
SchnorrQ: Schnorr signatures on FourQ

Craig Costello and Patrick Longa

Microsoft Research, USA

SchnorrQ is a digital signature scheme that is based on the well-known Schnorr signature
scheme [6] combined with the use of the elliptic curve FourQ [3].

1 Rationale

SchnorrQ offers extremely fast, high-security digital signatures targeting the 128-bit security
level. It was designed by instantiating (with minor modifications) the recent EdDSA [1] digital
signature specifications [2,5] on a superior, state-of-the-art elliptic curve, FourQ [3]. Similar
to Ed25519 [1], public keys are 32 bytes and signatures are 64 bytes.

2 Parameters

EdDSA has 11 parameters (see [2,5]). Below we specify the 11 parameters used to instantiate
EdDSA on FourQ, where we use an asterisk (∗) to indicate that the specification differs from
the requirement(s) in [2,5].

1. An odd prime power q.

q = p2 with p = 2127 − 1.

2. An integer b with 2b−1 > q.

b = 256.

3. A (b− 1)-bit encoding of the finite field Fq.

Here Fq = Fp2 = Fp(i) with i2 = −1. Elements x ∈ Fq are written as x = a + b · i for

a, b ∈ {0, 1, . . . , 2127 − 1}, i.e., for a =
∑126

i=0 ai · 2i and b =
∑126

i=0 bi · 2i with ai, bi ∈ {0, 1}.
The 255-bit encoding of x ∈ Fq is

x = (a0, a1, . . . , a126, 0, b0, b1, . . . b126).

4. A cryptographic, collision-resistant hash function H producing 2b-bit output.

5∗. An integer c ∈ {2, 3}.

SchnorrQ uses the stronger “cofactorless verification” equation [2], so the cofactor is irrel-
evant here. EdDSA specifies that secret keys are multiples of 2c, and since SchnorrQ does
not require this, here we implicitly have c = 0.



6∗. An integer n with c ≤ n ≤ b.

Secret EdDSA scalars have exactly n + 1 bits, with the top bit always set and the bot-
tom c bits always cleared. SchnorrQ secret scalars are all 256-bit strings, i.e., can be any
of {0, 1, . . . 2256 − 1}. Thus, we implicitly have n = 255, but note that the top bit of
SchnorrQ secret scalars is not necessarily set.

7. A nonzero square element a of Fq.

a = −1,

which is optimal in terms of performance when q ≡ 1(mod4).

8. A non-square element d of Fq.

d = da + db · i;
da = 4205857648805777768770;

db = 125317048443780598345676279555970305165.

9. An element B 6= (0, 1) of the set E = {(x, y) ∈ Fq × Fq : ax2 + y2 = 1 + dx2y2}.

B = (xa + xb · i, ya + yb · i) ;

xa = 133173070547236760532149241662440243363;

xb = 72544766618652889802729346394492014752;

ya = 465;

yb = 0.

10∗. An odd prime ` such that `B = 0 and 2c · ` = #E.

Here the 246-bit prime

` := 73846995687063900142583536357581573884798075859800097461294096333596429543

is such that `B = 0, but note that FourQ has #E = 23 · 72 · `. The cofactor 23 · 72 is
irrelevant in the cofactorless verification equation used in SchnorrQ.

11. A “prehash” function H ′.

SchnorrQ without prehashing means SchnorrQ where H ′ is the identity function, i.e.,
H ′(M) = M . SchnorrQ with prehashing means SchnorrQ where H ′ generates a short
output for a message of any length using a collision-resistant hash function; for example,
H ′(M) = SHA-512(M). In this document, we refer to SchnorrQ without prehashing as
simply “SchnorrQ” and refer to SchnorrQ with prehashing as “SchnorrQph”.

Prehashing. As is described in [5] for the two analogous EdDSA options, choosing between
SchnorrQ and SchnorrQph depends on which feature is more important for a given application:
collision resistance or a single-pass interface for generating signatures. SchnorrQ is resilient
to collisions in the hash function but requires two passes over the input message to generate
a signature, whereas SchnorrQph is not resilient to collisions in the hash function H ′ but
supports interfaces that perform a single pass over the input message to generate a signature.
Refer to [2,5] for more details about the security of prehashing.



Encoding and parsing integers. The integer S ∈ {0, 1, . . . , ` − 1} below is encoded in
little-endian form as a 256-bit string S. The bit string S = (S0, S1, . . . , S255) is parsed to the
integer S = S0 + 2S1 + · · ·+ 2255S255.

Encoding and parsing curve points. An element x = a + b · i ∈ Fq encoded as x =
(a0, . . . , a126, 0, b0, . . . b126) is defined as “negative” if only if a126 = 1 and a 6= 0, or if b126 = 1
and a = 0. The point (x, y) ∈ E is encoded as the 256-bit string (x, y), which is the 255-
bit encoding of y followed by a sign bit; this sign bit is 1 if and only if x is negative. A
parser recovers (x, y) from a 256-bit string as follows: parse the first 255 bits as y; compute
u/v = (y2 − 1)/(dy2 + 1); compute ±x =

√
u/v, where the ± is chosen so that the sign

of x matches the b-th bit of the string. Low-level details for performing this decompression
efficiently are in Appendix §A.

Secret keys and public keys. A secret key is a 256-bit string k. The hash H(k) =
(h0, h1, . . . , h511) determines an integer s =

∑255
i=0 hi · 2i, which in turn determines the multi-

ple A = [s]B. The corresponding public key is A. The bits h256, h257, . . . , h511 are used below
during signing.

Signing. The SchnorrQ signature of a message M under a secret key k is defined as follows.
Define r = H(h256, . . . , h511,M) ∈ {0, 1, . . . , 2512 − 1}. Define R = [r]B and S = (r − s·
H(R,A,M)) mod `. The signature of M under k is the 512-bit string (R,S).

(Implementation note: for efficiency, reduce r and H(R,A,M) modulo ` before the computa-
tion of R and S, respectively.)

SchnorrQph simply uses SchnorrQ to sign H ′(M).

Verification. “Cofactorless” verification of an alleged SchnorrQ signature of a messageM un-
der a public key A works as follows. The verifier parses the inputs so that A and R are elements
in E and S is an integer in the set {0, 1, . . . , l−1}, then computes R′ = [S]B+[H(R,A,M)]A
and finally checks the verification equation R′ = R. The signature is rejected if parsing (i.e.,
any decoding) fails, if S is not in the range {0, 1, . . . , l − 1}, or if the verification equation
does not hold.

SchnorrQph simply uses SchnorrQ to verify a signature for H ′(M).

Examples: the following instances use SHA-512, from the SHA-2 hash family [7], and SHA3-
512, from the recently standardized SHA-3 hash family [8]. Both options produce digests of
512 bits in size and provide 256 bits of collision-resistant security.

– SchnorrQ-SHA-512 is SchnorrQ with H = SHA-512.

– SHA-512-SchnorrQ-SHA-512 is SchnorrQph with H = H ′ = SHA-512.

– SchnorrQ-SHA3-512 is SchnorrQ with H = SHA3-512.

– SHA3-512-SchnorrQ-SHA3-512 is SchnorrQph with H = H ′ = SHA3-512.



References

1. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. J. Cryptographic Engineering, 2(2):77–89, 2012. 1

2. Daniel J. Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. EdDSA for more
curves. Cryptology ePrint Archive, Report 2015/677, 2015. http://eprint.iacr.org/2015/677. 1, 2

3. Craig Costello and Patrick Longa. FourQ: Four-dimensional decompositions on a Q-curve over the Mersenne
prime. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015, volume
9452 of Lecture Notes in Computer Science, pages 214–235. Springer, 2015. Full version: https://eprint.
iacr.org/2015/565. 1

4. Mike Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, Report 2012/309,
2012. http://eprint.iacr.org/2012/309. 4

5. Ilari Liusvaara and Simon Josefsson. Edwards-curve Digital Signature Algorithm (EdDSA). Internet-
Draft draft-irtf-cfrg-eddsa-05, Internet Engineering Task Force, 2016. Work in Progress. Available at:
https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-05. 1, 2

6. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 239–252.
Springer, 1990. 1

7. U.S. Department of Commerce/National Institute of Standards and Technology. Secure Hash Standard
(SHS). FIPS-180-4, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf. 3

8. U.S. Department of Commerce/National Institute of Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. FIPS-202, 2015. http://www.nist.gov/

customcf/get_pdf.cfm?pub_id=919061. 3

A Fast decompression

Point decompression is required during signature verification in order to recover coordinate x
from a 256-bit string R = (x, y). Decompression computes u/v = (y2− 1)/(dy2 + 1) and then

x = ±
√
u/v. Write u = u0+u1 ·i, v = v0+v1 ·i and x = x0+x1 ·i for u0, u1, v0, v1, x0, x1 ∈ Fp.

Our goal is to compute x0 and x1 from u0, u1, v0, v1. Equating coefficients in

(x0 + x1 · i)2 =
u0 + u1 · i
v0 + v1 · i

yields two quadratic equations in x20 and x21 over Fp, the solutions of which are

x20 =
2α± 2

√
α2 + γ2

4β
and x21 =

−2α± 2
√
α2 + γ2

4β
, (1)

where α = u0v0 + u1v1, β = v20 + v21, γ = u1v0 − u0v1.
First, we compute t = 2(α +

√
α2 + γ2) = 2(α + (α2 + γ2)2

125
). If t = 0, then compute

t = 2(α − (α2 + γ2)2
125

). Up to the sign in front of
√
α2 + γ2 (which will be resolved in a

moment), we now have t = 4βx20.

Observe that ±x0x1 = γ/(2β). Following [4], we compute β−1 and recover x0 and x1 using
one exponentiation as follows. We first compute ±r =

√
1/(t · β3) = (t · β3)2125−1, and then

recover ±x0 = (r · β · t)/2 and ±x1 = r · β · γ.

The sign ambiguities are resolved as follows. The sign in front of
√
α2 + γ2 is checked

by computing β · (2x0)2 and comparing against t; if these are not equal then x0 and x1 are
swapped. Set x := x0 + x1 · i and if the sign of x does not match the 256-th bit in the public
key, compute x = −x. Finally, the sign of x1 is resolved by checking the curve equation: if
−x2 + y2 6= 1 + dx2y2, then we take x1 := −x1 and reset x := x0 + x1 · i.

http://eprint.iacr.org/2015/677
https://eprint.iacr.org/2015/565
https://eprint.iacr.org/2015/565
http://eprint.iacr.org/2012/309
https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-05
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=919061
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=919061


Summary. On top of a few multiplications, squarings and additions, decompression takes
only two exponentiations in Fp: one has exponent 2125 and the other has exponent 2125 − 1.
This is highly convenient since the first case only requires an easy “squares-only” addition
chain and the second case requires an addition chain that is already present in the addition
chain for inversions.


	 SchnorrQ: Schnorr signatures on FourQ 

