Schnorr \mathbb{Q} : Schnorr signatures on Four \mathbb{Q}

Craig Costello and Patrick Longa

Microsoft Research, USA

SchnorrQ is a digital signature scheme that is based on the well-known Schnorr signature scheme [6] combined with the use of the elliptic curve Four \mathbb{Q} [3].

1 Rationale

SchnorrQ offers extremely fast, high-security digital signatures targeting the 128-bit security level. It was designed by instantiating (with minor modifications) the recent EdDSA [1] digital signature specifications [2,5] on a superior, state-of-the-art elliptic curve, FourQ [3]. Similar to Ed25519 [1], public keys are 32 bytes and signatures are 64 bytes.

2 Parameters

EdDSA has 11 parameters (see [2,5]). Below we specify the 11 parameters used to instantiate EdDSA on Four \mathbb{Q}, where we use an asterisk ($*$) to indicate that the specification differs from the requirement(s) in $[2,5]$.

1. An odd prime power q.

$$
q=p^{2} \text { with } p=2^{127}-1 .
$$

2. An integer b with $2^{b-1}>q$.

$$
b=256 .
$$

3. A $(b-1)$-bit encoding of the finite field \mathbb{F}_{q}.

Here $\mathbb{F}_{q}=\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i)$ with $i^{2}=-1$. Elements $x \in \mathbb{F}_{q}$ are written as $x=a+b \cdot i$ for $a, b \in\left\{0,1, \ldots, 2^{127}-1\right\}$, i.e., for $a=\sum_{i=0}^{126} a_{i} \cdot 2^{i}$ and $b=\sum_{i=0}^{126} b_{i} \cdot 2^{i}$ with $a_{i}, b_{i} \in\{0,1\}$. The 255 -bit encoding of $x \in \mathbb{F}_{q}$ is

$$
\underline{x}=\left(a_{0}, a_{1}, \ldots, a_{126}, 0, b_{0}, b_{1}, \ldots b_{126}\right) .
$$

4. A cryptographic, collision-resistant hash function H producing $2 b$-bit output.
5^{*}. An integer $c \in\{2,3\}$.
SchnorrQ uses the stronger "cofactorless verification" equation [2], so the cofactor is irrelevant here. EdDSA specifies that secret keys are multiples of 2^{c}, and since Schnorr \mathbb{Q} does not require this, here we implicitly have $c=0$.
6^{*}. An integer n with $c \leq n \leq b$.
Secret EdDSA scalars have exactly $n+1$ bits, with the top bit always set and the bottom c bits always cleared. SchnorrQ secret scalars are all 256 -bit strings, i.e., can be any of $\left\{0,1, \ldots 2^{256}-1\right\}$. Thus, we implicitly have $n=255$, but note that the top bit of SchnorrQ secret scalars is not necessarily set.
5. A nonzero square element a of \mathbb{F}_{q}.

$$
a=-1
$$

which is optimal in terms of performance when $q \equiv 1(\bmod 4)$.
8. A non-square element d of \mathbb{F}_{q}.

$$
\begin{aligned}
d & =d_{a}+d_{b} \cdot i \\
d_{a} & =4205857648805777768770 \\
d_{b} & =125317048443780598345676279555970305165 .
\end{aligned}
$$

9. An element $B \neq(0,1)$ of the set $E=\left\{(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}: a x^{2}+y^{2}=1+d x^{2} y^{2}\right\}$.

$$
\begin{aligned}
B & =\left(x_{a}+x_{b} \cdot i, y_{a}+y_{b} \cdot i\right) \\
x_{a} & =133173070547236760532149241662440243363 \\
x_{b} & =72544766618652889802729346394492014752 \\
y_{a} & =465 \\
y_{b} & =0
\end{aligned}
$$

10^{*}. An odd prime ℓ such that $\ell B=0$ and $2^{c} \cdot \ell=\# E$.
Here the 246 -bit prime
$\ell:=73846995687063900142583536357581573884798075859800097461294096333596429543$
is such that $\ell B=0$, but note that Four \mathbb{Q} has $\# E=2^{3} \cdot 7^{2} \cdot \ell$. The cofactor $2^{3} \cdot 7^{2}$ is irrelevant in the cofactorless verification equation used in Schnorr \mathbb{Q}.

11. A "prehash" function H^{\prime}.

Schnorr \mathbb{Q} without prehashing means SchnorrQ where H^{\prime} is the identity function, i.e., $H^{\prime}(M)=M$. Schnorr \mathbb{Q} with prehashing means Schnorr \mathbb{Q} where H^{\prime} generates a short output for a message of any length using a collision-resistant hash function; for example, $H^{\prime}(M)=$ SHA-512 (M). In this document, we refer to SchnorrQ without prehashing as simply "Schnorr \mathbb{Q} " and refer to Schnorr \mathbb{Q} with prehashing as "SchnorrQph".

Prehashing. As is described in [5] for the two analogous EdDSA options, choosing between Schnorr \mathbb{Q} and Schnorr \mathbb{Q} ph depends on which feature is more important for a given application: collision resistance or a single-pass interface for generating signatures. SchnorrQ is resilient to collisions in the hash function but requires two passes over the input message to generate a signature, whereas Schnorr $\mathbb{Q} p h$ is not resilient to collisions in the hash function H^{\prime} but supports interfaces that perform a single pass over the input message to generate a signature. Refer to $[2,5]$ for more details about the security of prehashing.

Encoding and parsing integers. The integer $S \in\{0,1, \ldots, \ell-1\}$ below is encoded in little-endian form as a 256 -bit string \underline{S}. The bit string $\underline{S}=\left(S_{0}, S_{1}, \ldots, S_{255}\right)$ is parsed to the integer $S=S_{0}+2 S_{1}+\cdots+2^{255} S_{255}$.

Encoding and parsing curve points. An element $x=a+b \cdot i \in \mathbb{F}_{q}$ encoded as $\underline{x}=$ $\left(a_{0}, \ldots, a_{126}, 0, b_{0}, \ldots b_{126}\right)$ is defined as "negative" if only if $a_{126}=1$ and $a \neq 0$, or if $b_{126}=1$ and $a=0$. The point $(x, y) \in E$ is encoded as the 256 -bit string (x, y), which is the 255 bit encoding of y followed by a sign bit; this sign bit is 1 if and only if x is negative. A parser recovers (x, y) from a 256 -bit string as follows: parse the first 255 bits as y; compute $u / v=\left(y^{2}-1\right) /\left(d y^{2}+1\right)$; compute $\pm x=\sqrt{u / v}$, where the \pm is chosen so that the sign of x matches the b-th bit of the string. Low-level details for performing this decompression efficiently are in Appendix §A.

Secret keys and public keys. A secret key is a 256-bit string k. The hash $H(k)=$ $\left(h_{0}, h_{1}, \ldots, h_{511}\right)$ determines an integer $s=\sum_{i=0}^{255} h_{i} \cdot 2^{i}$, which in turn determines the multiple $A=[s] B$. The corresponding public key is \underline{A}. The bits $h_{256}, h_{257}, \ldots, h_{511}$ are used below during signing.

Signing. The Schnorr \mathbb{Q} signature of a message M under a secret key k is defined as follows. Define $r=H\left(h_{256}, \ldots, h_{511}, M\right) \in\left\{0,1, \ldots, 2^{512}-1\right\}$. Define $R=[r] B$ and $S=(r-s$. $H(\underline{R}, \underline{A}, M)) \bmod \ell$. The signature of M under k is the 512 -bit string $(\underline{R}, \underline{S})$.
(Implementation note: for efficiency, reduce r and $H(\underline{R}, \underline{A}, M)$ modulo ℓ before the computation of R and S, respectively.)

SchnorrQph simply uses SchnorrQ to sign $H^{\prime}(M)$.

Verification. "Cofactorless" verification of an alleged SchnorrQ signature of a message M under a public key \underline{A} works as follows. The verifier parses the inputs so that A and R are elements in E and S is an integer in the set $\{0,1, \ldots, l-1\}$, then computes $R^{\prime}=[S] B+[H(\underline{R}, \underline{A}, M)] A$ and finally checks the verification equation $\underline{R^{\prime}}=\underline{R}$. The signature is rejected if parsing (i.e., any decoding) fails, if S is not in the range $\{0,1, \ldots, l-1\}$, or if the verification equation does not hold.

SchnorrQph simply uses SchnorrQ to verify a signature for $H^{\prime}(M)$.

Examples: the following instances use SHA-512, from the SHA-2 hash family [7], and SHA3512 , from the recently standardized SHA-3 hash family [8]. Both options produce digests of 512 bits in size and provide 256 bits of collision-resistant security.

- SchnorrQ-SHA-512 is SchnorrQ with $H=$ SHA-512.
- SHA-512-SchnorrQ-SHA-512 is SchnorrQph with $H=H^{\prime}=$ SHA-512.
- SchnorrQ-SHA3-512 is SchnorrQ with $H=$ SHA3-512.
- SHA3-512-SchnorrQ-SHA3-512 is SchnorrQph with $H=H^{\prime}=$ SHA3-512.

References

1. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security signatures. J. Cryptographic Engineering, 2(2):77-89, 2012. 1
2. Daniel J. Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. EdDSA for more curves. Cryptology ePrint Archive, Report 2015/677, 2015. http://eprint.iacr.org/2015/677. 1, 2
3. Craig Costello and Patrick Longa. Four \mathbb{Q} : Four-dimensional decompositions on a \mathbb{Q}-curve over the Mersenne prime. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology - ASIACRYPT 2015, volume 9452 of Lecture Notes in Computer Science, pages 214-235. Springer, 2015. Full version: https://eprint. iacr.org/2015/565. 1
4. Mike Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint Archive, Report 2012/309, 2012. http://eprint.iacr.org/2012/309. 4
5. Ilari Liusvaara and Simon Josefsson. Edwards-curve Digital Signature Algorithm (EdDSA). InternetDraft draft-irtf-cfrg-eddsa-05, Internet Engineering Task Force, 2016. Work in Progress. Available at: https://tools.ietf.org/html/draft-irtf-cfrg-eddsa-05. 1, 2
6. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor, Advances in Cryptology - CRYPTO '89, volume 435 of Lecture Notes in Computer Science, pages 239-252. Springer, 1990. 1
7. U.S. Department of Commerce/National Institute of Standards and Technology. Secure Hash Standard (SHS). FIPS-180-4, 2015. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf. 3
8. U.S. Department of Commerce/National Institute of Standards and Technology. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. FIPS-202, 2015. http://www.nist.gov/ customcf/get_pdf.cfm?pub_id=919061. 3

A Fast decompression

Point decompression is required during signature verification in order to recover coordinate x from a 256 -bit string $\underline{R}=(x, y)$. Decompression computes $u / v=\left(y^{2}-1\right) /\left(d y^{2}+1\right)$ and then $x= \pm \sqrt{u / v}$. Write $u=u_{0} \overline{+u_{1}} \cdot i, v=v_{0}+v_{1} \cdot i$ and $x=x_{0}+x_{1} \cdot i$ for $u_{0}, u_{1}, v_{0}, v_{1}, x_{0}, x_{1} \in \mathbb{F}_{p}$. Our goal is to compute x_{0} and x_{1} from $u_{0}, u_{1}, v_{0}, v_{1}$. Equating coefficients in

$$
\left(x_{0}+x_{1} \cdot i\right)^{2}=\frac{u_{0}+u_{1} \cdot i}{v_{0}+v_{1} \cdot i}
$$

yields two quadratic equations in x_{0}^{2} and x_{1}^{2} over \mathbb{F}_{p}, the solutions of which are

$$
\begin{equation*}
x_{0}^{2}=\frac{2 \alpha \pm 2 \sqrt{\alpha^{2}+\gamma^{2}}}{4 \beta} \quad \text { and } \quad x_{1}^{2}=\frac{-2 \alpha \pm 2 \sqrt{\alpha^{2}+\gamma^{2}}}{4 \beta} \tag{1}
\end{equation*}
$$

where $\alpha=u_{0} v_{0}+u_{1} v_{1}, \beta=v_{0}^{2}+v_{1}^{2}, \gamma=u_{1} v_{0}-u_{0} v_{1}$.
First, we compute $t=2\left(\alpha+\sqrt{\alpha^{2}+\gamma^{2}}\right)=2\left(\alpha+\left(\alpha^{2}+\gamma^{2}\right)^{2^{125}}\right)$. If $t=0$, then compute $t=2\left(\alpha-\left(\alpha^{2}+\gamma^{2}\right)^{2^{125}}\right)$. Up to the sign in front of $\sqrt{\alpha^{2}+\gamma^{2}}$ (which will be resolved in a moment), we now have $t=4 \beta x_{0}^{2}$.

Observe that $\pm x_{0} x_{1}=\gamma /(2 \beta)$. Following [4], we compute β^{-1} and recover x_{0} and x_{1} using one exponentiation as follows. We first compute $\pm r=\sqrt{1 /\left(t \cdot \beta^{3}\right)}=\left(t \cdot \beta^{3}\right)^{2^{125}-1}$, and then recover $\pm x_{0}=(r \cdot \beta \cdot t) / 2$ and $\pm x_{1}=r \cdot \beta \cdot \gamma$.

The sign ambiguities are resolved as follows. The sign in front of $\sqrt{\alpha^{2}+\gamma^{2}}$ is checked by computing $\beta \cdot\left(2 x_{0}\right)^{2}$ and comparing against t; if these are not equal then x_{0} and x_{1} are swapped. Set $x:=x_{0}+x_{1} \cdot i$ and if the sign of x does not match the 256 -th bit in the public key, compute $x=-x$. Finally, the sign of x_{1} is resolved by checking the curve equation: if $-x^{2}+y^{2} \neq 1+d x^{2} y^{2}$, then we take $x_{1}:=-x_{1}$ and reset $x:=x_{0}+x_{1} \cdot i$.

Summary. On top of a few multiplications, squarings and additions, decompression takes only two exponentiations in \mathbb{F}_{p} : one has exponent 2^{125} and the other has exponent $2^{125}-1$. This is highly convenient since the first case only requires an easy "squares-only" addition chain and the second case requires an addition chain that is already present in the addition chain for inversions.

