SchnorrQ: Schnorr signatures on FourQ

Craig Costello and Patrick Longa
Microsoft Research, USA

SchnorrQ is a digital signature scheme that is based on the well-known Schnorr signature scheme [6] combined with the use of the elliptic curve FourQ [3].

1 Rationale

SchnorrQ offers extremely fast, high-security digital signatures targeting the 128-bit security level. It was designed by instantiating (with minor modifications) the recent EdDSA [1] digital signature specifications [2,5] on a superior, state-of-the-art elliptic curve, FourQ [3]. Similar to Ed25519 [1], public keys are 32 bytes and signatures are 64 bytes.

2 Parameters

EdDSA has 11 parameters (see [2,5]). Below we specify the 11 parameters used to instantiate EdDSA on FourQ, where we use an asterisk (\textasteriskcentered) to indicate that the specification differs from the requirement(s) in [2,5].

1. An odd prime power \(q \).

\[q = p^2 \text{ with } p = 2^{127} - 1. \]

2. An integer \(b \) with \(2^{b-1} > q \).

\[b = 256. \]

3. A \((b - 1)\)-bit encoding of the finite field \(\mathbb{F}_q \).

Here \(\mathbb{F}_q = \mathbb{F}_{p^2} = \mathbb{F}_p(i) \) with \(i^2 = -1 \). Elements \(x \in \mathbb{F}_q \) are written as \(x = a + b \cdot i \) for \(a, b \in \{0, 1, \ldots, 2^{127} - 1\} \), i.e., for \(a = \sum_{i=0}^{126} a_i \cdot 2^i \) and \(b = \sum_{i=0}^{126} b_i \cdot 2^i \) with \(a_i, b_i \in \{0, 1\} \). The 255-bit encoding of \(x \in \mathbb{F}_q \) is

\[x = (a_0, a_1, \ldots, a_{126}, 0, b_0, b_1, \ldots, b_{126}). \]

4. A cryptographic, collision-resistant hash function \(H \) producing \(2b \)-bit output.

5*. An integer \(c \in \{2, 3\} \).

SchnorrQ uses the stronger “cofactorless verification” equation [2], so the cofactor is irrelevant here. EdDSA specifies that secret keys are multiples of \(2^c \), and since SchnorrQ does not require this, here we implicitly have \(c = 0 \).
6*. An integer \(n \) with \(c \leq n \leq b \).

Secret EdDSA scalars have exactly \(n + 1 \) bits, with the top bit always set and the bottom \(c \) bits always cleared. SchnorrQ secret scalars are all 256-bit strings, i.e., can be any of \(\{0,1,\ldots,2^{256} - 1\} \). Thus, we implicitly have \(n = 255 \), but note that the top bit of SchnorrQ secret scalars is not necessarily set.

7. A nonzero square element \(a \) of \(\mathbb{F}_q \).

\[
a = -1,
\]

which is optimal in terms of performance when \(q \equiv 1(\text{mod}4) \).

8. A non-square element \(d \) of \(\mathbb{F}_q \).

\[
d = d_a + d_b \cdot i;
d_a = 4205857648805777768770;\]
\[
d_b = 12531704843780598345676279555970305165.
\]

9. An element \(B \neq (0,1) \) of the set \(E = \{(x,y) \in \mathbb{F}_q \times \mathbb{F}_q : ax^2 + y^2 = 1 + dx^2y^2\} \).

\[
B = (x_a + x_b \cdot i, y_a + y_b \cdot i);
x_a = 133173070547236760532149241662440243363;\]
\[
x_b = 7254476661865288982729346394492014752;\]
\[
y_a = 465;\]
\[
y_b = 0.
\]

10*. An odd prime \(\ell \) such that \(\ell B = 0 \) and \(2^c \cdot \ell = \#E \).

Here the 246-bit prime
\[
\ell := 73846995687063900142583536357581573884798075859800097461294096333596429543
\]
is such that \(\ell B = 0 \), but note that FourQ has \(\#E = 2^3 \cdot 7^2 \cdot \ell \). The cofactor \(2^3 \cdot 7^2 \) is irrelevant in the cofactorless verification equation used in SchnorrQ.

11. A “prehash” function \(H' \).

SchnorrQ without prehashing means SchnorrQ where \(H' \) is the identity function, i.e., \(H'(M) = M \). SchnorrQ with prehashing means SchnorrQ where \(H' \) generates a short output for a message of any length using a collision-resistant hash function; for example, \(H'(M) = \text{SHA-512}(M) \). In this document, we refer to SchnorrQ without prehashing as simply “SchnorrQ” and refer to SchnorrQ with prehashing as “SchnorrQ\text{ph}”.

Prehashing. As is described in [5] for the two analogous EdDSA options, choosing between SchnorrQ and SchnorrQ\text{ph} depends on which feature is more important for a given application: collision resistance or a single-pass interface for generating signatures. SchnorrQ is resilient to collisions in the hash function but requires two passes over the input message to generate a signature, whereas SchnorrQ\text{ph} is not resilient to collisions in the hash function \(H' \) but supports interfaces that perform a single pass over the input message to generate a signature. Refer to [2,5] for more details about the security of prehashing.
Encoding and parsing integers. The integer $S \in \{0, 1, \ldots, \ell - 1\}$ below is encoded in little-endian form as a 256-bit string \underline{S}. The bit string $\underline{S} = (S_0, S_1, \ldots, S_{255})$ is parsed to the integer $S = S_0 + 2 S_1 + \cdots + 2^{255} S_{255}$.

Encoding and parsing curve points. An element $x = a + b \cdot i \in \mathbb{F}_q$ encoded as $\underline{x} = (a_0, \ldots, a_{126}, 0, b_0, \ldots, b_{126})$ is defined as “negative” if only if $a_{126} = 1$ and $a \neq 0$, or if $b_{126} = 1$ and $a = 0$. The point $(x, y) \in E$ is encoded as the 256-bit string (x, y), which is the 255-bit encoding of y followed by a sign bit; this sign bit is 1 if and only if x is negative. A parser recovers (x, y) from a 256-bit string as follows: parse the first 255 bits as y; compute $u/v = (y^2 - 1)/(d y^2 + 1)$; compute $\pm x = \sqrt{u/v}$, where the \pm is chosen so that the sign of x matches the b-th bit of the string. Low-level details for performing this decompression efficiently are in Appendix §A.

Secret keys and public keys. A secret key is a 256-bit string k. The hash $H(k) = (h_0, h_1, \ldots, h_{511})$ determines an integer $s = \sum_{i=0}^{255} h_i \cdot 2^i$, which in turn determines the multiple $A = [s]B$. The corresponding public key is A. The bits $h_{256}, h_{257}, \ldots, h_{511}$ are used below during signing.

Signing. The Schnorr signature of a message M under a secret key k is defined as follows. Define $r = H(h_{256}, \ldots, h_{511}, M) \in \{0, 1, \ldots, 2^{512} - 1\}$. Define $R = [r]B$ and $S = (r - s \cdot H(R, A, M)) \mod \ell$. The signature of M under k is the 512-bit string (R, S).

(Implementation note: for efficiency, reduce r and $H(R, A, M)$ modulo ℓ before the computation of R and S, respectively.)

SchnorrQph simply uses SchnorrQ to sign $H'(M)$.

Verification. “Cofactorless” verification of an alleged SchnorrQ signature of a message M under a public key A works as follows. The verifier parses the inputs so that A and R are elements in E and S is an integer in the set \{0, 1, \ldots, l - 1\}, then computes $R' = [S]B + [H(R, A, M)]A$ and finally checks the verification equation $R' = R$. The signature is rejected if parsing (i.e., any decoding) fails, if S is not in the range \{0, 1, \ldots, l - 1\}, or if the verification equation does not hold.

SchnorrQph simply uses SchnorrQ to verify a signature for $H'(M)$.

Examples: the following instances use SHA-512, from the SHA-2 hash family [7], and SHA3-512, from the recently standardized SHA-3 hash family [8]. Both options produce digests of 512 bits in size and provide 256 bits of collision-resistant security.

- SchnorrQ-SHA-512 is SchnorrQ with $H = \text{SHA-512}$.
- SHA-512-SchnorrQ-SHA-512 is SchnorrQph with $H = H' = \text{SHA-512}$.
- SchnorrQ-SHA3-512 is SchnorrQ with $H = \text{SHA3-512}$.
- SHA3-512-SchnorrQ-SHA3-512 is SchnorrQph with $H = H' = \text{SHA3-512}$.
A Fast decompression

Point decompression is required during signature verification in order to recover coordinate \(x \) from a 256-bit string \(\mathbf{R} = (x, y) \). Decompression computes \(u/v = (y^2 - 1)/(dy^2 + 1) \) and then \(x = \pm \sqrt{u/v} \). Write \(u = u_0 + u_1 \cdot i, v = v_0 + v_1 \cdot i \) and \(x = x_0 + x_1 \cdot i \) for \(u_0, u_1, v_0, v_1, x_0, x_1 \in \mathbb{F}_p \).

Our goal is to compute \(x_0 \) and \(x_1 \) from \(u_0, u_1, v_0, v_1 \). Equating coefficients in

\[
(x_0 + x_1 \cdot i)^2 = \frac{u_0 + u_1 \cdot i}{v_0 + v_1 \cdot i}
\]

yields two quadratic equations in \(x_0^2 \) and \(x_1^2 \) over \(\mathbb{F}_p \), the solutions of which are

\[
x_0^2 = \frac{2\alpha \pm 2\sqrt{\alpha^2 + \gamma^2}}{4\beta} \quad \text{and} \quad x_1^2 = \frac{-2\alpha \pm 2\sqrt{\alpha^2 + \gamma^2}}{4\beta},
\]

(1)

where \(\alpha = u_0 v_0 + u_1 v_1 \), \(\beta = u_0^2 + v_1^2 \), \(\gamma = u_1 v_0 - u_0 v_1 \).

First, we compute \(t = 2(\alpha + \sqrt{\alpha^2 + \gamma^2}) = 2(\alpha + (\alpha^2 + \gamma^2)^{2^{125}}) \). If \(t = 0 \), then compute \(t = 2(\alpha - (\alpha^2 + \gamma^2)^{2^{125}}) \). Up to the sign in front of \(\sqrt{\alpha^2 + \gamma^2} \) (which will be resolved in a moment), we now have \(t = 4\beta x_0^2 \).

Observe that \(\pm x_0 x_1 = \gamma/(2\beta) \). Following [4], we compute \(\beta^{-1} \) and recover \(x_0 \) and \(x_1 \) using one exponentiation as follows. We first compute \(\pm r = \sqrt{t/(t \cdot \beta^3)} = (t \cdot \beta^3)^{2^{125} - 1} \), and then recover \(\pm x_0 = (r \cdot \beta \cdot t)/2 \) and \(\pm x_1 = r \cdot \beta \cdot \gamma \).

The sign ambiguities are resolved as follows. The sign in front of \(\sqrt{\alpha^2 + \gamma^2} \) is checked by computing \(\beta \cdot (2x_0)^2 \) and comparing against \(t \); if these are not equal then \(x_0 \) and \(x_1 \) are swapped. Set \(x := x_0 + x_1 \cdot i \) and if the sign of \(x \) does not match the 256-th bit in the public key, compute \(x = -x \). Finally, the sign of \(x_1 \) is resolved by checking the curve equation: if \(-x^2 + y^2 \neq 1 + dx^2 y^2 \), then we take \(x_1 := -x_1 \) and reset \(x := x_0 + x_1 \cdot i \).
Summary. On top of a few multiplications, squarings and additions, decompression takes only two exponentiations in \mathbb{F}_p: one has exponent 2^{125} and the other has exponent $2^{125} - 1$. This is highly convenient since the first case only requires an easy “squares-only” addition chain and the second case requires an addition chain that is already present in the addition chain for inversions.