffer sees the DATA′0:
was the previous Ack missed by the DUT or is there a bug in DUT which causes
it to retransmit even after receiving the Ack?

Similarly, consider another possible sniffer observation Tr2 where both the
DATA′0 and Ack packets were missed by the sniffer. During this period of time,
it appears the DUT neither receives Ack for DATA0 nor sends DATA′0. Again,
without any additional information it is impossible to disambiguate between the
sniffer missing certain packets and a bug in DUT’s retransmission logic.

Informally, the question we set out to answer in this paper is: given the proto-
col monitor state machine and the sniffer’s observation with inherent uncertainty,
how to validate that the DUT behaves as specified?

3 Prerequisites and Problem Statement

3.1 Packet, Trace and Monitor State Machine

The alphabet of the monitor state machine is the finite set of all valid packets
defined by the protocol, denoted as P. A packet is a binary string of finite number
of bits, encoding interesting protocol attributes such as src, dest, type, flags,
and physical layer information, such as channel, modulation, etc. The input of
the state machine then corresponds to a time-ordered sequence of packets.

Definition 1. A packet trace is a finite sequence of (timestamp, packet) tuple:
[(t1, p1), (t2, p2), . . . , (tn, pn)] where ti ∈ Z+ is the discrete timestamp and pi
is the packet observed at time ti. The timestamps are strictly monotonically
increasing: ti < ti+1 for 1 ≤ i < n.

In addition to timestamp monotonicity, we also require that adjacent packets
do not overlap in time, ti+1 − ti > airtime(pi) for 1 ≤ i < n, where airtime()

calculates the time taken to transmit a packet.
We use timed automata [1] to model the expected behaviors of the DUT. A

timed automata is a finite state machine with timing constraints on the transi-
tions: each transition can optionally start one or more timers, which can later be
used to assert certain events should be seen before or after the time out event.
We refer the readers to [1] for more details about timed automata.

Definition 2. A protocol monitor state machine S is a 7-tuple
{Σ,S,X, s0, C,E,G}, where:

– Σ = P is the finite input alphabet.
– S is a non-empty, finite set of states. s0 ∈ S is the initial state.
– X is the set of boolean variables. We use v = {x ← true/false | x ∈ X} to

denote an assignment of the variables. Let V be the set of such values v.
– C is the set of clock variables. A clock variable can be reset along any state

transitions. At any instant, reading a clock variable returns the time elapsed
since last time it was reset.

– G is the set of guard conditions defined inductively by

g := true | c ≤ T | c ≥ T | x | ¬g | g1 ∧ g2

where c ∈ C is a clock variable, T is a constant, and x is a variable in X. A
transition can choose not to use guard conditions by setting g to be true.

– E ⊆ S× V× S× V×Σ ×G×P(C) gives the set of transitions.
〈si, vi, sj , vj , p, g, C ′〉 ∈ E represents that if the monitor is in state si with
variable assignments vi, given the input tuple (t, p) such that the guard g is
satisfied, the monitor can transition to a state sj with variable assignments
vj, and reset the clocks in C ′ to 0.

A tuple (ti, pi) in the packet trace means the packet pi is presented to the
state machine at time ti. The monitor rejects a trace Tr if there exists a prefix
of Tr such that all states reachable after consuming the prefix have no valid
transitions for the next (t, p) input.

As an example, the monitor state machine illustrated in Fig. 1 can be formally
defined as follows:

– Σ = {DATAi, DATA
′
i, Ack | 0 ≤ i < N}.

– Clock variables C = {c}. The only clock variable c is used for acknowledgment
time out.

– X = {i}, as a variable with log(N) + 1 bits to count from 0 to N .
– Guard constraints G = {c ≤ To, c > To, To < c ≤ Tm}. To is the acknowledg-

ment time out value, and Tm > To is the maximum delay allowed before the
retransmission packet gets sent. To can be arbitrary large but not infinity in
order to check the liveness of the DUT.

The monitor state machine defines a timed language L which consists all valid
packet traces that can be observed by the DUT. We now give the definition of
protocol compliance and violation.

Definition 3. Suppose T is the set of all possible packet traces collected from
DUT, and S is the state machine specified by the protocol. The DUT violates the
protocol specification if there exists an packet trace Tr ∈ T such that S rejects
Tr. Otherwise, the DUT is compliant with the specification.

The focus of this paper is to determine whether a given Tr is evidence of a
violation.

3.2 Mutation Trace

As shown in the motivation example in Fig. 2, a sniffer trace may either miss
packets that are present in DUT trace, or contain extra packets that are missing
in DUT trace. Note that in the latter case, those extra packets must be all sent
to the DUT. This is because it is impossible for the sniffer to overhear packets
sent from the DUT that were not actually sent by the DUT.

We formally capture this relationship with the definition of mutation trace.

Definition 4. A packet trace Tr′ is a mutation of sniffer trace Tr w.r.t a DUT
if for all (t, p) ∈ Tr \ Tr′, p.dest = DUT .

By definition, either Tr′ ⊇ Tr (hence Tr \ Tr′ = ∅), or those extra packets
in Tr but not in Tr′ are all sent to the DUT. A mutation trace Tr′ represents
a guess of the corresponding DUT packet trace given given sniffer trace Tr. In
fact, the DUT packet trace must be one of the mutation traces of the sniffer
trace Tr.

Lemma 1. Let TrDUT and Tr be the DUT and sniffer packet trace captured
during the same protocol operation session, and M(Tr) be the set of mutation
traces of Tr with respect to DUT, then TrDUT ∈M(Tr).

(Proof in Appendix A)

3.3 Problem Statement

Lemma 1 shows that M(Tr) is a complete set of guesses of the DUT packet
trace. Therefore, the problem of validating DUT implementation given a sniffer
trace can be formally defined as follows:

Problem 1. VALIDATION
instance A protocol monitor state machine S and a sniffer trace Tr.
question Does there exist a mutation trace Tr′ of Tr that satisfies S?

If the answer is no, a definite violation of the DUT implementation can be
claimed. Nevertheless, if the answer is yes, S could still reject TrDUT . In other
words, the conclusion of the validation can either be definitely wrong or probably
correct, but not definitely correct. This is the fundamental limitation caused by
the uncertainty of sniffer traces.

4 Verification Framework

4.1 Augmented State Machine

To deal with the inherent uncertainty of sniffer traces, we propose to systemat-
ically augment the original monitor state machine with non-deterministic tran-
sitions to account for the difference between the sniffer and DUT traces.

i :=0
s1

DATAi

c :=0

i :=(i+1)%N

DATA' i ;T o<c≤T m

c :=0

Ack ;c≤T o

DATA
(i+1)%N ; c>T o

s2s0

i :=(i+1)%N Ack ; c≤T o Ack ; c≤T o

init

Fig. 3: Augmented Monitor State Machine. Augmented transitions are
highlighted in bold face. Pkt means either ε or Pkt.

Before formally defining the augmented state machine, we first use an exam-
ple to illustrate the basic idea. Fig. 3 shows the augmented state machine for
802.11 transmitter state machine shown in Fig. 1. For each existing transition
(e.g., s0 → s1), we add an empty transition with same clock guards and resetting
clocks. This is to account for the possibility when such packet was observed by
the DUT but missed by the sniffer. Additionally, for each transition triggered
by a receiving packet (i.e., p.dest = DUT), such as s1 → s0 and s2 → s0, we
add a self transition with the same trigger packet and clock guards, but empty
set of resetting clocks and no assignments to variables. This is to allow the state
machine make progress when the sniffer missed such packets.

We make two notes. First, self transitions are added only for packets sent
to the DUT, since the sniffer will not overhear packets from the DUT if they
were not sent by the DUT. Second, no augmented transition are added for the
packets that are sent to DUT yet are missed by both the DUT and the sniffer,
since such packets do not cause difference between the DUT and sniffer traces.

The augmented state machine in Fig. 3 will accept the sniffer packet traces
Tr1 and Tr2 shown in Fig. 2. For instance, one accepting transition sequence
on sniffer trace Tr1 is s0 → s1 →s s1 → s2 → s0, and the sequence for Tr2 is
s0 → s1 →e s2 → s0, where → is the transition from the original state machine,
→e and →s are the augmented empty and self transitions respectively.

We now formally define the augmented state machine.

Definition 5. An augmented state machine S+ for a monitor state machine
S is a 7-tuple {Σ+,S,X, s0, C,E+, G}, where S,X, s0, C,G are the same with
S. Σ+ = {ε} ∪ Σ is the augmented input alphabet with the empty symbol, and
E+ ⊃ E is the set of transitions, which includes:

– E: existing transitions (Type-0) in S.
– E+

1 : empty transitions (Type-1) for transitions in E.
– E+

2 : self transitions (Type-2) for transitions triggered by receiving packets.

Algorithm 1 Obtain Augmented Transitions E+ from E

1: function augment(E)
2: E+ := ∅
3: for all 〈si, vi, sj , vj , p, g, C′〉 ∈ E do
4: E+ := E+ ∪ {〈si, vi, sj , vj , p, g, C′〉} . Type-0
5: E+ := E+ ∪ {〈si, vi, sj , vj , ε, g, C′〉} . Type-1
6: if p.dest = DUT then
7: E+ := E+ ∪ {〈si, vi, si,vi, p, g,∅〉} . Type-2

8: return E+

Algorithm 1 describes the process of transforming E into E+. In particular,
Line 4 adds existing transitions in E to E+, while line 5 and 7 add Type-1 and
Type-2 transitions to E+ respectively. We have highlighted the elements of the
tuple that differ from the underlying Type-0 transition. Note that in Type-2
transitions, both the state and the variables stay the same after the transition.

With augmented state machine S+, we can use Type-1 transitions to non-
deterministically infer packets missed by the sniffer, and use Type-2 transitions
to consume extra packets captured by the sniffer but missed by the DUT.

A successful run of S+ on sniffer trace Tr yields a mutation trace Tr′ which
represents one possibility of the DUT trace. Specifically, Tr′ can be obtained
by adding missing packets indicated by Type-1 transitions to Tr, and removing
extra packets indicated by Type-2 transitions from Tr

We show that the VERIFICATION problem is equivalent to the satisfiability
problem of Tr on S+.

Theorem 1. There exists a mutation trace Tr′ ∈M(Tr) that satisfies S if and
only if Tr satisfies S+.

(Proof in Appendix B)
By Theorem 1, the inherent uncertainty of the sniffer traces are explicitly

represented by the augmented transitions, and can be systematically explored
using the well established state machine theory.

4.2 Problem Hardness

In this section, we show that the VERIFICATION problem is NP-complete. In
fact, the problem is still NP-complete even with only one type of augmented
transitions.

Recall that Type-1 transitions are added because the sniffer may miss pack-
ets. Suppose an imaginary sniffer that is able to capture every packet ever trans-
mitted, then only Type-2 transitions are needed since the sniffer may still over-
hear packets sent to the DUT. Similarly, suppose another special sniffer that
would not overhear any packets sent to the DUT, then only Type-1 transitions
are needed to infer missing packets.

We refer the augmented state machine that only has Type-0 and Type-1
transitions as S+

1 , and the augmented state machine that only has Type-0 and
Type-2 transitions as S+

2 . And we show that each subproblem of determining
trace satisfiability is NP-complete.

Problem 2. VALIDATION-1
Given that Tr \ TrDUT = ∅ (sniffer does not overhear packets).
instance Checker state machine S and sniffer trace Tr.
question Does S+

1 accept Tr?

Problem 3. VALIDATION-2
Given that TrDUT ⊆ Tr (sniffer does not missing packets).
instance Checker state machine S and sniffer trace Tr.
question Does S+

2 accept Tr?

Lemma 2. Both VALIDATION-1 and VALIDATION-2 are NP-complete.

(Proof in Appendix C)
The hardness statement of the general VALIDATION problem naturally fol-

lows Lemma 2.

Theorem 2. VALIDATION is NP-complete.

4.3 Searching Strategies

In this section, we present an exhaustive search algorithm of the accepting tran-
sition sequence of S+ on sniffer trace Tr. It guarantees to yield a accepting
sequence if it exists, thus is exhaustive. In the next sections, we present heuris-
tics to limit the search to accepting sequences of S+ that require relatively few
transitions from E+

1 ∪E
+
2 . Due to the NP-completeness of the problem, this also

makes the algorithm meaningful in practice.
The main routines of the algorithm is shown in Algorithm 2. In the top level

SEARCH routine, we first obtain the augmented state machine S+, then we call
the recursive EXTEND function with an empty prefix, the sniffer trace, and the
S+’s initial state.

In the EXTEND function, we try to consume the first packet in the remaining
trace using either Type-0, Type-1 or Type-2 transition. Note that we always
try to use Type-0 transitions before other two augmented transitions (line 6).
This ensures the first found mutation trace will have the most number of Type-0
transitions among all possible mutation traces. Intuitively, this means the search
algorithm tries utilize the sniffer’s observation as much as possible before being
forced to make assumptions.

Each of the extend function either returns the mutation trace Tr′, or nil if
the search fails. In both EXTEND-0 and EXTEND-2 function, if there is a valid
transition, we try to consume the next packet either by appending it to the
prefix (line 13) or dropping it (line 26). While in EXTEND-1, we guess a missing
packet without consuming the next real packet (line 20). Note that since only

Algorithm 2 Exhaustive search algorithm of S+ on Tr.

1: function search(S, Tr)
2: S+ := augment(S)
3: return extend([], Tr, S+.s0)

4: function extend(prefix, p::suffix, s)
5: if not likely(prefix) then return nila

6: for i ∈ [0, 1, 2] do
7: mutation := EXTEND-i(prefix, p::suffix, s)
8: if mutation 6= nil then return mutation

9: return nil
10: function extend-0(prefix, p::suffix, s)
11: for 〈s, s′, p〉b ∈ E do
12: if suffix = nil then return prefix@p

13: mutation := extend(prefix@p, suffix, s′)
14: if mutation 6= nil then return mutation

15: return nil
16: function extend-1(prefix, p::suffix, s)
17: for all 〈s, s′, q〉 ∈ E+

1 do
18: if q.time > p.time then
19: continue
20: mutation := extend(prefix@q, p::suffix, s′)
21: if mutation 6= nil then return mutation

22: return nil
23: function extend-2(prefix, p::suffix, s)
24: for all 〈s, s, p〉 ∈ E+

2 do
25: if suffix = nil then return prefix

26: mutation := extend(prefix, suffix, s)
27: if mutation 6= nil then return mutation

28: return nil

a This check should be ignored in the exhaustive algorithm.
b 〈s, s′, p〉 is short for 〈s, ∗, s′, ∗, p, ∗, ∗〉

Type-0 and Type-2 consume packets, the recursion terminates if there is a valid
Type-0 or Type-2 transition for the last packet (line 12 and line 25).

It is not hard to see that Algorithm 2 terminates on any sniffer traces: each
node in the transition tree only has finite number of possible next steps, and
the depth of Type-1 transitions are limited by the time available before the next
packet (line 18).

4.4 Pruning Heuristics

In the face of uncertainty between a possible protocol violation and sniffer im-
perfection, augmented transitions provide the ability to blame the latter. The

exhaustive nature of Algorithm 2 means that it always tries to blame sniffer
imperfection whenever possible, making it reluctant to report true violations.

Therefore, extra constraints on the mutation trace need to be enforced to
restrict the search only to mutation traces with high likelihood. The modified
EXTEND function checks certain likelihood constraints on the prefix of the muta-
tion trace before continue (line 5), and stops the current search branch immedi-
ately if the prefix seems unlikely. Because of the recursive nature of the algorithm,
other branches which may have a higher likelihood can then be explored.

The strictness of the likelihood constraint represents a trade-off between pre-
cision and recall of validation: the more strict the constraints are, the more false
positive violations will potentially be reported, hence the lower the precision yet
higher recall. On the contrary, the more tractable the constraints are, the more
tolerant the search is to sniffer imperfection, hence the more likely that it will
report true violations, thus higher precision but lower recall.

The exact forms of the constraints may depend on many factors, such as the
nature of the protocol, properties of the sniffer, or domain knowledge. Next, we
propose two protocol oblivious heuristics based on the sniffer loss probabilities
and general protocol operations. Both heuristic contains parameters that can be
fine tuned in practice.

NumMissing(d, l, k) This heuristic states that the number of missing packets
from device d in any sub mutation traces of length l shall not exceed k (k ≤ l).
The sliding window of size l serves two purposes. First, l should be large enough
for the calculated packet loss ratio to be statistically meaningful. Second, it
ensures that the packet losses are evenly distributed among the entire packet
trace.

The intuition behind this heuristic is that the sniffer’s empirical packet loss
probability can usually be measured before validation. Therefore, the likelihood
that the sniffer misses more packets that prior measured loss ratio is quite low.
The value of l and k can then be configured such that k/l is marginally larger
than the measured ratio.

GoBack(k) This heuristic states that the search should only backtrack at most
k steps when gets stuck. The motivation is that many protocols operate in a se-
quence of independent transactions, and the uncertainty of previous transactions
often do not affect the next transaction. For instance, in 802.11 packet trans-
mission protocol, each packet exchange, include the original, retransmission and
acknowledgment packets, constitute a transaction. And the retransmission sta-
tus of previous packets has no effect on the packets with next sequence number,
hence need not be explored when resolving the uncertainty of the packets with
new sequence numbers. Note that we do not require the protocol to specify an
exact transaction boundary, but only need k to be sufficiently large to cover a
transaction.

5 Case Studies

We present two case studies on applying our validation framework on two proto-
cols implemented in the NS-3 network simulator: 802.11 data transmission and
ARF rate control algorithm. The goal is to demonstrate how our framework can
avoid raising false alarms on incomplete sniffer traces and report true violations.

5.1 802.11 Data Transmission

In this section, we first show that our verification framework can improve veri-
fication precision by inferring the missing or extra packets using the augmented
transition framework. We then demonstrate the ability of our framework to de-
tect true violations by manually introducing bugs in the NS-3 implementation
and show the precision and recall of validation results.

Experimental Setup We set up two Wi-Fi devices acting as the transmitter
(DUT) and receiver respectively. Another Wi-Fi device is configured in monitor
mode and acts as the sniffer. During the experiments,we collect both the DUT
packet trace (the ground truth) and the sniffer trace.

Verifying Unmodified Implementation In the original monitor state ma-
chine shown in Fig. 1, we set acknowledgment timeout To = 334µs, maximum
retransmission delay Tm = 15ms according to the protocol. We also adapt the
state machine to include multiple retransmissions4 instead of one.

Let Prds, Pres and Pred be the packet loss probability between the DUT
and sniffer, endpoint and sniffer, DUT and endpoint respectively. Pred represents
the characteristics of the system being tested, while Prds and Pres represent the
sniffer’s quality in capturing packets.

We vary each of the three probability, Prds, Pres and Pred, from 0 to 0.5
(both inclusive) with 0.05 step. For each loss ratio combination, we ran the
experiment 5 times, and each run lasted 30 seconds. In total, 6655 (113×5) pair
of DUT and sniffer packet traces were collected.

To establish the ground truth of violations, we first verify the DUT packet
traces using the original state machine S. This can be achieved by disabling
augmented transitions in our framework. As expected, no violation is detected
in any DUT packet traces.

We then verify the sniffer traces using the augmented state machine S+.
For the GoBack(k) heuristic, we set k = 7, which is the maximum number of
transmissions of a single packet. For the NumMissing(d, l, k) heuristic, we set
the sliding window size l = 100, and k = 80 such that no violation is reported.
The relationship of k and validation precision is studied in next section.

Next, we present detailed analysis of the augmented transitions on the sniffer
traces. The goal is to study for a given system packet loss probability Pred, how
the sniffer packet loss properties (Prds and Pres) affect the difference between

4 The exact number of retransmissions is not part of the protocol, and NS-3 imple-
mentation set this to be 7.

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(a) 0.05 ≤ Pred ≤ 0.15

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(b) 0.2 ≤ Pred ≤ 0.35

Pds 0.00.10.20.30.40.5

Pes
0.0

0.1
0.2

0.3
0.4

0.5
0.0

0.1

0.2

0.3

(c) 0.4 ≤ Pred ≤ 0.5

Fig. 4: Jaccard Distance Between Mutation and DUT Traces. For each
data point, the mean of the 5 runs is used.

the DUT trace and the mutation trace, which represents a guess of the DUT
trace by the augmented state machine based on the sniffer trace.

For all following analysis, we divide the traces into three groups according
to Pred: low (0 ≤ Pred ≤ 0.15), medium (0.20 ≤ Pred ≤ 0.35) and high (0.40 ≤
Pred ≤ 0.50).

The different between two packet traces can be quantified by the Jaccard
distance metric.

Jaccard(Tr1, T r2) =
Tr1 	 Tr2
Tr1 ∪ Tr2

(1)

where 	 is the symmetric difference operator. The distance is 0 if the two traces
are identical, and is 1 when the two traces are completely different. The smaller
the distance is, the more similar the two traces are.

Fig. 4 shows the Jaccard Distance between mutation and its corresponding
DUT trace. We make the following observations. First, for a given system loss
probability Pred (each sub-figure), the lower the sniffer packet loss probability
(Prds and Pres), the smaller Jaccard distance between the DUT and mutation
trace. Intuitively, this means a sniffer that misses less packets can enable our
framework to better reconstruct the DUT trace.

Second, we observe a protocol-specific trend that Prds is more dominant
than Pres. This is because retransmission packets of the same sequence num-
ber are identical, hence when the sniffer misses multiple retransmission packets,
our framework only needs to infer one retransmission packet to continue state
machine execution.

Finally, as the system loss probability Pred increases, the Jaccard distance
increases more rapidly as Prds increases. This is because the ratio of retrans-
mission packet increases along with Pred.

Introducing Bugs We have demonstrated that our framework can tolerate
sniffer imperfection and avoid raising false alarms. The next question is, can
it detect true violations? To answer this question, we manually introduce sev-
eral bugs in NS-3 implementation that concerns various aspects of 802.11 data
transmission protocol. More specifically, the bugs are:

0.5 0.6 0.7 0.8 0.9 1.0
Precision

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

k = 10
k = 15
k = 20
k = 25
k = 30

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

k = 10
k = 15
k = 20
k = 25
k = 30

Fig. 5: Precision and Recall of Validation Results.

– Sequence Number The DUT does not assign sequence number correctly.
For example, it may increase sequence by 2 instead of 1, or it does not increase
sequence number after certain packet, etc. We choose one type of such bugs
in each run.

– Semantic The DUT may retransmit even after receiving Ack, or does not
retransmit when not receiving Ack.

We instrument the NS-3 implementation to embed instances of bugs in each
category. At each experiment run, we randomly decide whether and which bug
to introduce for each category. We fix Prds = Pres = 0.1 and vary Pred from
0.0 to 0.5 with 0.01 step. For each Pred value, we ran the experiment 100 times,
of which roughly 75 experiments contained bugs. In total, 5100 pairs of DUT
and sniffer traces were collected.

We use the DUT packet traces as ground truth of whether or not each ex-
periment run contains bugs. For each Pred value, we calculate the precision and
recall of violation detection using the sniffer traces.

Precision =
{Reported Bugs} ∩ {True Bugs}

{Reported Bugs}
(2)

Recall =
{Reported Bugs} ∩ {True Bugs}

{True Bugs}
(3)

The precision metric quantifies how useful the validation results are , while the
recall metric measures how complete the validation results are.

Fig. 5 shows the CDF of precision and recall of the 51 experiments for various
k values. For precision, as expected, the more tolerant the search to sniffer losses
(larger k), the more tolerant the framework is to sniffer losses, and the more
precise the violation detection. In particular, when k = 30, the precisions are
100% for all Pred values. Second, the recall is less sensitive to the choice of k.
Except for the extreme case when k = 30, all other thresholds can report almost
all the violations.

5.2 ARF Rate Control Algorithm

We report a bug found in NS-3 ARF [13] implementation which causes the sender
gets stuck at a lower rate even after enough number of consecutive successes. The
bug was detected using the sniffer trace and confirmed using the DUT trace and
source code inspection. The details of this bug can be found in Appendix D.

6 Related Works

Hidden Markov Model (HMM) Approach. When considering the whole
system under test (both DUT and endpoint), the sniffer only captures a subset
of the all the packets (events). This is similar to the event sampling problem
in runtime verification [4,12,2,8]. Stoller et al [22] used HMM-based state es-
timation techniques to calculate the confidence that the temporal property is
satisfied in the presence of gaps in observation.

While it seems possible to adapt the method in [22] to our problem, we note
several advantages of our augmented monitor and prioritized search procedure.
First, the automatically augmented state machine precisely encodes the proto-
col specification and the uncertainty; this is intuitive to design and naturual for
reporting the evidence for a trace being successful. We do not require a user
to specify the number of states of underlying HMM, or accurately provide un-
derlying probabilities. Second, we use timed automata to monitor the timing
constraints which are common in wireless protocols; it may be non-trivial to
encode such timing information in HMM. Finally, we can exploit domain knowl-
edge to devise effective pruning heuristics to rule out unlikely sequences during
the exhaustive search.

Network Protocol Validation. Lee et al [16] studied the problem of pas-
sive network testing of network management. The system input/output behavior
is only partially observable. However, the uncertainty only lies in missing events
in the observation, while in the context of wireless protocol verification, the
uncertainty could also be caused by extra events not observed by the tested sys-
tem. However, they do not provide any formal guarantees even for cases when
we report a definite bug. Software model checking techniques [18,10] have also
been used to verify network protocols. Our problem is unique because of the
observation uncertainty caused by sniffers.

7 Conclusions

In this paper, we formally describe the uncertainty problem in validating wireless
protocols using sniffers. We propose to systematically augment the protocol state
machine to explicitly encode the uncertainty of sniffer traces. We characterize
the NP-completeness of the problem and propose both exhaustive searching al-
gorithm and heuristics to restrict the search to only probable traces. We present
two case studies using NS-3 network simulator to demonstrate how our frame-
work can improve validation precision and detected real bugs. We plan to apply
our framework in testing the game controllers and other real world protocols.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

2. M. Arnold, M. Vechev, and E. Yahav. Qvm: an efficient runtime for detecting
defects in deployed systems. In ACM Sigplan Notices, volume 43, pages 143–162.
ACM, 2008.

3. P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh, A. Wolman, and
B. Zill. Enhancing the security of corporate Wi-Fi networks using DAIR. In
Proceedings of the 4th international conference on Mobile systems, applications
and services, pages 1–14. ACM, 2006.

4. B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Sampling-based runtime
verification. In FM 2011: Formal Methods, pages 88–102. Springer, 2011.

5. Y.-C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker, and S. Savage.
Jigsaw: solving the puzzle of enterprise 802.11 analysis, volume 36. ACM, 2006.

6. M. Ciabarra. WiFried: iOS 8 WiFi Issue. https://goo.gl/KtRDqk.
7. digitalmediaphile. Windows 10 wifi issues with surface pro 3 and surface 3. http:

//goo.gl/vBqiEo.
8. L. Fei and S. P. Midkiff. Artemis: Practical runtime monitoring of applications for

execution anomalies. In ACM SIGPLAN Notices, volume 41, pages 84–95. ACM,
2006.

9. Gizmodo. The worst bugs in android 5.0 lollipop and how to fix them. http:

//goo.gl/akDcvA.
10. P. Godefroid. Model checking for programming languages using verisoft. In Pro-

ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 174–186. ACM, 1997.

11. Google. Google contact lens. https://en.wikipedia.org/wiki/Google_Contact_
Lens.

12. M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak detection using
adaptive statistical profiling. In Acm Sigplan Notices, volume 39, pages 156–164.
ACM, 2004.

13. A. Kamerman and L. Monteban. Wavelan R©-ii: a high-performance wireless lan
for the unlicensed band. Bell Labs technical journal, 2(3):118–133, 1997.

14. M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 rate adaptation: a
practical approach. In Proceedings of the 7th ACM international symposium on
Modeling, analysis and simulation of wireless and mobile systems, pages 126–134.
ACM, 2004.

15. M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 rate adaptation: a
practical approach. [Research Report] RR-5208, (¡inria-00070784¿):25, 2004.

16. D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John. Passive testing and
applications to network management. In Network Protocols, 1997. Proceedings.,
1997 International Conference on, pages 113–122. IEEE, 1997.

17. R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Analyzing the mac-level
behavior of wireless networks in the wild. In ACM SIGCOMM Computer Com-
munication Review, volume 36, pages 75–86. ACM, 2006.

18. M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L. Dill. CMC: A
pragmatic approach to model checking real code. ACM SIGOPS Operating Systems
Review, 36(SI):75–88, 2002.

19. T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan. Observer effect and
measurement bias in performance analysis. 2008.

https://goo.gl/KtRDqk
http://goo.gl/vBqiEo
http://goo.gl/vBqiEo
http://goo.gl/akDcvA
http://goo.gl/akDcvA
https://en.wikipedia.org/wiki/Google_Contact_Lens
https://en.wikipedia.org/wiki/Google_Contact_Lens

20. G. F. Riley and T. R. Henderson. The ns-3 network simulator. In Modeling and
Tools for Network Simulation, pages 15–34. Springer, 2010.

21. Savvius Inc. Savvius Wi-Fi adapters. https://goo.gl/l3VXSx.
22. S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka, and

E. Zadok. Runtime verification with state estimation. In Runtime Verification,
pages 193–207. Springer, 2011.

23. Wikipedia. Chromecast. https://en.wikipedia.org/wiki/Chromecast.
24. Wikipedia. Xbox One controller. https://en.wikipedia.org/wiki/Xbox_One_

Controller.

https://goo.gl/l3VXSx
https://en.wikipedia.org/wiki/Chromecast
https://en.wikipedia.org/wiki/Xbox_One_Controller
https://en.wikipedia.org/wiki/Xbox_One_Controller

Appendices

A Proof of Lemma 1

Let ∆ = Tr \ TrDUT be the set of packets that are in Tr but not in TrDUT .
Recall that it is not possible for the sniffer to observe sending packets from
the DUT that the DUT did not send. Therefore, all packets in ∆ are receiving
packets with respect to DUT. That is, for all (t, p) ∈ ∆, p.dest = DUT . By
Definition 4, TrDUT ∈M(Tr).

B Proof of Theorem 1

Assume Tr satisfies S+, and P is a sequence of accepting transitions, we con-
struct a mutation trace Tr′ using P and show that Tr′ satisfies S.

Initially, let Tr′ = Tr, then for each augmented transition
〈si, vi, sj , vj , σ, g, C ′〉 ∈ P :

– If this is a Type-1 transition, add (t, p) to Tr′, where t is a timestamp that
satisfies g and p is the missing packet.

– If this is a Type-2 transition, remove corresponding (t, p) from Tr′.

It is obvious that Tr′ is a mutation trace of Tr, since only receiving packets are
removed in the process.

Now we show that there exists a accepting transition sequence P ′ of S+ on
input Tr′ that does not contain augmented transitions. In particular, P ′ can
be obtained by substituting all Type-1 transitions with corresponding original
transitions, and removing all Type-2 transition. Since P ′ does not contain aug-
mented transitions, it is also an accepting transition sequence of S on input Tr′,
hence Tr′ satisfies S.

On the other hand, assume Tr′ ∈ M(Tr) and Tr′ satisfies S. Suppose P ′ is
the accepting transition sequences of S on input Tr′. We first note that P ′ is
also the accepting transitions of S+ on input Tr′, since E ⊂ E+.

We construct a accepting transition sequence P of S+ on input Tr as follows.

– For each packet p ∈ Tr′ \ Tr, substitute the transition 〈si, vi, sj , vj , p, g, C ′〉
with the corresponding Type-1 transition 〈si, vi, sj , vj , ε, g, C ′〉.

– For each transition 〈si, vi, sj , vj , σ, g, C ′〉 followed by packet p ∈ Tr \ Tr′, add
a Type-2 self transition 〈sj , vj , sj , vj , p, g, ∅〉. This is possible since Tr′ is a
mutation trace of Tr, thus for all p ∈ Tr′ \ Tr, p.src 6= DUT .

Therefore, Tr satisfies S+.

C Proof of Lemma 2

First, note that the length of mutation trace Tr′ is polynomial to the length of
Tr because of the discrete time stamp and non-overlapping packets assumption.

Therefore, given a state transition sequence as witness, it can be verified in
polynomial time whether or not it is an accepting transition sequence, hence
both VALIDATION-1 and VALIDATION-2 are in NP.

Next, we show how the SAT problem can be reduced to either one of the
two problems. Consider an instance of SAT problem of a propositional formula
F with n variables x0, x1, . . . , xn−1, we construct a corresponding protocol and
its monitor state machine as follows.

The protocol involves two devices: the DUT (transmitter) and the endpoint
(receiver). The DUT shall send a series of packets, pkt0, pkt1, . . . , pktn−1. For
each pkti, if the DUT receives the acknowledgment packet acki from the end-
point, it sets boolean variable xi to be true. Otherwise xi remains to be false.
After n rounds, the DUT evaluate the formula F using the assignments and
sends a special packet, pkttrue, if F is true. One round of the protocol operation
can be completed in polynomial time since any witness of F can be evaluated in
polynomial time.

s0 s1
i<n∧pkti ;c=0

ack i;c=1
c :=0, xi :=true , i :=i+1

i :=0,c :=0
x j:=false

 for 0≤ j<n

init

i<n−1∧pkt i+1 ;c=1

c :=0, i :=i+1

s2

i=n∧F∧pkt true ;c=0

i=n−1∧F∧pkt true ;c=1

Fig. 6: Monitor State Machine for SAT Problem.

The protocol monitor state machine S is shown in Fig. 6. Initially, all xi
is set to false. At state s0, the DUT shall transmit pkti within a unit time,
transit to s1 and reset the clock along the transition. At state s1, either the DUT
receives the acki packet and set xi to be true (s1 → s0), or the DUT continues
to transmit the next packet pkti+1. After n rounds, the state machine is s0 or s1
depending on whether ackn−1 is received by the DUT. In either case, the DUT
shall evaluate F and transmit pkttrue if F is true.

Consider a sniffer trace Tr1 = {(0, pkt0), (2, pkt1), (4, pkt2), . . . , (2(n −
1), pktn−1), (2n, pkttrue)}. That is, the sniffer only captures all pkti plus the
final pkttrue, but none of acki. It is easy to see that F is satisfiable if S+

1 accepts
Tr1. In particular, a successful run of S+

1 on Tr1 would have to guess, for each
pkti, whether the Type-1 empty transitions should be used to infer the missing
acki packet, such that F is true at the end. Note that for Tr1, no Type-2 self
transitions can be used since all packets in Tr1 are sent from the DUT. There-
fore, the SAT problem of F can be reduced to the VALIDATION-1 problem of
S+
1 on sniffer trace Tr1.

On the other hand, consider another sniffer trace Tr2 =
{(0, pkt0), (1, ack0), (2, pkt1), (3, ack1), . . . , (2n − 2, pktn−1), (2n −

1, ackn−1), (2n, pkttrue}. That is, the sniffer captures all n pair of pkti
and acki packets and the final pkttrue packet. Similar to Tr1, F is satisfiable if
S+
2 accepts Tr2. A successful transition sequence of S+

2 on Tr2 must decide for
each acki packet, whether Type-2 self transitions should be used, so that F can
be evaluated as true at the end. Therefore, the SAT problem of F can also be
reduced to the VALIDATION-2 problem of S+

2 on sniffer trace Tr2.
Since SAT is known to be NP-complete, both the VALIDATION-1 and the

VALIDATION-2 problem are also NP-complete.

D Detail of ARF Algorithm

Automatic Rate Fallback (ARF) [13] is the first rate control algorithm in litera-
ture. In ARF, the sender increases the bit rate after Th1 number of consecutive
successes or Th2 number of packets with at most one retransmission. The sender
decreases bit rate after two consecutive packet failures or if the first packet sent
after rate increase (commonly referred as probing packet) fails.

Fig. 7 shows the state machine S for the packet trace collected at sender
(DUT), where DATAr

i denotes a data packet with sequence number i and
bit rate r, DATAr′

i is a retransmission packet and Ack is the acknowledgment
packet. The pkg succ function is shown in Algorithm 3.

s0 s1

s4

DATA i
r DATA i

r '∧¬probe
s2

DATA i
r '

DATAr−1 '∧probe
DATA i

r '

Ack

Ack

init

i :=0, r :=0
succ:=0
count :=0
probe:=false

pkt_succ ()

pkt_succ () r :=r−1

succ:=0
count :=count+1

s3

DATA i
r−1 '

r :=r−1
count :=0

Fig. 7: Monitor State Machine for ARF Rate Control Algorithm. Timing
constraints are omitted for succinctness.

The succ variable is used to track the number of consecutive packet successes.
It is increased after each packet success , and is reset to 0 after a rate increase
or upon a packet failure (s1 → s2). Similarly, count is to track the number of
packets with at most one retransmission, and is increased after packet success,
or for the first packet retransmission (s1 → s2). It is reset when there are two
consecutive packet failures (s2 → s3). Finally, the probe flag is set upon rate
increases to indicate the probing packet, and is cleared upon packet success. The
variable r is the current bit rate, which is decreased if the probing packet fails
(s1 → s4), or every two consecutive failures (s2 → s3). If r is not the highest
rate, it is increased when either of the two thresholds are reached.

Algorithm 3 pkt succ function

1: function pkt succ
2: i := (i+1)%N
3: succ := succ + 1
4: count := count + 1
5: probe := false
6: if r < R and (succ ≥ Th1 or count ≥ Th2) then
7: r := r+1
8: succ := 0
9: count := 0

10: probe := true

In particular, the bug we found lies in the implementation’s pkt succ func-
tion in line 6. Instead of checking count ≥ Th 2, the implementation checks
count == Th 2. This bug also exists in the NS-3 implementation of Adaptive
ARF (AARF) algorithm [14] and the pseudo code implementation of AARF
in [15].

Note that the count variable is incremented twice if a packet succeed after
one retransmission: once in s1 → s2, once in the pkt succ function for the
retransmission packet. Therefore, if the value of count is Th2 − 1 and the next
packet succeed after one retransmission, the value of count will be Th2 + 1,
which would fail the implementation’s test of count == Th 2.

	Wireless Protocol Validation Under Uncertainty

