
Undangle: Early Detection of Dangling Pointers in Use-After-Free
and Double-Free Vulnerabilities

Juan Caballero, Gustavo Grieco, Mark Marron, Antonio Nappa
IMDEA Software Institute

Madrid, Spain
{juan.caballero, gustavo.grieco, mark.marron, antonio nappa}@imdea.org

Abstract
Use-after-free vulnerabilities are rapidly growing in pop-
ularity, especially for exploiting web browsers. Use-after-
free (and double-free) vulnerabilities are caused by a pro-
gram operating on a dangling pointer. In this work we pro-
pose early detection, a novel runtime approach for finding
and diagnosing use-after-free and double-free vulnerabil-
ities. While previous work focuses on the creation of the
vulnerability (i.e., the use of a dangling pointer), early
detection shifts the focus to the creation of the dangling
pointer(s) at the root of the vulnerability.

Early detection increases the effectiveness of testing by
identifying unsafe dangling pointers in executions where
they are created but not used. It also accelerates vulnera-
bility analysis and minimizes the risk of incomplete fixes,
by automatically collecting information about all dangling
pointers involved in the vulnerability. We implement our
early detection technique in a tool called Undangle. We
evaluate Undangle for vulnerability analysis on 8 real-
world vulnerabilities. The analysis uncovers that two sep-
arate vulnerabilities in Firefox had a common root cause
and that their patches did not completely fix the under-
lying bug. We also evaluate Undangle for testing on the
Firefox web browser identifying a potential vulnerability.

1 Introduction
A dangling pointer is created when the object a pointer
points-to is deallocated, leaving the pointer pointing to
dead memory, which may be later reallocated or overwrit-
ten. Dangling pointers critically impact program correct-
ness and security because they open the door to use-after-
free and double-free vulnerabilities, two important classes
of vulnerabilities where a program operates on memory
through a dangling pointer.

Use-after-free and double-free vulnerabilities are ex-
ploitable [14, 31] and are as dangerous as other, better
known, classes of vulnerabilities such as buffer and in-
teger overflows. Use-after-free vulnerabilities are partic-
ularly insidious: they have been used to launch a num-
ber of zero-day attacks, including the Aurora attack on
Google’s and Adobe’s corporate network [52], and an-
other 3 zero-day attacks on Internet Explorer within the
last year [10, 48, 53].

Our analysis of the publicly disclosed use-after-free and
double-free vulnerabilities in the CVE database [13] re-
veals two disturbing trends illustrated in Figure 1: (1)
the popularity of use-after-free vulnerabilities is rapidly
growing, with their number more than doubling every
year since 2008 (over the same period the total number
of vulnerabilities reported each year has actually been de-
creasing), and (2) use-after-free and double-free vulnera-
bilities abound in web browsers (69%) and operating sys-
tems (21%), which use complex data structures and are
written in languages requiring manual memory manage-
ment (e.g., C/C++).

Use-after-free and double-free vulnerabilities are diffi-
cult to identify and time-consuming to diagnose because
they involve two separate program events that may hap-
pen far apart in time: the creation of the dangling pointer
and its use (dereference or double-free). In addition, un-
derstanding the root cause may require reasoning about
multiple objects in memory. While some dangling point-
ers are created by forgetting to nullify the pointer used to
free an object (non-sharing bugs), others involve multi-
ple objects sharing an object that is deallocated (sharing
bugs).

Sharing bugs happen because not all parent objects
know about the child deallocation. They are particularly
problematic for web browsers, which are built from com-
ponents using different memory management methods.
For example, in Firefox, JavaScript objects are garbage-

1



Figure 1: Number of use-after-free (left) and double-free
(right) vulnerabilities reported in the CVE database in
the 2008-2011 period, split by vulnerabilities in browsers,
OSes, and other programs.

collected, XPCOM objects are reference-counted, and the
layout engine uses manual management. This mixture
makes it extremely difficult to reason about objects shared
between code using different memory management meth-
ods, which are particularly susceptible to dangling point-
ers bugs.

Previous work on tools for identifying and diagnosing
use-after-free and double-free vulnerabilities [11, 36, 47]
and on techniques to protect against their exploitation [15,
19, 29, 30, 46] focus on the use of the dangling pointer,
which creates the vulnerability. In this work, we propose
a novel dynamic analysis approach for analyzing and pro-
tecting against use-after-free and double-free vulnerabili-
ties. Our approach shifts the focus from the creation of the
vulnerability (i.e., the dangling pointer use) to the creation
of the dangling pointers at the root of the vulnerability.
We call our approach early detection because it identifies
dangling pointers when they are created, before they are
used by the program. Early detection is useful for differ-
ent applications that target use-after-free and double-free
vulnerabilities. In this work we evaluate early detection
for testing for unsafe dangling pointers and for vulnera-
bility analysis.

Testing for unsafe dangling pointers. A dangling
pointer is unsafe if it is used in at least one program path
and latent if the program never uses it. Use-after-free and
double-free vulnerabilities are difficult to detect during
testing because in a given execution the unsafe dangling
pointer may not be created or it may be created but not
used. Coverage can be increased using automated input
generation techniques [26, 33, 41]. However, if the input
space is large it can take long a time to find an input that
creates the dangling pointer and triggers the vulnerabil-

ity. Early detection extends the effectiveness of testing
by also detecting unsafe dangling pointers in executions
where they are created but not used. To identify at runtime
unsafe dangling pointers and minimize false positives, we
use the intuition that long-lived dangling pointers are typ-
ically unsafe. Moreover, long-lived dangling pointers are
always dangerous and should be removed, even if cur-
rently not used, because modifications to the code by the
(unaware) programmer may result in new code paths that
use the (dangling) pointer. To identify long-lived dangling
pointers, early detection tracks the created dangling point-
ers through time, flagging only those dangling pointers
that are still alive after a predefined window of time.

Vulnerability analysis. A common debugging task is,
given an input that causes a crash or exploitation, deter-
mining how to best patch the vulnerability, which requires
understanding the vulnerability type and its root cause.
Such crashing inputs are typically found using automatic
testing techniques [26, 33, 41] and are usually included in
vulnerability disclosures to program vendors. Our early
detection technique automatically determines if a crash is
caused by a use-after-free or double-free vulnerability and
collects diagnosis information about the program state at
both creation and use time. State-of-the-art memory de-
bugging tools [11, 36, 47] provide information about the
program state when the dangling pointer is used, but pro-
vide scant information about the dangling pointer creation
(limited to the deallocation that caused it, if at all). This
is problematic because a patch needs to completely elim-
inate the dangling pointer. If a patch only prevents the
dangling pointer use that causes the crash, it may be in-
complete since a dangling pointer may be used at different
program points and there may be multiple dangling point-
ers created in the same bug. Furthermore, current tools
offer little help when debugging sharing bugs, as these
bugs require reasoning about multiple objects that point
to the deallocated object at creation time. Our early de-
tection technique tracks all pointers that point-to a buffer,
automatically identifying all dangling pointers to the deal-
located buffer, not only the one that produces the crash.
Thus, it offers a complete picture about the type of dan-
gling pointer bug and its root cause.

We implement our early detection technique in a tool
called Undangle that works on binary programs and does
not require access to the program’s source code. How-
ever, if program symbols are available, the results are aug-
mented with the symbol information.

We evaluate Undangle for vulnerability analysis and
testing for unsafe dangling pointers. First, we use it to
diagnose 8 vulnerabilities in real-world programs includ-
ing four popular web browser families (IE7, IE8, Firefox,



Safari) and the Apache web server. Undangle produces
no false negatives and uncovers that two use-after-free
vulnerabilities in Firefox were caused by the same dan-
gling pointer bug. The reporter of the vulnerabilities and
the programmers that fixed them missed this, leaving the
patched versions vulnerable to variants of the attacks. We
identify this issue with no prior knowledge of the Firefox
code base, which shows the value of early detection for
diagnosing the root cause of the vulnerability.

Then, we test two recent Firefox versions for unsafe
dangling pointers. Early detection identifies 6 unique dan-
gling pointer bugs. One of them is potentially unsafe and
we have submitted it to the Mozilla bug tracker. Our dis-
closure has been accepted as a bug and is pending confir-
mation on whether it is exploitable. Two other bugs are
in a Windows library, so we cannot determine if they are
unsafe or latent. The other three bugs are likely latent but
our results show that the diagnosis information output by
Undangle makes it so easy to understand and fix them,
that they should be fixed anyway to close any potential
security issues.
This paper makes the following contributions:

• We propose early detection, a novel approach for
finding and diagnosing use-after-free and double-
free vulnerabilities. Early detection shifts the focus
from the creation of the vulnerability to the creation
of the dangling pointers at the root of the vulnerabil-
ity.

• We have designed an early detection technique that
identifies dangling pointers when they are created.
It uncovers unsafe dangling pointers in executions
where they are created but not used, increasing the
effectiveness of testing. When diagnosing a crash
caused by a dangling pointer, it collects extensive di-
agnosis information about the dangling pointer cre-
ation and its use, enabling efficient vulnerability
analysis.

• We have implemented our early detection technique
into a tool called Undangle that works directly on bi-
nary programs. We have evaluated Undangle for vul-
nerability analysis using 8 real-world vulnerabilities
and for testing on two recent versions of the Firefox
web browser.

2 Problem Overview
Dangling pointers are at the root of use-after-free and
double-free vulnerabilities. Both classes of errors involve
two events that may happen far apart in time: the creation

Figure 2: Dangling pointer lifetime.

of the dangling pointer and its use. We illustrate them
in Figure 2. First, the program creates one or more dan-
gling pointers by deallocating a memory object (Object 1
at tcreate). The dangling pointers live until they are de-
stroyed by modifying their value (set to NULL at tdestroy
in Figure 2) or deallocating the memory where they are
stored. If the program uses a dangling pointer before de-
stroying it (dereferenced or double-freed at tuse), it oper-
ates on unknown content since the memory pointed-to is
dead and may have been re-allocated to a different object
(Object 2 at tmemreuse).

A use-after-free vulnerability happens when the pro-
gram dereferences a dangling pointer. An attacker can ex-
ploit a use-after-free vulnerability for reading secret val-
ues, overwriting sensitive data, and for control-flow hi-
jacking. A common hijacking technique is to heap spray
malicious content to overwrite a function pointer or an ob-
ject’s virtual table address in the range pointed-to by the
dangling pointer [14]. A double-free vulnerability hap-
pens when the program passes a dangling pointer as a pa-
rameter to a deallocation, freeing the (already free) mem-
ory range it points-to. This may corrupt the internal heap
metadata enabling an attacker to exploit the program [31].

In the remainder of this section we detail early detec-
tion for identifying unsafe dangling pointers (Section 2.1)
and for vulnerability analysis (Section 2.2); provide use-
ful definitions (Section 2.3); and present an architectural
overview of Undangle (Section 2.4).

2.1 Identifying Unsafe Dangling Pointers
Determining that a dangling pointer is never used (i.e., it
is latent) requires a precise points-to and reachability anal-
ysis along all inter-procedural paths between creation and
destruction. Such detection on large programs like web
browsers is beyond state-of-the-art static analysis tools.
Instead, current runtime tools determine that a dangling
pointer is unsafe if it happens to be used in an execution.
This late detection prevents the identification of dangling
pointers that are created but not used in the monitored ex-
ecution.



To identify unsafe dangling pointers at runtime, even
if they are not used, we utilize the intuition that long-
lived dangling pointers are likely to be unsafe. Even
when only latent, they should be removed because later
modifications to the code may make them unsafe. On
the other hand, short-lived dangling pointers may have
been introduced during compilation, or left temporarily
dangling by the programmer. For example, a program-
mer should always nullify the pointer passed to a deal-
location after the deallocation returns (free(aptr);
aptr=NULL;). This correct behavior still produces
some transient dangling pointers because at the binary
level aptr is copied into the stack before calling the
deallocation function. Right after the deallocation returns,
there are at least two dangling pointers: the parameter in
the stack and aptr. However, both will be destroyed in
the next few instructions and thus, are not unsafe. The
programmer may also introduce transient dangling point-
ers. For example, when destroying a tree structure, a pro-
grammer may create a dangling pointer by deallocating a
child node before its parent node, but the dangling pointer
is soon destroyed when the parent node is deallocated.

Safety window. To determine when a dangling pointer
becomes unsafe, our early detection technique takes as
input the size of a safety window, given as a number of
instructions executed. The safety window size captures
when we believe a dangling pointer is no longer short-
lived and should be considered unsafe. When a dangling
pointer is created, a callback is set for the time of creation
plus the safety window size. If the dangling pointer is
still alive when the callback triggers, it is flagged as un-
safe. Dangling pointers used by the program are flagged
regardless if their callback has triggered. Time is mea-
sured independently for each thread using a per-thread in-
struction counter. This way, if a thread creates a dangling
pointer and goes to sleep, time freezes for that thread.

The size of the safety window varies depending on the
application. For testing, we set the safety window to a
small positive value to allow the program to destroy short-
lived dangling pointers. We evaluate safety window size
selection for testing in Section 4.3, selecting a size of
5,000 instructions.

Coverage. To find unsafe dangling pointers many pro-
gram paths need to be explored. Our early detection tech-
nique requires an external tool to produce inputs that tra-
verse different paths in the program. We run the program
on the inputs produced by the input generation tool, and
apply early detection to each execution. Currently, we
use the bf3 (Browser Fuzzer 3) [1] tool to generate in-
puts, but many other tools exist that could be used in-
stead [24, 26, 33, 41].

Output information. When a dangling pointer is used or
becomes unsafe, early detection outputs detailed informa-
tion on the program state when the dangling pointer was
created and when the dangling pointer was used or be-
came unsafe. This diagnosis information includes: if the
dangling pointer was used or flagged as unsafe; if used,
the vulnerability type (use-after-free or double-free); a
description of the deallocated buffer (e.g., address, size,
callsite); which thread deallocated the object and which
thread used it; the program callstack; the list of dangling
pointers alive; and information about the buffers storing
the dangling pointers. We detail the output information in
Section 3.3.

2.2 Vulnerability Analysis
While not as general as existing memory debugging
tools that detect a wider range of errors [11, 12, 36, 47],
Undangle can be used as a specialized diagnosis tool
for use-after-free and double-free vulnerabilities Undan-
gle detects all dangling pointer uses, similar to Electric
Fence [47] and PageHeap [12], which use a new page for
each allocation and rely on page protection mechanisms to
detect dangling pointer uses. This is better than popular
memory debugging tools such as Valgrind [11] and Pu-
rify [36], which check if a dereferenced pointer points-to
live memory, missing dangling pointers that, when deref-
erenced, point to an object that has reused the memory
range (tuse ≥ tmemreuse in Figure 2).

The main advantage of using Undangle for vulnerabil-
ity analysis is that if the crash/exploit is due to a use-after-
free or double-free vulnerability, Undangle automatically
collects more information about the root cause of the vul-
nerability than any existing tool. Detailed diagnosis in-
formation can be collected because Undangle detects the
dangling pointers at creation and tracks them until they
are used. Detailed diagnosis information accelerates vul-
nerability analysis and minimizes the risk of incomplete
fixes [35]. To use Undangle for vulnerability analysis we
configure it with an infinite safety window size, so that
dangling pointers are only flagged when they are used by
the program. Undangle offers the following benefits for
vulnerability analysis:

• It automatically identifies the dangling pointer cre-
ation and outputs detailed information (described in
the previous section) about the program state at that
time. In comparison, current tools will at most flag
which deallocation created the dangling pointer used
in the vulnerability (if at all). The analyst still needs
to rerun the program in a debugger to obtain in-
formation about the program state at creation time,



Figure 3: Classes of dangling pointer bugs. The dashed
object is deallocated creating the dangling pointers.

which may differ in another execution due to non-
determinism in the program (particularly wrt. mem-
ory allocator behavior).

• It automatically identifies not only the dangling
pointer that causes the crash, but also all other dan-
gling pointers that point-to the deallocated buffer at
creation time, as well as the memory objects where
they are stored. This is fundamental to reason about
sharing bugs, where multiple parent objects hold
pointers to the deallocated child object. Sharing bugs
are most complex to understand and their fix is not
as simple as nullifying the offending pointer, since
all parents need to have a way of determining if the
child was deallocated. Identifying all dangling point-
ers created by deallocating a buffer is also fundamen-
tal to minimize the risk that a patch is incomplete,
since those dangling pointers be also be unsafe.

2.3 Definitions
We define a pointer to be a pair comprising: its store ad-
dress, i.e., the lowest memory address where the pointer is
stored, and its points-to address, i.e., the pointer’s value.
A dangling pointer is a special type of pointer. A pointer
becomes a dangling pointer when the object it points-to is
deallocated, leaving the pointer pointing to dead memory.
In this work, we focus on temporal errors rather than spa-
tial ones. Thus, pointers that point outside their expected
memory buffer (e.g., due to incorrect pointer arithmetic
or a buffer overflow) are not considered to be dangling
pointers, even if they end up pointing to dead memory.

Store address. A dangling pointer is always stored in live
(allocated) memory or in a register. It may be stored any-
where in live memory: in live heap, in the current stack,
in memory-mapped files (e.g., loaded using mmap), or
in the data segment of any of the modules loaded in the
program’s address space. If the memory range contain-
ing its store address is deallocated (i.e., freed, unmapped,
popped out of the stack), the dangling pointer is destroyed.

Figure 4: Architecture Overview. Gray boxes were previ-
ously available.

Points-to address. By definition, a dangling pointer
points-to deallocated memory at creation. Later in its life-
time, it may point to a different object that resuses the
memory vacated by the object the dangling pointer was
meant to point-to. Although, strictly speaking, at this time
the pointer is no longer “dangling”, we consider it a dan-
gling pointer until it is destroyed. In addition, any pointer
derived from a dangling pointer, e.g., by copying the dan-
gling pointer or using pointer arithmetic on the dangling
pointer, is also a dangling pointer. Dangling pointers can
point to any memory region that can be deallocated, (i.e.,
heap, stack, mapped files). The large majority of use-
after-free and all double-free vulnerabilities in the CVE
database are caused by dangling pointers created by free-
ing heap memory. However, we found (and include in our
evaluation) a use-after-free vulnerability in Apache where
the dangling pointers are created by unmapping a library
from the program’s address space. Although possible, we
have not found any vulnerabilities in the CVE database
where a dangling pointer pointed to dead stack.

Dangling pointer bugs. We call a deallocation that
creates at least one unsafe dangling pointer a dangling
pointer bug. We differentiate between two classes of dan-
gling pointer bugs, depicted in Figure 3. In the non-
sharing bug (left subfigure) the same object contains the
pointer used to deallocate the object (freer) and the un-
safe dangling pointer (user). In the sharing bug (right
subfigure) these two pointers are stored in different ob-
jects. A key difference is that a sharing bug indicates
some lack of coordination: the object left with an unsafe
dangling pointer does not know that the deallocation hap-
pened. Since coordination may be required from object
types that may be spread across multiple method invo-
cations and program modules, sharing bugs are typically
harder to identify and fix than non-sharing ones. Among
the real-world vulnerabilities we analyze in Section 4.1,
we observed sharing and non-sharing bugs to be equally
likely.



2.4 Architecture Overview
Early detection works on an execution of a program. It
can be run online in parallel with the program execution
or offline on a trace of the execution. Our Undangle tool
works offline.

Figure 4 shows the architectural overview of Undan-
gle. First, the program is executed on the given input in-
side a previously available execution monitor. The execu-
tion monitor is a plugin for the TEMU dynamic analysis
platform [2], which is implemented on top of the QEMU
open-source whole-system emulator [3]. The execution
monitor runs any PE/ELF program binary on an unmod-
ified guest operating system (x86 Windows or Linux) in-
side another host operating system (Linux on x86).

The execution monitor tracks the program execution
and produces an execution trace, containing all exe-
cuted instructions and the contents of each instruction’s
operands. In addition, it produces an allocation log with
information about the allocation/deallocation operations
(heap and memory-mapped files) invoked by the program
during the run. For this, the execution monitor supports
close to a hundred standard memory functions. We as-
sume that the programmer provides information on any
custom memory functions used by the program.

The execution trace and the allocation log are inputs to
the early detection technique, which comprises three mod-
ules. The core of early detection is the dangling detection
module, which detects the creation of dangling pointers,
tracks their propagation until their safety window expires,
monitors for dangling pointer uses, and outputs the infor-
mation about the dangling pointer creation and the detec-
tion/use. To track the dangling pointers it leverages the
pointer tracking module, whose goal is to output at any
point during an execution where pointers are stored as
well as their values. In turn, the pointer tracking module
leverages a generic taint tracking module extended with
a reverse map to identify which program locations have
been derived from the same taint label. All three modules
have been developed for this work. In addition, early de-
tection leverages a previously available callstack tracking
module [21].

We have also developed a symbol reader, which takes
as input the program symbols (if available) and merges the
symbol information into the output of the dangling detec-
tion module. Symbol information significantly improves
the diagnosis of dangling pointer bugs by providing de-
tailed callstack information, mappings from binary code
to lines in the source code, and type information.

Implementation. We have implemented early detection
in approximately 4,000 lines of Objective Caml code. The
symbol reader module comprises an additional 1,000 lines

of Objective Caml code and 1,000 lines of scripts. The
execution monitor and the callstack tracking module were
previously available.

3 Early Detection

This section details our early detection technique, which
tracks dangling pointers until they are used, become un-
safe, or are destroyed. Our technique is implemented as a
stack of 3 modules, which we describe bottom-up in this
section. First we briefly introduce the taint tracker mod-
ule in Section 3.1, then we describe the pointer tracking
module in Section 3.2, and finally the dangling detection
module in Section 3.3.

3.1 Taint Tracking

Taint tracking [27, 28, 45, 50] is a widely used technique
and we assume the reader is familiar with the basic con-
cept. However, our taint tracking module includes an im-
portant addition. Previous taint tracking techniques are
based on a forward map from program locations (i.e.,
bytes or words in memory and registers) to the set of taint
labels assigned to the location1. Our taint tracking mod-
ule implements an additional reverse map that associates
a taint label with the set of all program locations that have
that taint label in their taint set. The reverse map is up-
dated simultaneously with the forward map to maintain
synchronization. It enables fast lookup of all program
state derived from some taint label, avoiding a scan of
the forward map in exchange for some small processing
during propagation. In early detection, the reverse map is
used to quickly identify all dangling pointers pointing to
a memory buffer when it is deallocated.

Our taint tracking module has been designed so that it
can be used to implement different flavors of taint track-
ing. The generality is achieved by making the taint track-
ing module a polymorphic virtual class. Each applica-
tion can instantiate it with their own taint label type, their
own propagate method (implementing the taint prop-
agation rules), and their own taint sources and sinks. The
taint tracking module simply provides methods to oper-
ate on the forward and reverse maps. In early detection
all properties of the taint tracking module are set by the
pointer tracking module.

1In early approaches, the taint label was one bit and only one label
was kept per location, but currently this varies with the application.



Figure 5: Lattice
of pointer types.

type taint_label = {
type : Ptr | Dangling
root-type: HeapRoot |

StackRoot |
[...] |
Pseudo-root

root-addr : int64;
icounter : int64;
offset : int;

}

Figure 6: Pointer taint label.

3.2 Pointer Tracking

The pointer tracking module tracks throughout the exe-
cution where the pointers are stored and their values. It
monitors how new pointers are derived by copying an ex-
isting pointer and by computing a new pointer from an ex-
isting one using pointer arithmetic. It also identifies root
pointers that are not derived from any other pointers.

Comparison with prior work. Our pointer tracking
module can be seen as a specialized type inference mod-
ule with the simple type lattice in Figure 5. The reason we
could not use more general type inference modules such
as Rewards [40] and TIE [39] was that we need to be able
to identify the (dangling) pointers at any point in the ex-
ecution, e.g., to check in each instruction if a dangling
pointer is being used. This requires a forward technique
that identifies pointers as the execution progresses. With
TIE we would have to solve a constraint system at each
instruction (too expensive), and with Rewards we could
miss pointers that have not yet been dereferenced. Our
pointer tracking module uses a forward pointer inference
technique based on taint tracking.

Overview. The pointer tracking module uses the taint in-
formation to mark which program locations store pointers.
In addition, it tracks the current pointer value in a separate
value map. At each instruction the pointer tracker checks
if new root pointers, not derived from other pointers,
are introduced and whether the instruction creates new
pointers by copying or using pointer arithmetic. When
a root pointer is found, the locations where the pointer
is stored are tainted using the label shown in Figure 6,
where the root-type and root-addr fields repre-
sent the kind and value of the root pointer respectively,
the icounter field describes the instruction counter in
the execution trace where the root was introduced, and the
offset field captures the offset of this byte in the pointer
(e.g., 0 for the least significant byte of a pointer and 3
for the most significant byte of a 32-bit pointer). When

new pointers are derived, the taint (pointer) information
from the source operands is propagated to the destina-
tion operands2. Since the taint label stores a root pointer
value, at any point the reverse map can be used to iden-
tify all pointers derived from a root pointer. To minimize
memory use, locations that no longer hold pointers are re-
moved from the forward map (i.e., untainted) rather than
setting their type to top.

Root pointers. Each memory buffer has an associated
set of root pointers (often only one) from which all point-
ers to the buffer are derived. For a heap buffer, its root
pointer is stored in the return value of the heap allocation
function. The location of the return value (often the EAX
register) is stored in the allocation log produced by the
execution monitor. For the parameters and local variables
in a function’s stack frame, the root pointer is the stack
pointer (stored in the ESP register) at the function’s entry
point. To identify function entry points we use a callstack
tracking module developed in prior work [21]. For stat-
ically allocated buffers, root pointers are global pointers,
which we identify using debugging symbols and reloca-
tion tables, if available3.

To identify global pointers when no symbol informa-
tion or relocation tables are available, at each instruc-
tion the pointer tracking module identifies pointers being
dereferenced. If a pointer being dereferenced is not yet
tainted, it means that no root pointer is known for it, so
the pointer tracker taints it setting the root type to pseudo-
root and the root address to its current value.

Value tracking. The taint information marks which pro-
gram locations store pointers, but it does not capture the
current pointer value, which the tracker may need to out-
put at any execution point. In an online setting, the pointer
value can be simply obtained by reading the memory that
stores the pointer. However, when operating on execution
traces this value needs to be tracked and two challenges
need to be addressed: our traces only contain the value
of the instruction’s operands before the instruction is ex-
ecuted and they only contain user-level instructions. To
address the first issue, the pointer tracking module emu-
lates the small set of x86 instructions used to derive new
pointers (Table 1) to obtain the value of the destination
operands after the instruction has executed. This emula-
tion also identifies underflow and overflow in addition and
subtraction, needed by some propagation rules (explained
next).

2Instructions like xchg (exchange) have multiple destination
operands

3PE executables (EXE files) running on a 32-bit Windows OS do not
need relocation tables. They are the first module loaded into the virtual
address space and are loaded at their preferred address.



Table 1: The x86 instructions that propagate pointers,
their abstraction, and the associated propagation rules.

Instructions Abstraction Rules
mov, movs, dst← src move
push, pop

xchg t← src; src← dst; dst← t exchange
add dst← src1 + src2 add, default
inc srcdst← srcdst + 1 nop, default
sub dst← src1 − src2 sub, default
dec srcdst← srcdst− 1 nop, default
lea dst← (disp + index) + base add, default

nop*4 - nop
All other dst← > default

The lack of kernel instructions means that a register or
memory range, that when passed to the kernel contains a
pointer, may no longer contain a pointer when the kernel
returns execution to user-level. To address the second is-
sue, when a user-level instruction reads a tainted operand,
the tracker compares the value of the operand in the trace
with the tracked pointer value. If they are not equal, the
operand’s taint is cleared to indicate that the value has
changed unexpectedly and it is unlikely that it still holds a
pointer. This is a conservative approach because the value
returned by the kernel could be different but still a pointer.
In those cases, if the returned pointer is dereferenced later
in the execution the tracker will mark it as a pointer again.

Pointer propagation rules. At each instruction in the
execution, pointer propagation rules are applied to iden-
tify new pointers being created by copying existing point-
ers or as a result of pointer arithmetic. Table 1 describes
the mapping between x86 instructions that could produce
a new pointer and the specific pointer propagation rules
that the instruction may trigger. There are five classes of
rules. The move rule which copies (parts of) a pointer; the
exchange rule; the pointer arithmetic rules add,sub;
the nop rule, which leaves the taint information as it is;
and the default rule, which removes any pointers in the
operands written by the instruction.

A fundamental difference between the move rule and
the arithmetic rules is that pointer arithmetic has to be per-
formed using the complete pointer, while a program can
move or copy pointers completely or in chunks. For exam-
ple, a program could copy a 32-bit pointer byte-a-byte us-
ing four instructions that write to consecutive memory lo-
cations and the 4 destination bytes would still represent a
pointer. Such unaligned copies happen often in functions
that copy memory, e.g., memcpy. Thus, the move prop-

4nop* represents instructions of different lengths that a compiler can
use as no-operation instructions, as well as some instructions whose only
side-effect is setting the eflags register, such as or %eax,%eax.

agation rule operates on program locations (i.e., bytes),
while the arithmetic propagation rules operate on instruc-
tion operands.

Arithmetic instructions need two propagation rules to
differentiate between valid and invalid pointer arithmetic.
We consider only two valid pointer arithmetic operations
that return a new pointer: adding an offset to a pointer
without overflow, and subtracting an offset from a pointer
without underflow. All other arithmetic operations on a
pointer (e.g., adding two pointers or subtracting two point-
ers) are invalid and do not return a pointer. Invalid pointer
arithmetic operations trigger the default rule.

3.3 Dangling Detection

The dangling detection module is responsible for iden-
tifying the creation of dangling pointers, detecting dan-
gling pointers when the safety window elapses, detecting
any use of a dangling pointer that may happen before the
safety window elapses, and outputting diagnosis informa-
tion for the detected dangling pointers.

Dangling pointers may be created and destroyed every
time memory is deallocated. The dangling pointer mod-
ule uses the allocation log, output by the execution mon-
itor, to identify when heap memory is freed and files are
unmapped, and the callstack tracker to identify when a
stack deallocation happens (i.e., the stack pointer is incre-
mented). For each deallocation, the dangling detection
module first destroys any pointers stored in the deallo-
cated memory. Then, for each heap deallocation and file
unmapping it detects dangling pointers to the deallocated
buffer. For efficiency, it does not detect dangling pointers
to deallocated stack by default, since we did not find such
vulnerabilities in the CVE database.

Dangling pointers are identified by querying the reverse
map to obtain the list of all pointers in the program’s state
derived from the root pointers for the buffer. If the list is
not empty it sets the type of those pointers to dangling.
Then, it sets a detection callback for the current times-
tamp plus the size of the safety window, and stores the list
of dangling pointers created, the buffer information, and
the current callstack. For vulnerability analysis, the safety
window size is set to infinite, and for testing it defaults to
5,000 instructions. We evaluate safety window size selec-
tion for testing in Section 4.3.

The pointer tracking module tracks dangling pointers
between creation and detection the same way as non-
dangling pointers. At each instruction, the dangling de-
tection module checks if any detection callback has ex-
pired. If so, it uses the reverse map to obtain the list of
dangling pointers that are still alive. Most dangling point-



ers are short-lived and will be destroyed by the time the
safety window expires. If any dangling pointer is still
alive they are flagged and diagnosis information is output.
Note that new dangling pointers introduced between cre-
ation and detection are also detected because the pointer
tracking module considers any pointer derived from a dan-
gling pointer to be also a dangling pointer.

Dangling pointers in memory metadata. The meta-
data used by memory management functions may include
lookaside data structures that store pointers to deallocated
buffers for fast reuse. If the lookaside structures are stored
in live memory then the pointers they store may be flagged
as dangling pointers. To avoid this, the dangling detec-
tion module deactivates pointer propagation inside mem-
ory management functions. We assume the allocation log
contains all memory allocation/deallocation invocations
by the program including custom allocators.

Dangling pointer uses. It could happen that the safety
window size is set too large and a dangling pointer is
used before detection. To avoid missing those dangling
pointers, the dangling detection module checks if the cur-
rent instruction dereferences or double-frees a dangling
pointer. For this, it queries the pointer tracking module to
determine if any memory addressing operand used by the
instruction stores a dangling pointer. If the instruction is
the entry point of a deallocation function, it also checks if
the address parameter is a dangling pointer. Any dangling
pointer used is flagged.

Contextual information. For each dangling pointer used
or flagged as unsafe, the following diagnosis information
is output to assist in the analysis: (1) whether it is a use or
an expiration of the safety window; (2) if a use, whether
it is a use-after-free or double-free vulnerability; (3) a
description of the deallocated buffer (e.g., address, size,
callsite, deallocation timestamp); (4) the identifier for the
thread that created the dangling pointers (i.e., invoked the
deallocation) and if used, for the thread that used the dan-
gling pointer; (5) the callstack at creation time and if used,
at use time; (6) the list of dangling pointers created by this
deallocation; (7) the list of dangling pointers created by
this deallocation and still alive at detection/use; and (8)
the memory region containing each dangling pointer in
the previous two items (register, heap buffer, stack frame,
module). If program symbols are available, they are used
to enhance the callstack and to obtain type information
for the heap objects. For the latter, the object alloca-
tion/deallocation site is mapped to a source file and line
number and the allocation type at that line in the source
code is obtained.

Table 2: Vulnerabilities used in the evaluation.
Name Program Vuln. CVE Type
apache Apache 2.2.14 mod isapi 2010-0425 uaf-m
aurora Internet Explorer 7.0.5 2010-0249 uaf-h
firefox1 Firefox 3.6.16 2011-0065 uaf-h
firefox2 Firefox 3.6.16 2011-0070 dfree
firefox3 Firefox 3.5.1 2011-0073 uaf-h
ie8 Internet Explorer 8.0.6 2011-1260 uaf-h
safari Safari 4.0.5 2010-1939 uaf-h

ie7-uf Internet Explorer 7.0.5 2010-3962 uf

4 Evaluation
In this section we evaluate our early detection approach.
The evaluation comprises two parts. First, we evaluate
Undangle for vulnerability analysis. We apply Undangle
to diagnose 8 vulnerabilities (Section 4.1) and detail two
of those vulnerabilities in a case study (Section 4.2). The
vulnerability diagnosis results show that Undangle pro-
duces no false negatives and that it enables us to under-
stand the common root cause of two use-after-free vulner-
abilities in Firefox, which was missed by the reporter of
the vulnerabilities and the programmers that fixed them,
leaving the program vulnerable to variants of the reported
attacks.

Then, we evaluate Undangle for testing on two recent
versions of Firefox (Section 4.3). Undangle flags 6 unique
dangling pointer bugs: one which we believe is unsafe,
two in Windows libraries where we cannot determine if
they are unsafe or latent, and three that we believe are
only latent. The results show that the false positive rate
is low and that the output diagnosis information makes it
easy to understand and fix the bugs.

Vulnerabilities. Table 2 shows the 8 vulnerabilities we
use to evaluate Undangle for vulnerability analysis. These
8 vulnerabilities were selected because all of them have an
exploit available in public databases5 [4]. One of them,
the aurora vulnerability, was exploited in a high profile
attack on Google’s and Adobe’s corporate network [52].
Seven of the vulnerabilities are in popular web browsers.
The remaining one is in the mod isapi module of the
Apache web server. All vulnerable programs are run in-
side a Windows XP Service Pack 3 guest OS.

The last column in Table 2 shows the vulnerability type.
Six of them are use-after-free vulnerabilities and one is a
double free. The final one is an underflow that was incor-
rectly flagged as a use-after-free; we use it to demonstrate
how Undangle can verify doubtful disclosures. In 5 of
the 6 use-after-free vulnerabilities, the dangling pointers

5Vulnerabilities privately reported through bounty programs [34] are
assigned a CVE identifier but typically have no public exploit.



Table 3: Vulnerability analysis results.
Name Num Threads τuse Dangling Dangling Heap Class Trace Time

uses (inv./exist) (creation) (use) objects size (sec)
apache 1 1 / 3 767,014 10 (5/4/1/0) 3 (2/0/1/0) 2 / 1 NS 96.8 MB 39
aurora 1 1 / 11 6,938,180 7 (2/4/0/1) 1 (1/0/0/0) 2 / 1 S 1.0 GB 438
firefox1 1 1 / 9 987,707 4 (2/2/0/0) 1 (1/0/0/0) 2 / 1 S 2.0 GB 1,072
firefox2 1 1 / 10 5,364 2 (1/1/0/0) 1 (1/0/0/0) 1 / 1 NS 3.3 GB 1,918
firefox3 1 1 / 7 11,000 5 (2/3/0/0) 1 (1/0/0/0) 2 / 1 S 2.4 GB 1,982
ie8 3 1 / 10 1,984,815 10 (2/7/0/1) 1 (1/0/0/0) 2 / 1 O 0.4 GB 165
safari 1 1 / 6 121,284 8 (3/4/0/1) 3 (2/1/0/0) 2 / 1 NS 0.6 GB 260

are data pointers that are created by freeing heap mem-
ory (uaf-h). The Apache vulnerability is different in
that the dangling pointers are created by the mod isapi
module unloading a library that it had previously mapped
into memory (uaf-m). In this vulnerability, the dangling
pointers are function pointers used to call functions in the
external library once it has been unloaded. The first 7
vulnerabilities illustrate the fact that most vulnerabilities
due to dangling pointers are use-after-free vulnerabilities
caused by freeing heap memory, but other types exist as
well.

4.1 Vulnerability Analysis Results
Table 3 summarizes the results of applying early detec-
tion to diagnose the first 7 vulnerabilities in Table 2. For
each vulnerability we collected an execution trace of the
vulnerable program running on the publicly available ex-
ploit. Then, we ran Undangle on the execution trace with
an infinite safety window size and analyzed the output in-
formation.

The first column shows the number of dangling pointer
uses the tool flags. In six of the vulnerabilities there is
only one dangling pointer use, which corresponds to the
one that causes the vulnerability and makes the program
behave incorrectly and in most cases crash (only the fire-
fox2 double free does not crash). In the ie8 vulnerabil-
ity the program dereferences the same dangling pointer 3
times, with only the last dereference making the program
crash. These results show that early detection correctly
detects all 7 vulnerabilities with zero false negatives.

Early detection provides information about the number
of threads involved in the vulnerability and the total num-
ber of threads in the trace. The Threads column shows
that although all programs are multi-threaded (from 3 to
11 threads in the trace), only one thread is involved in
the vulnerability, meaning that the same thread creates the
dangling pointers by calling the deallocation function and
dereferences or double frees the dangling pointer. This is
expected since non-deterministic bugs involving multiple

threads are difficult to replicate and exploit and we se-
lected vulnerabilities that had publicly available exploits.

The τuse column shows the number of instructions ex-
ecuted by the program between the time the dangling
pointer was created and the time when it was first used.
This value is a property of the vulnerability and varies
from 5,000 instructions in the double free vulnerability
up to almost 7 million in the aurora vulnerability. This il-
lustrates that vulnerabilities may happen much later than
the creation of the dangling pointers (the root cause of the
vulnerability) and thus the importance of early detection
for vulnerability analysis because it obtains information
about the creation of the dangling pointers in addition to
their use. Note that exploits tend to be optimized to trigger
the vulnerability as quickly as possible; for other inputs
τuse could be even larger.

The two Dangling columns show respectively the num-
ber of dangling pointers at creation, and when the vulner-
ability (use) happens. The total number of dangling point-
ers is also split by the region where the dangling pointers
are stored (Heap / Stack / Data / Register). The creation
column shows that the deallocation produces from 2 up
to 10 dangling pointers of which 54% are stored in the
stack, 37% in the heap, 6% in registers, and 2% in data
regions. The use column shows that most dangling point-
ers are short-lived and have been destroyed by the time
the program uses one of them. In 5 out of 7 vulnera-
bilities a unique dangling pointer exists at use time, the
exception being the apache and safari vulnerabilities each
with 3 dangling pointers at use time. It also shows that
dangling pointers stored in the stack and registers are spe-
cially short-lived; at use time all but one dangling pointers
are stored in the heap.

The Heap Objects column focuses on the (longer-lived)
dangling pointers stored in the heap, showing the number
of heap objects holding the dangling pointers stored in the
heap (creation/use). Note that the same heap object may
contain more than one dangling pointer, e.g., in the apache
and safari vulnerabilities. Next, we determine which of



the dangling pointers stored in the heap at creation was
used to deallocate the object and which was used to pro-
duce the vulnerability. Based on which heap objects hold
these two dangling pointers we classify the vulnerabilities
as being caused by: a non-sharing (NS) dangling pointer
bug if both dangling pointers are stored in the same ob-
ject, a sharing (S) bug if they are stored in different ob-
jects, and other (O) if any of those two dangling pointers
is not stored in the heap or copied from one in the heap.
Among these 7 vulnerabilities, the non-sharing and shar-
ing classes of dangling pointer bugs are equally likely.

Performance evaluation. The next two columns in Ta-
ble 3 show the performance evaluation including the size
of the execution traces and the time it took to run the tool
on each trace. The results show that Undangle takes from
less than a minute to at most 33 minutes to run. Over-
all, automating the diagnosis using Undangle saves sig-
nificant effort compared to an analyst’s manual work.

Checking vulnerability reports. We also run Undangle
on the last vulnerability in Table 2, which is incorrectly
reported in the CVE database as: ”Use-after-free vulner-
ability in Microsoft Internet Explorer 6, 7, and 8” [8].
However, the report by Microsoft states that it is caused
by an underflow that allows to overwrite a virtual table
pointer [9]. Undangle did not report any dangling pointer
dereferences, confirming that it is not a use-after-free vul-
nerability.

4.2 Vulnerability Analysis Case Study

In this section we demonstrate the importance of using
early detection to diagnose vulnerabilities caused by dan-
gling pointers. In particular, we show that the same under-
lying dangling pointer bug causes the firefox1 and fire-
fox3 vulnerabilities. The Firefox developers did not un-
derstand this [5,6] and provided incomplete fixes for both
vulnerabilities, so that the patched version of Firefox was
still vulnerable to other versions of the same bug.

Figure 7 shows the relevant heap state at creation for the
firefox1 vulnerability. All information in the figure has
been automatically extracted using our tools. The solid
ovals are the heap objects storing the dangling pointers,
and the dashed oval is the object that has just been deal-
located. Each object contains its address, size, and type.
The type and line information (shown on top of the ob-
jects) is obtained by the symbol reader from the publicly
available symbols. Each dangling pointer (edge) is la-
beled with its store address and the name of the field stor-
ing it. The figure also shows which pointer was used to
deallocate the object (freer) and which pointer was deref-
erenced (user).

Figure 7: Relevant heap state at creation for the firefox1
vulnerability (Firefox 3.6.16).

Figure 8: Relevant heap state at creation for the firefox3
vulnerability (Firefox 3.5.1).

Figure 8 shows the same state for the firefox3 vul-
nerability. The similarities between both figures are
striking. In both bugs a nsXPC WrappedJS object
shares ownership of a nsXPTCStubBase object with a
third object. The nsXPCWrappedJS object is reference
counted. When nsXPCiWrappedJS.Release is in-
voked, if the reference count hits zero, the function first
frees nsXPTC StubBase creating two dangling point-
ers, and then immediately frees nsXPCWrappedJS,
destroying the dangling pointer it stores. The other
dangling pointer remains and will be eventually deref-
erenced. The line number information over the
nsXPTCStubBase object indicates that the call to
nsXPCWrappedJS.Release is at the same program
point on both bugs (the difference in line numbers is due
to different Firefox versions).

This indicated that we were looking at two instances of
the same bug. We verified this by looking at the relevant
lines of code. Both bugs happen because when invoking
from JavaScript code a method exported through the
XPCOM interface [7], the JavaScript parameters to the
method are first converted by the XPCOM interface to na-
tive objects (the nsXPCWrappedJS and nsXPTCStub



Table 4: Safety window size selection results.
Window Num Num Stack Sharing

size Dang. bugs hash bugs
500 1006 637 114 12

5,000 421 352 63 12
50,000 344 281 55 12

500,000 234 222 50 12
5,000,000 191 182 41 10

Base objects). Then, the method is invoked on the
native objects and on return the native objects are freed.
However, if the JavaScript method stores a reference to
the parameter, that reference becomes dangling on return
of the method. The reporter of both vulnerabilities found
two such methods exported through the XPCOM in-
terface: nsIChannelEventSink.onChannel
Redirect which sets the mChannel pointer
to the new channel passed as a parameter, and
nsTreeSelection.SetTree which sets the
mTree pointer to the tree passed as parameter.
Unfortunately, other such methods exist including
OnChannelRedirect in nsXMLHttpRequest.

The Firefox developers fixed the two vulnerabilities
by preventing the use of the exported interfaces by the
attacker. However, because other such interfaces and
methods exist, the fix is not complete and the same bug
could be exploited on the patched version using a differ-
ent method. This illustrates that a dangling pointer bug
can be the root cause of multiple vulnerabilities. If the
developers had used Undangle they could have identified
the common root cause of these two vulnerabilities: the
nsXPTCStubBase object is not reference counted and
thus there is no way for other objects to know when it no
longer exists. Fixing that root cause would have protected
the users against the whole family of vulnerabilities the
bug introduced. Fortunately, newer versions of Firefox
(e.g., Firefox 6.0.2) have completely rewritten this part of
the code, closing this hole.

4.3 Testing Results

Our testing evaluation is split in three parts. First, we eval-
uate the selection of the safety window size using a trace
of Firefox 6.0.2. Then, we manually analyze the long-
lived dangling pointers that Undangle finds in that trace.
Finally, we use an external fuzzing tool to generate 30 in-
puts on which we run Firefox 10.0 and apply Undangle to
the resulting traces.

Safety window size selection. To select an appropriate
safety window size for testing, we take an execution trace
of Firefox 6.0.2 and evaluate the size of the safety window

that minimizes alarms due to short-lived dangling point-
ers. Table 4 shows the early detection results using 5 dif-
ferent safety window sizes. The first column shows the
number of dangling pointers detected and the second col-
umn the (smaller) number of dangling pointer bugs since
one bug may create multiple dangling pointers. The third
column shows the results of applying the fuzzy stack hash
proposed by Molnar et al. [42] to group together instances
of the same bug. The results show that the largest decrease
in alarms, without excluding any sharing bugs, happens
when increasing the size from 500 to 5,000 instructions.
As any size less than 5,364 instructions is sufficient to de-
tect all vulnerabilities in Table 3 before they happen, we
select 5,000 as the safety window size.

Bug analysis. We manually evaluate whether the alarms
in the Firefox 6.0.2 trace, with the selected safety window
size of 5,000, are true positives or false positives. For
this we limit the analysis to the sharing bugs because they
are the most difficult to identify with existing approaches.
There are 12 sharing bugs with a 5,000 instruction win-
dow. Out of these 12, our manual analysis identifies that 4
are unique bugs and the other 8 are duplicates, which the
fuzzy stack hash failed to identify6.

All four unique bugs truly correspond to long-lived
dangling pointers. We manually analyze Firefox’s source
code to determine if those long-lived dangling pointers
are unsafe or only latent. In 3 of those 4 we believe that
the dangling pointers are only latent and will not be later
dereferenced by the program (i.e., they are protected by
a reference count that has hit zero). However, the safer
solution would be to proactively fix them, eliminating the
possibility of later code changes turning them into unsafe
dangling pointers. For the last bug, we believe it is unsafe
because there exist other paths that could use the dangling
pointer. We have reported it to Mozilla. Our disclosure
has been accepted as a bug and is currently under evalua-
tion to determine if it can be exploited – highlighting the
difficulty of determining if a dangling pointer will ever be
used in a complex code base.

Combining Undangle with a fuzzing tool. To achieve
coverage, Undangle needs to be run in combination with
an external input generation tool. In this experiment, we
use the Bf3 (Browser Fuzzer 3) tool to generate 30 in-
puts (10 using the JavaScript fuzzing mode, another 10
using the DOM fuzzing mode, and the rest using the XML
fuzzing mode). We run Firefox 10.0 (the latest version of
Firefox at the time) on these inputs and evaluate the re-
sults of running Undangle on the resulting traces. The
results in Table 5 show that after bucketing with the fuzzy

6The fuzzy stack hash is a heuristic, experimentally shown to group
many instances (but possibly not all) of the same bug [42].



Table 5: Testing results on 30 inputs generated by the Bf3 web browser fuzzer.
Window Fuzz Num Num Num Stack Sharing

size mode traces Dang. bugs hash bugs
5,000 JS 10 30 30 2 0
5,000 DOM 10 30 30 2 0
5,000 XML 10 30 30 2 0

5,000 All 30 90 90 2 0

stack hash, there are only 2 unique bugs, which are both
non-sharing bugs. Both bugs are located in internal Win-
dows functions that get called when Firefox loads a DLL
using the ntdll.dll::LdrLoadDll function. The
first bug happens because ntdll.dll::LdrLoadDll
invokes the advapi32.dll::FreeSid function to
free a 12-byte Security Identifier (SID) structure it
has previously allocated. The Microsoft programmers
did not nullify the pointer passed as parameter to
advapi32.dll::FreeSid on return from the func-
tion. The second bug happens because the pointer re-
turned by the allocation of a 52-byte object (of unknown
type) gets stored in a local variable, which is not nullified
after the object is deallocated.

Since we have no source code for Windows libraries,
we cannot determine if these two bugs are unsafe (note
that non-sharing bugs can be exploitable; 3 of the vulner-
abilities in Table 2 are of this type). However, we can
draw three important conclusions from this experiment.
First, Undangle identified 2 dangling pointer bugs that
prior tools cannot detect since the dangling pointers were
created but never used in the execution. Second, Undangle
showed a zero false positive rate in that it identified 2 dan-
gling pointer bugs and nothing else. Third, using the diag-
nosis information output by Undangle, it took one of the
authors less than 5 minutes to understand both bugs. With
source code and debugging symbols, in those 5 minutes
we would have known which pointer to nullify to fix the
bugs. With such low effort we believe it is cost-effective
to fix dangling pointer bugs, even if exploitability is un-
clear.

5 Related Work
Dangling pointers can be eliminated by writing programs
in safe languages (e.g., Java, OCaml, safe C dialects [37])
and by using smart pointers [16]. However, in this sec-
tion, we focus on solutions that target legacy code with
minimal modifications.

Memory analysis tools. Popular debugging tools such
as Valgrind [11] and Purify [36], check if a dereferenced

pointer points to live memory. This approach misses dan-
gling pointers that, when dereferenced, point to an object
that has reused the memory range. To address this limi-
tation other debugging tools such as Electric Fence [47]
and PageHeap [12] use a new virtual and physical page
for each allocation and rely on page protection mecha-
nisms to detect dangling pointers. Early detection instead
detects dangling pointers at creation providing detailed in-
formation about the root cause of the vulnerability. There
has been work on extending Valgrind with taint propaga-
tion [32, 45] but those approaches only use a taint bit per
program location and do not address pointer tracking.

Runtime protection. A common approach for protect-
ing deployed programs against dangling pointers is re-
placing the default memory management functions with
safer alternatives. Conservative garbage collection elimi-
nates vulnerabilities by deallocating memory blocks only
when they are not referenced [20] but it does not help de-
tect dangling pointers. Dhurjati and Adve [29] use a new
virtual page for each allocation reducing memory usage
by reusing the physical page and even the virtual page if it
becomes inaccessible. DieHard [19] uses a randomized
memory allocator making it unlikely that a deallocated
object will soon be replaced by a subsequent allocation.
Recently, Akritidis introduces Cling [15], a memory allo-
cator based on type-safe memory reuse, a technique that
restricts memory reuse to objects of the same type [30].
A defense based on type-safe memory reuse has been de-
ployed in parts of the Firefox browser [46]. In this paper
we have evaluated early detection as an offline technique
for testing and vulnerability analysis, which differs from
the above in that it identifies dangling pointers when they
are created. We leave the study of early detection for run-
time protection as future work.

Safe compilers. Safe compilers insert dynamic checks to
detect spatial safety violations [17,18,38,44,51] and also
temporal safety violations [17, 43, 51]. Early detection
does not require source code and detects dangling pointers
before they are used.

Type inference. Type inference techniques on binary pro-
grams have been proposed but they were not adequate for



our problem. Caballero et al. [22, 23] apply taint track-
ing to infer types in buffers holding input and output mes-
sages. Undangle uses a similar approach but types all pro-
gram locations storing pointers. Rewards [40] uses type
unification for revealing general data structures in a pro-
gram. Using Rewards we could miss pointers that have
not yet been dereferenced. TIE [39] infers types in pro-
gram binaries and execution traces by solving a constraint
system. In our problem, solving a constraint system at
each instruction would be too costly.

Taint tracking. Taint tracking has been applied to diverse
applications including worm containment [28], limiting
the lifetime of sensitive data [50], control-flow hijacking
detection [27,45], protocol reverse-engineering [25], data
structure recovery [49], and type inference [40]. Our tech-
nique uses it for tracking pointers.

6 Conclusion
In this work we proposed early detection, a novel ap-
proach for identifying and diagnosing use-after-free and
double-free vulnerabilities. Early detection shifts the fo-
cus from the use of a dangling pointer that introduces
a vulnerability, to the creation of that dangling pointer,
which is the root of the vulnerability. We designed an
early detection technique that identifies dangling point-
ers when they are created and tracks them until they are
used or become unsafe. We implemented the technique
into a tool called Undangle and demonstrated its value
for vulnerability analysis and testing for unsafe dangling
pointers. Our results show that Undangle can be used to
quickly understand and eliminate the root cause of use-
after-free and double-free vulnerabilities, fixing the pro-
gram for good. Undangle also finds long-lived, potentially
unsafe, dangling pointers that should be removed to elim-
inate any vulnerabilities they may introduce and avoid in-
troducing new ones.

7 Acknowledgements
We would like to thank Earl Barr and the anonymous re-
viewers for their insightful comments. This work was
supported in part by the European Union through Grants
FP7-ICT No. 256980 and FP7-PEOPLE-COFUND No.
229599. Juan Caballero was also partially supported by
a Juan de la Cierva Fellowship from the Spanish Govern-
ment. Opinions expressed in this material are those of
the authors and do not necessarily reflect the views of the
sponsors.

References
[1] Bf3: Browser Fuzzer 3.

[2] TEMU: The BitBlaze Dynamic Analysis Compo-
nent.

[3] QEMU: Open Source Processor Emulator.

[4] Exploits Database By Offensive Security.

[5] Bugzilla@Mozilla: Bug 634986.

[6] Bugzilla@Mozilla: Bug 630919.

[7] Mozilla Developer Network: XPCOM.

[8] CVE-2010-3962. October 2010.

[9] DEP, EMET Protect Against Attacks on the Latest
Internet Explorer Vulnerability. November 2010.

[10] Defence in Depth: Internet Explorer 0-Day: CVE-
2010-3971. January 2011.

[11] Valgrind. July 2011.

[12] Page Heap for Chromium. July 2011.

[13] .. Common Vulnerabilities and Exposures.

[14] J. Afek and A. Sharabani. Dangling Pointer - Smash-
ing the Pointer for Fun and Profit. BlackHat USA,
Las Vegas, CA, July 2007.

[15] P. Akritidis. Cling: A Memory Allocator to Mitigate
Dangling Pointers. USENIX Security, Washington,
D.C. July 2010.

[16] A. Alexandrescu. Modern C++ Design: Generic
Programming and Design Patterns AppliedC.
Addison-Wesley, ed. Addison-Wesley, 2001.

[17] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient
Detection of All Pointer and Array Access Errors.
PLDI, Orlando, Florida, June 1994.

[18] D. Avots, M. Dalton, B. V. Livshits, and M. S. Lam.
Improving Software Security with a C Pointer Anal-
ysis. ICSE, Saint Louis, Missouri, May 2005.

[19] E. D. Berger and B. Zorn. DieHard: Probabilis-
tic Memory Safety for Unsafe Programming Lan-
guages. PLDI, Ottawa, Canada, June 2006.

[20] H. Boehm and M. Weiser. Garbage Collection in
an Uncooperative Environment. Software – Practice
and Experience, 18, September 1988.



[21] J. Caballero. Grammar and Model Extraction for
Security Applications Using Dynamic Program Bi-
nary Analysis. Ph.D. Thesis, Department of Elec-
trical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA, September 2010.

[22] J. Caballero and D. Song. Rosetta: Extracting Pro-
tocol Semantics Using Binary Analysis with Appli-
cations to Protocol Replay and NAT Rewriting. Cy-
lab, Carnegie Mellon University, Technical Report
CMU-CyLab-07-014, Pittsburgh, Pennsylvania, Oc-
tober 2007.

[23] J. Caballero, P. Poosankam, C. Kreibich, and
D. Song. Dispatcher: Enabling Active Bot-
net Infiltration Using Automatic Protocol Reverse-
Engineering. CCS, ACM, Chicago, Illinois, Novem-
ber 2009.

[24] J. Caballero, P. Poosankam, S. McCamant, D. Babic,
and D. Song. Input Generation Via Decomposition
and Re-Stitching: Finding Bugs in Malware. CCS,
ACM, Chicago, Illinois, October 2010.

[25] J. Caballero, H. Yin, Z. Liang, and D. Song. Poly-
glot: Automatic Extraction of Protocol Message
Format Using Dynamic Binary Analysis. CCS,
ACM, Alexandria, Virginia, October 2007.

[26] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: A System for Automatically
Generating Inputs of Death Using Symbolic Execu-
tion. CCS, Ari Juels, Rebecca N. Wright, and Sab-
rina De Capitani di Vimercati, ed. ACM, Alexandria,
Virginia, October 2006.

[27] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding Data Lifetime Via
Whole System Simulation. USENIX Security, San
Diego, California, August 2004.

[28] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L.
Zhou, L. Zhang, and P. Barham. Vigilante: End-
to-End Containment of Internet Worms. SOSP,
Brighton, United Kingdom, October 2005.

[29] D. Dhurjati and V. Adve. Efficiently Detecting
All Dangling Pointer Uses in Production Servers.
DSN, IEEE Computer Society, Philadelphia, PA,
June 2006.

[30] D. Dhurjati, S. Kowshik, V. Adve, and C. Lat-
tner. Memory Safety Without Runtime Checks Or
Garbage Collection. LCTES, San Diego, California,
June 2003.

[31] I. Dobrovitski. Exploit for CVS Double Free() for
Linux Pserver. February 2003.

[32] W. Drewry and T. Ormandy. Flayer: Exposing Ap-
plication Internals. WOOT, Boston, Massachusetts,
August 2007.

[33] P. Godefroid, N. Klarlund, and K. Sen. DART: Di-
rected Automated Random Testing. PLDI, Chicago,
Illinois, June 2005.

[34] Google. Rewarding Web Application Security Re-
search. November 2010.

[35] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the
Bug Really Been Fixed? ICSE, Cape Town, South
Africa, May 2010.

[36] R. Hastings and B. Joyce. Purify: Fast Detection of
Memory Leaks and Access Errors. USENIX Winter,
San Francisco, California, 1992.

[37] T. Jim, G. J. Morrisett, D. Grossman, M. W. Hicks,
J. Cheney, and Y. Wang. Cyclone: A Safe Dialect of
C. USENIX ATC, Monterey, CA, June 2002.

[38] R. W. M. Jones and P. H. J. Kelly. Backwards-
Compatible Bounds Checking for Arrays and Point-
ers in C Programs. International Workshop on Auto-
mated Debugging, Linköping, Sweden, May 1997.

[39] J. Lee, T. Avgerinos, and D. Brumley. TIE: Princi-
pled Reverse Engineering of Types in Binary Pro-
grams. NDSS, San Diego, California, February
2011.

[40] Z. Lin, X. Zhang, and D. Xu. Automatic Reverse
Engineering of Data Structures from Binary Execu-
tion. NDSS, San Diego, California, February 2010.

[41] B. P. Miller, L. Fredriksen, and B. So. An Empirical
Study of the Reliability of UNIX Utilities. Commu-
nications of the ACM, 33, December 1990.

[42] D. Molnar, X. C. Li, and D. A. Wagner. Dynamic
Test Generation to Find Integer Bugs in X86 Bi-
nary Linux Programs. USENIX Security, Montréal,
Canada, August 2009.

[43] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S.
Zdancewic. CETS: Compiler-Enforced Temporal
Safety for C. ISMM, Toronto, Canada, June 2010.

[44] G. C. Necula, S. McPeak, and W. Weimer. CCured:
Type-Safe Retrofitting of Legacy Code. POPL, Port-
land, Oregon, January 2002.



[45] J. Newsome and D. Song. Dynamic Taint Anal-
ysis for Automatic Detection, Analysis, and Sig-
nature Generation of Exploits on Commodity Soft-
ware. NDSS, San Diego, California, February 2005.

[46] R. O’Callahan. Mitigating Dangling Pointer Bugs
Using Frame Poisoning. October 2010.

[47] B. Perens. Electric Fence Malloc Debugger. July
2011.

[48] A. Schneider. 0-Day Exploit Used in a Targeted At-
tack CVE-2011-1255. June 2011.

[49] A. Slowinska, T. Stancescu, and H. Bos. Howard:
A Dynamic Excavator for Reverse Engineering Data
Structures. NDSS, San Diego, California, February
2011.

[50] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Se-
cure Program Execution Via Dynamic Information
Flow Tracking. ASPLOS, Boston, Massachusetts,
October 2004.

[51] W. Xu, D. C. DuVarney, and R. Sekar. An Efficient
and Backwards-Compatible Transformation to En-
sure Memory Safety of C Programs. FSE, Newport
Beach, California, October 2004.

[52] K. Zetter. Hack of Google, Adobe Conducted
through Zero-Day IE Flaw. January 2010.

[53] d0cs4vage. Insecticides Don’T Kill Bugs, Patch
Tuesdays Do. June 2011.


