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ABSTRACT
Program Analysis has been a rich and fruitful field of research
for many decades, and countless high quality program anal-
ysis tools have been produced by academia. Though there
are some well-known examples of tools that have found their
way into routine use by practitioners, a common challenge
faced by researchers is knowing how to achieve broad and
lasting adoption of their tools. In an effort to understand
what makes a program analyzer most attractive to develop-
ers, we mounted a multi-method investigation at Microsoft.
Through interviews and surveys of developers as well as anal-
ysis of defect data, we provide insight and answers to four
high level research questions that can help researchers design
program analyzers meeting the needs of software developers.

First, we explore what barriers hinder the adoption of
program analyzers, like poorly expressed warning messages.
Second, we shed light on what functionality developers want
from analyzers, including the types of code issues that de-
velopers care about. Next, we answer what non-functional
characteristics an analyzer should have to be widely used,
how the analyzer should fit into the development process, and
how its results should be reported. Finally, we investigate
defects in one of Microsoft’s flagship software services, to
understand what types of code issues are most important to
minimize, potentially through program analysis.

CCS Concepts
•General and reference → Empirical studies;
•Software and its engineering→ Software defect anal-
ysis;
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1. INTRODUCTION
Large software companies have recently started building

program analysis ecosystems, like Google’s Tricorder [49]
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or Microsoft’s CloudBuild [31]. These ecosystems allow for
distributively running several analyzers, each with its own
attributes, like speed of the analysis, type of detected code
issues, or number of true or false positives. Designers of
such ecosystems need to decide which analyzers should run
and when, e.g., in the editor, as part of the build, or during
code review. But how should the decisions be made? Which
kinds of program analyzers are valuable to software engi-
neers, rather than a waste of time? How do they fit in the
development process? How should their results be reported?

So far, much research and many studies on program analy-
sis tools have focused on the completeness of these tools (do
they report spurious warnings?), their soundness (do they
miss bugs?), automation, performance, annotation overhead,
and modularity. However, as companies integrate program
analyzers as part of their development process, more inves-
tigation is needed into how these tools are used in practice
and if practitioners’ needs are being met. We posit that for
research in this area to be impactful, our community must
understand the practices and needs of software developers
with regard to program analysis.

In an effort to improve this understanding, our paper
contains an empirical investigation at Microsoft to answer
the following high level research questions.

1. What barriers hinder the adoption of program analyzers
by practitioners?

2. What functionality do practitioners want from program
analyzers?

3. What non-functional characteristics should a program
analyzer have to be widely used?

4. What code issues occur most in practice that program
analyzers should try to detect?

For our purposes, we define program analysis as the process
of automatically analyzing the behavior of a program without
running it, that is, we are only considering static program
analysis. Program analysis detects potential issues in the
code and gives feedback. Feedback is in the form of warnings
that are either true or false positives. True positives flag real
issues in the code, whereas false positives warn about code
issues that do not occur in practice. We do not consider the
compiler to be a program analyzer to only focus on tools
whose primary functionality is program analysis and that
are not by default part of the software development process.

Our study comprises a number of investigative techniques.
We interviewed and surveyed developers from a diverse group
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of products to understand their needs and how program
analyzers can or do fit into their process. We also examined
many corrected defects to understand what types of issues
occur most and least often.

We expect the empirical results that we present here to
shed light on many aspects of program analysis, specifically,
on what tools should be integrated in the development pro-
cess, where tool designers should focus their efforts, what
developers like and dislike in analyzers, what types of code is-
sues are most often encountered, and what project managers
should expect from different bug-finding techniques.

We assert that by understanding the above, the program
analysis research community can focus on analyzers that
are most amenable to real world use. For researchers, our
findings also provide a view into today’s industrial realities
with respect to program analysis.

2. SURVEY
In an effort to understand developers’ perspectives on pro-

gram analyzers, we deployed a broad survey across Microsoft.
Surveys are beneficial because they allow researchers to elicit
answers to the same set of questions from a large sample
of some population. In our case, we are interested in in-
dustrial software developers. Our goal is to obtain a large
enough sample such that responses are representative of the
population and that quantitative analysis can find results
with statistical significance (if indeed there are signals in the
responses). Surveys have been used in empirical software
engineering investigations many times in the past to provide
insight [48].

2.1 Data and Methodology
We used Kitchenham and Pfleeger’s guidelines for personal

opinion surveys in software engineering research when de-
signing and deploying our survey [41]. We followed a pilot
and beta protocol when developing the survey. We started
by identifying the high level goals for our investigation:

• Uncover any obstacles in the adoption of program ana-
lyzers by developers.

• Understand how practitioners use program analyzers
today and what functionality they find desirable.

• Identify the non-functional characteristics that devel-
opers want in a program analyzer.

• Determine how program analyzers should fit into de-
velopers’ current practices.

From these goals, we derived an initial set of survey ques-
tions. To pilot our questions, we scheduled interviews with
five developers across Microsoft and administered our survey
questions in person. This allowed us to gauge if each question
was clear enough or should be altered, if the terms we used
were familiar to developers, and if the questions we asked
were actually eliciting answers that helped us achieve our
goals for the survey.

After updating the questions following these interviews,
we created a beta of our survey that we deployed to 100
developers randomly selected across the company. This
initial survey included additional questions at the end, asking
participants if they found any portion of the survey difficult
to understand or answer, and asking if they had any other

relevant information to share about the topic. We received
20 responses to this survey. These responses were solely
used to improve the survey itself and were not included in
subsequent data analysis presented in this paper.

We then made improvements to the survey based on re-
sponses to the beta. An example of such changes included
defining terms such as “aliasing” and “purity” more clearly.
In another case, we had a question with check boxes that
asked developers which types of code issues they would like
program analyzers to detect. This question was changed
so that developers had to create a ranking of the types of
issues; in the beta, some developers checked almost all of the
boxes, making the answers less informative. A few of our
questions were open ended (for example, “Why did you stop
using program analyzers?”), and the responses to the beta
showed that there were clear categories in the answers. For
these, we changed the question to a multiple choice format
that included each of the categories, and we added a write-in
option if the respondents’ answer did not fit into one of these
categories. Such changes allow analysis to scale with large
numbers of responses. We also made changes to the survey
to ensure that it did not take too long to answer, as long
surveys may deter participation. Our goal was for the survey
to take a respondent approximately 15 minutes to complete.

After finalizing the questions, we sent invitations to answer
the survey to 2,000 developers selected at random across all
of Microsoft. The survey was anonymous as this increases
response rates [52] and leads to more candid responses. As
incentives have been shown to increase participation [51],
respondents could enter themselves into a raffle to win four
$50 Amazon gift cards. We received 375 responses to the
final survey, yielding a 19% response rate. Other online
surveys in software engineering have reported response rates
from 14% to 20% [48]. The median time to complete the
survey was 16 and a half minutes, quite close to our goal
of 15 minutes. We report the median rather than average
because there were some outliers that skew the average (one
person had a completion time of just under five days!). The
range of years of development experience was from zero to
43, with a median of nine (mean of 10.86).

The survey questions, responses, and analysis scripts can
be accessed at https://github.com/cabird/ProgramAnalysisSurvey.

2.2 Results
We break our results down into three categories. First,

we look at the barriers to using program analyzers and the
reasons why developers stop using them.

Second, we examine the functionality that the developers’
answers indicate they want in program analyzers. This func-
tionality includes the types of issues that program analyzers
catch, the types of programming languages they can analyze,
whether the analyzer examines a whole program or changes,
and if the developer can direct the program analyzer toward
parts of the code.

Third, we look at the non-functional characteristics that a
program analyzer should have. This includes attributes such
as the time required for analysis, how many false positives it
should yield, when it should run, where the output should be
and what form it should take, and where the analysis should
fit into the development process.

In addition, for most questions, we break down our an-
swers by attributes of the respondents. From our interviews
and based on anecdotal evidence, we believe that developers
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who have at least a basic understanding of program analysis
may have different views about the topic than those who are
not familiar with it. For the context of this paper, we label
these developers experts. 74% of respondents were at least
familiar with program analysis. In addition, security issues
are especially important to software companies, and security
is often given high priority by development teams. In the
research community, security is a significant subarea in pro-
gram analysis that receives a large amount of attention. We
refer to developers who indicate that security is a top concern
to them as security developers. 40% of respondents indicated
that they are security developers. For many questions, we
examine the answers provided by developers who are familiar
with program analysis and also by those who indicate that
security is a top concern for them. We report cases where
there is a statistically significant difference between these
groups and the answers of the rest of the sample. In cases
where there are only two alternatives (e.g., using program
analysis versus not using it), we use a Fisher’s exact test [30].
When there are more than two choices, such as the frequency
of running program analysis, we use a χ2 test to assess the
difference in distributions between these groups.

Some of the questions on our survey asked developers to
select and rank items from a list. For example, we asked
developers to rank the pain points they encountered using
program analysis as well as the code issues that they would
like program analyzers to detect. To analyze the answers,
for each option o, we compute the sum of the reciprocals
of the rank given to that option for each developer d that
responded (d ∈ D):

Weight(o) =
∑
d∈D

1

Rankd(o)

Ranks start at one (the option with the greatest importance)
and go up from there. If an option is not added to the ranked
list by a developer, the option is given a weight of zero for
that developer.

In Section 5, we also give an overview of the program
analyzers that the survey respondents use the most.

2.2.1 What makes program analyzers difficult to use?
In our beta survey, we asked developers what pain points,

obstacles, and challenges they encountered when using pro-
gram analyzers. We then examined their responses to create
a closed response list of options. In the final survey, we asked
developers to select and rank up to five of the options from
the list. Figure 1 shows their responses and gives insight
into what developers care about most when using program
analyzers. Many of our findings, such as the fact that false
positives and poor warning messages are large factors, are
similar to those of Johnson et al. [39]; their work investigates
why software engineers do not use static analysis tools to
find bugs through a series of 20 interviews (see Section 6).

The largest pain point is that the default rules or checks
that are enabled in a program analyzer do not match what
the developer wants. Developers mentioned that some default
program analysis rules, such as enforcing a specific convention
(for instance, Hungarian Notation) to name variables or
detecting spelling mistakes in the code or comments, are not
useful, and on the contrary, they are actually quite annoying.
Mitigations to this problem may include identifying a small
key set of rules that should be enabled (rather than having
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Complex user interface

Can't selectively turn off analysis
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Too many false positives

Bad warning messages

Wrong checks are on by default
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Figure 1: Pain points reported by developers when
using program analyzers.

all rules enabled, which is often the case), or making the
process of selecting the rules and checks that are enabled easy
for developers. Just as helpful is knowing the pain points at
the bottom of the list. Developers care much more about
too many false positives than about too many false negatives
(“Misses too many issues”). One developer wrote of their
team’s program analyzer “so many people ignore it because
it can have a lot of false positives”. Also, the ability to write
custom rules does not appear important to many, unlike in
the investigation by Johnson et al. [39].

We also asked developers if they had used program analysis
but stopped at some point. Only 9% of respondents indicated
that they fell into this category. When asked why they
stopped, there were three main reasons. 24% indicated that
the reason was because the team policy regarding program
analysis changed so that it was no longer required. Similarly,
18% indicated that they moved from a company or team
that used program analysis to one that did not. Another
21% reported that they could not find a program analyzer
that fit their needs; about half said this was due to the
programming language they were using. This highlights
one aspect of adoption of program analyzers that we also
observed in discussions with developers: often, their use of
analyzers (or lack thereof) is related to decisions and policies
of the team they are on.

Program analysis should not have all rules on by default.

High false positive rates lead to disuse.

Team policy is often the driving factor behind use of
program analyzers.

2.2.2 What functionality should analyzers have?
One of the primary reasons why a program analyzer may

or may not be used by a developer is whether the analyzer
supports the programming language (or languages) that the
developer uses. We therefore asked developers what lan-
guages they use in their work. Because the list was quite long,
we aggregated responses into programming language cate-
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Figure 2: Languages used by developers.

gories, as shown in Figure 2. The primary languages in the
object-oriented programming (OOP) category include C#
and Java. Legacy compiled languages comprise C, C++, and
Objective-C. Dynamic scripting languages include Python,
Ruby, and Perl. We break out JavaScript (and variants such
as TypeScript) because it is unique and one of the fastest
growing languages. Our categorization is based on our per-
ceptions and experiences as well as observations of Microsoft
development. As such, it is one of many reasonable catego-
rizations and is somewhat subjective (e.g., C++ is technically
an OOP language, but it has been around much longer than
Java or C# and is used for more low level functionality).

Next, we examine the types of code issues that developers
consider to be important and that they would like program
analyzers to detect. In our initial beta survey, we allowed
developers to write in any type of issue that they deemed
important. We then grouped the responses from the beta,
leading to the types shown in Figure 3, and asked about the
importance of each type of issue in the final survey. (Here
and throughout the paper, we only present analysis and data
from the final survey.) Note that these types of issues can
be overlapping and their definitions flexible. For instance,
many security issues could also be reliability issues, but
the way to interpret Figure 3 for this particular example
is that developers care much more about security issues
than general reliability issues. In other words, this question
was answered based on the cognitive knowledge developers
have about each of these types. The results indicate that
security issues are the most important, followed by violations
of best practices. Interestingly, in an era where a non-trivial
amount of software runs on mobile devices, developers do
not consider it important to have program analysis detect
power consumption issues.

Related to the types of issues that developers consider to
be important are the potential sources of unsoundness in
program analysis that can affect the detection of such issues.
We listed the most common sources of unsoundness from
program analysis research [28] and asked developers to rank
up to five of them. During our initial interviews and the
beta survey, we found that some developers were unfamiliar
with the terminology used (though most were aware of the
concepts). We therefore provided a brief explanation of each
source of unsoundness in the survey. Figure 4 shows the
results. As can be seen, exceptional control flow and aliasing
top the list, while purity and dealing with floating point
numbers are not considered critical.

Exceptions add a large number of control-flow transitions
that complicate program analysis. To avoid losing efficiency
and precision due to these transitions, many program analyz-
ers choose to ignore exceptional control flow. Consequently,
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Figure 3: Ranking of types of code issues developers
would like program analyzers to detect.

users who would like analyzers to soundly check exceptional
control flow should be willing to sacrifice speed and false
positive rates of the analysis. Ignoring certain side-effects
due to aliasing avoids the performance overhead of precise
heap analysis, so developers who do not want aliasing to be
overlooked should be willing to wait longer for the analysis.

In practice, developers may not want program analysis to
always examine all of the code in an application. When asked
if developers would like the ability to direct the program
analyzer toward certain parts of the code, 10% indicated that
they have that functionality and are using it. Another 49%
indicated that they do not use an analyzer that can do that,
but it would be important to them that a program analyzer
could be directed in such a way. Interestingly, of developers
that are using a program analyzer with the ability to be
directed to particular parts of the code, both experts and
security developers use this functionality more than other
developers to a statistically significant degree. When asked
to what level of granularity developers would like to be able
to direct a program analyzer, the overwhelming majority
said the method level (46%) or the file level (35%).
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Figure 4: Ranking of the sources of unsoundness in
program analysis that developers indicated should
not be overlooked (i.e., considering them during
analysis would be most helpful to developers).



A related functionality is the ability to analyze a changelist
(also known as a commit) rather than the entire codebase.
This type of functionality can help developers assess the
quality and impact of a change before it is checked into
the source code repository. 16% of developers indicated
that they have and use this functionality in the program
analyzer they use. Another 56% said that they do not have
this functionality, but it would be an important factor in
adopting a program analyzer. In sum, this 72% of developers
use or would like this ability. When looking at experts, this
value jumps to 77% (no change for security developers).

Other functionality is less attractive. Many analyzers
provide the ability for developers to write their own program
analysis rules. However, sometimes the learning curve can
be steep or the background required may be deep in order to
write custom analysis rules. When asked about the ability to
write custom rules, 8% said that they have the functionality
and use it and 26% said it is an important factor, while
the rest said they either do not use it or do not care about
having it. 66% of experts and 61% of security developers also
indicated that they do not use or care about this functionality.

We postulated that the reason why developers are not
interested in the ability to write custom program analysis
rules is because they want to be able to select an analyzer
and start using it without much effort. In fact, this is not
the case. We asked developers whether they would be willing
to add assertions, pre-, postconditions, and/or invariants to
their code if this would improve the analysis results. Fully
79% of developers said they would add at least one of these
types of specifications to their code, and 35% indicated that
they would be willing to write all of them. This provides
evidence that developers may be willing to provide additional
information to program analyzers in return for better results
(e.g., better precision). When asked about the form that such
code specifications should take, an overwhelming majority
(86%) of developers said that they would be more willing to
annotate their code with specifications if these were part of
the language, for example taking the form of nun-nullable
reference types or an assert keyword.

One feature of program analyzers that developers use
heavily is the ability to suppress warnings. 46% of developers
indicated that they use some mechanism to suppress warnings.
The primary methods are through a global configuration file,
source code annotations (i.e., not in comments), annotations
in source code comments, an external suppression file, and
by comparing the code to a previous (baseline) version of
it [45]. When asked which of these methods they like and
dislike, 76% of those that use source code annotations like
them, followed by using a global configuration file (63%) and
providing annotations in code comments (56%).

Program analyzers should prioritize security and best prac-
tices and deal with exceptional control flow and aliasing.

Developers want the ability to guide program analyzers
to particular parts of the code and analyze changelists.

While most are not interested in writing custom rules,
developers are willing to add specifications in their code
to help program analyzers.

Suppressing warnings is important, preferably through
code annotations.

2.2.3 What should the non-functional characteristics
of program analyzers be?

In the previous section, we focused on the functionality that
developers indicate they want in program analyzers. When
examining characteristics, we investigate non-functional as-
pects of program analyzers, such as how long they should take
to perform the analysis, how often their warnings should be
correct, and how they should fit into the development process.
In many cases, there is a trade-off between characteristics
(e.g., an analysis that has fewer false positives may include
more complex techniques, such as alias analysis, which would
require longer to complete). In these trade-off situations, we
asked developers to indicate what characteristic they would
sacrifice in order to improve another.

The time taken by a program analyzer is an important
characteristic to developers because it can affect how often
and where the analyzer can be run, which directly influences
the utility of the analyzer to the developer. When asked how
long a developer would be willing to wait for results from a
program analyzer, 21% of developers said that it should run
on the order of seconds, and 53% said they would be willing
to wait multiple minutes. Thus, long running analyzers that
exceed a few minutes would not be considered by nearly
three quarters of developers.

The time required for an analysis dictates where it fits
into the development process. When asked where in their
development process they would like to use program analyz-
ers, 25% of developers said every time they compile, 24%
said once their change was complete but before sending out
a code review request, 10% said during the nightly builds,
8% said every time unit tests were run, and 23% said they
would like to run it at every stage of development.

Related to how a program analyzer should fit into the
development process is how the results of the analyzer should
be shown to the developer. The top four answers from
developers are shown in Figure 5. The preferred location
by a wide margin is in the code editor followed by the build
output. This is in line with the findings of the interviews
by Johnson et al. [39]: all 20 participants in their interviews
wanted to be notified of issues in their code either in the
IDE or at build/compile time. Moreover, one of the main
lessons learned from the FindBugs experiences at Google [21]
was that developers pay attention to warnings only if they
appear seamlessly within the workflow.

Warnings that are false positives are cumbersome and time
consuming. We asked developers the largest false positive
rate that they would tolerate. We show the results as a
reverse cumulative distribution curve in Figure 6, with the
acceptable false positive rate on the x-axis and the percent
of developers that find that rate acceptable on the y-axis.
From the graph, 90% of developers are willing to accept up
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Where Should Analysis Be Shown?

Figure 5: Where developers would like to have the
output of program analyzers.
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Figure 6: The largest false positive rate of analyzers
that developers would tolerate.

to a 5% false positive rate, 47% of developers are willing to
accept a false positive rate up to 15%, and only 24% percent
of developers can handle a false positive rate as high as 20%.
The designers of Coverity [23] confirm this aim for below 20%
of false positives for stable checkers. When forced to choose
between more bugs or fewer false positives, they typically
choose the latter. We also asked developers when they are
most willing to deal with false positives and gave them two
extremes: (1) when it is easy to determine if a warning is a
false positive, and (2) when analyzing critical code. In the
latter case, finding issues is so important that developers are
willing to deal with false positives in exchange for making
sure no issues are missed. 55% of developers preferred to get
false positives when they are easy to sift through.

Interestingly, developers are willing to give up more time if
the quality of the results is higher. 57% said that they would
prefer an analyzer that was slow, but found more intricate
code issues to an analyzer that was fast, but was only able to
identify superficial issues. Similarly, 57% also said they would
prefer a slower analysis that yielded fewer false positives to
a faster approach that was not as accurate. 60% reported
that they would accept a slower analyzer if it captured more
issues (fewer false negatives). While these all show that the
majority of developers are willing to give up some speed
for improved results, note that the majority is slight. Still
40–43% are willing to deal with more false positives, more
false negatives, or superficial issues if meant the analysis
was faster. These numbers do not change significantly when
looking at just experts or security developers.

Much of the feedback from developers discussed the idea
of having two kinds of analyzers, one fast and running in
the editor, and another slow and running overnight. One
developer put it quite succinctly “Give me what you can give,
fast and accurate (no false positives). Give me the slow stuff
later in an hour (it is too good and cheap to not have it). No
reasonable change is going to be checked in less than half a
day but I do want that style check for that one line fix right
away.” Another developer made a comparison of this to unit
versus integration testing.

There is even less agreement when we compare the trade-
off of reporting false positives versus missing real issues
(false negatives). 49.3% developers would prefer fewer false
positives even if it meant some real issues were missed, and
50.7% felt that finding more real issues was worth the cost
of dealing with false positives.

Some program analyzers can provide lists of possible fixes
for the warnings that they identify. We asked developers if
they would prefer to sift through lists of potential fixes to
identify the correct fix or if they would rather spend that
time coming up with a fix on their own. 54% indicated they
would be willing to sift through up to 10 potential fixes, while
45% felt that that time would be better spent designing a
fix themselves.

Program analysis should take a two-stage approach, with
one analysis stage running in real time providing fast, easy
feedback in the editor and another overnight finding more
intricate issues.

Program analysis designers should aim for a false positive
rate no higher than 15–20%.

Developers are willing to trade analysis time for higher-
quality results (fewer false positives, fewer false negatives,
more intricate issues).

2.2.4 Additional developer feedback
In our survey, we asked developers if they would like to

share any additional opinions, thoughts, or feedback that
they felt were not covered by our questions. 73 developers
(19%) answered this question and we inspected and organized
their responses. A number of key themes emerged from
this analysis and we share those that are useful to program
analysis researchers here.

Developers indicated that determinism of the program
analysis is important. FxCop [11] (described in Section 5) is
not deterministic because it uses heuristics about which parts
of the code to analyze, and the Code Contracts analyzer [32]
is not because it uses timeouts. If a program analyzer outputs
different results each time it is run, it can be difficult to tell
if an issue has been fixed. The Coverity designers also stress
that randomization is forbidden, timeouts are also bad and
sometimes used as a last resort but never encouraged [23].

When a developer makes a change to fix a program analysis
warning, he or she would like an easy and quick way to check
whether the warning is indeed fixed. A developer does not
want to re-build and re-analyze everything for each warning.

“Supporting quickly re-checking whether a specific analysis
error is fixed would significantly help the test-fix-test cycle.”

Many developers indicated that regardless of the analyzer
they run, they would like a way to see and track their warn-
ings, e.g., in SonarQube [18]. SonarQube is a web-based
application that leverages its database to show and combine
metrics as well as to mix them with historical measures.

Having a standard way of doing program analysis and
a standard format of warnings across the organization is
important as it can lessen the learning curve and decrease
heterogeneity of tools and processes between teams.

It would be beneficial if analysis could help engineers
understand how to properly use a programming language.
Some engineers learn just enough about a language to do
the work, and having an analyzer that teaches them which
idioms, libraries, or best practices to use would be helpful.

2.2.5 Implications
In this section, we highlight the main implications of our

survey findings for the program analysis community.



Expertise. When asked how frequently developers run
program analyzers (daily, weekly, monthly, yearly, never),
37% said they run them daily and another 16% run them on
a weekly basis, while 30% indicated they do not use program
analyzers at all. There is a strong relationship between both
familiarity with program analysis and a focus on security
with frequency of use. 44% of security developers and 43%
of experts use program analyzers daily (17% weekly for both
groups). χ2 tests showed that the differences in frequency of
use of program analyzers between experts and non-experts
and between security developers and non-security developers
are both statistically significant (p� 0.01). This relationship
may imply that if a developer has a deeper understanding of
program analysis, then he or she will be more likely to use
it. However, it may also be the case that in the process of
using program analysis frequently, a developer develops an
understanding of program analysis.

We also asked our survey participants which of the types
of code issues that they encounter they estimate could have
been caught by a program analyzer. By and large, for every
type of code issue the majority believe that the issue could
not have been caught. However, for reliability errors and
maintainability issues, experts have more faith in program
analysis to a statistically significant degree. 45% of experts
think maintainability issues would be caught and 33% think
reliability errors would be caught, whereas non-experts have
even lower percentages. Therefore, developers who have a
better understanding of program analysis also have more
trust in its bug-finding capabilities.

More expertise in program analysis could also help in
setting expectations with users. As an example, consider
that analyzers typically ignore exceptional control flow to
improve efficiency and precision (i.e., reduce the number of
false positives). However, the responses to our survey did not
indicate that developers who would like exceptional control
flow to be checked by program analyzers are also willing to
tolerate a large number of false positives.

Speed vs. quality. As we previously discussed, there
are two camps of developers: those who are willing to wait
longer if the quality of the analysis results is higher, and
those who are willing to deal with more false positives, more
false negatives, or superficial issues if it makes the analysis
faster. This indicates that neither kind of program analysis
is out of business, there is clear demand for both.

However, there is definitely a correlation between the kind
of the analysis and where it fits in the development process.
Developers who want to run an analyzer at every state of
development are more likely to prefer a fast and superficial
analysis. Those who want the results after every compile
slightly lean toward slow and deeper analyses. Finally, devel-
opers who want the analysis results after a nightly build or
right before a code review definitely prefer a slower analysis
that detects more intricate code issues. These findings are
all statistically significant (p� 0.01).

Annotations. Our findings indicate that developers may
provide additional information to program analyzers, in the
form of specifications or annotations, in return for better
results (e.g., fewer false positives, suppressed warnings). Still,
21% of the respondents are not willing to write any assertions,
preconditions, postconditions, and invariants or do not know
what these are. Developers who like to suppress warnings
with source code annotations are also more likely to provide
specifications to a statistically significant degree (χ2 test,

p < 0.05). All this suggests that program analysis should be
tunable through annotations but without requiring them.

Trust. To build trust in their analyzers, tool designers
should keep in mind that developers care much more about
too many false positives than too many false negatives. More-
over, the largest pain point in using program analyzers is
found to be that by-default enabled rules or checks do not
match what developers want.

3. LIVE SITE INCIDENTS
Our survey allowed us to understand what developers want

and are most interested in with regard to program analyzers.
We also sought to uncover the distribution of issues that occur
in practice. For this we examined live site incidents from a
set of Microsoft hosted services. We chose services because
software development is increasingly focused on services.

A live site incident refers to an issue that affects the
functionality of a service and requires the on-call engineer to
intervene for its resolution. In other words, a live site incident
is a high-severity bug that demands immediate attention by a
software engineer so that the health of the affected company
service is not compromised further.

Here, we categorize live site incidents into the types of code
issues that we considered in the survey (see Section 2). We
categorized a total of 256 live site incidents, which occurred
and were fixed during the first two months of 2016. Note
that these incidents affected 17 different Microsoft services.
We achieved this categorization by personally interviewing
software engineers who were assigned the resolution of these
live site incidents, exchanging emails with them when an
interview was not possible, attending live site reviews (that
is, meetings providing an overview of any live site incidents
of the previous week), and by carefully reading the root cause
analysis of each live site incident on the company’s tracking
website for these incidents.

For incidents where our only source of information was the
root cause analysis provided by the designated engineers on
the tracking website, the categorization comes from one of the
authors of this paper rather than the software engineer that
handled the incident. This can introduce a threat to validity
since the categorization may be subjective. To alleviate
this threat, a random sample of 20% of these incidents were
coded by another researcher independently and inter-rater
reliability [36] was calculated using Fleiss κ on the results [33].
In our case, there was perfect agreement, with κ = 1.0,
indicating that the threat of subjectivity in categorization is
quite low.

Figure 7 shows the categorization of all 256 live site in-
cidents using the methodology described above. Note that
most live site incidents (65%) are categorized as reliability
errors, followed by performance (14%) and dependency (12%)
issues. As Figure 7 shows, no live site incidents are catego-
rized as memory and power consumption issues or as style
inconsistencies. This makes sense since such code issues are
unlikely to cause high-severity bugs.

As part of the survey that we described in the previous
section, we asked participants which types of code issues
they would like program analyzers to detect. In accordance
with Figure 7, the respondents are not very interested in
detecting memory and power consumption issues or style in-
consistencies, which are ranked fifth, thirteenth, and eleventh,
respectively in the survey. Surprisingly, reliability errors are
ranked ninth, performance issues fourth, and dependency
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Figure 7: Categorization of live site incidents for 17
different company products.

issues eighth. In other words, high-severity code issues that
require the immediate intervention of a software engineer
(see Figure 7) are ranked low in the preferences of software
engineers.

This mismatch between developers stated desires and the
data regarding actual defects is surprising. An explanation
for this result is that how much bugs matter depends on your
point of view. That is, they matter very much to researchers
and designers of program analyzers, but how much they
matter to the users of analyzers can be unexpected. During
the live site reviews that we attended, we witnessed quotes
like “oh, it’ll crash, and we’ll get a call” or “if developers don’t
feel pain, they often don’t care”, which were also recorded
by Bessey et al. in 2010 [23]. This attitude toward bugs
could also explain why the respondents of our survey would
not like program analyzers to go after the most painful code
issues (presented in Figure 7).

In the survey, we asked participants which types of code
issues that they encounter they estimate could have been
caught by a program analyzer. The most popular answers
were best practices violations (69%) and style inconsistencies
(62%), which are both superficial code issues. On the other
hand, intricate code issues, like reliability, concurrency, and
security errors, were selected by significantly fewer survey
respondents (30%, 37%, and 47%, respectively). Figure 7
about live site incidents indicates a strong need for program
analyzers to detect reliability errors. Moreover, security
and concurrency errors are the first and third most popular
answers, respectively, to the previous survey question (about
which types of code issues software engineers would like
program analyzers to detect).

This suggests that developers do not trust program an-
alyzers to find intricate code issues. We see two possible
explanations for this lack of trust, which are also supported
by related work. First, due to the various pain points, obsta-
cles, or annoyances that users encounter when using program
analyzers, they might not derive the full potential of these
tools. In the end, some users might abandon program anal-
ysis altogether, incorrectly thinking that it lacks value [21].
Second, it could be the case that users have little understand-
ing of how program analysis works in a particular tool as
well as little interest in learning more. As a consequence,

they might end up classifying any detected code issue that
is even slightly confusing to them as false [23].

The vast majority of costly bugs in software services are
related to reliability.

Developers rank reliability errors low in the types of issues
they want program analyzers to detect.

Developers do not seem to trust analyzers to find intricate
issues although they want them to detect such issues.

4. THREATS TO VALIDITY
As with any empirical study, there may be limits to our

methods and findings [35]. Because one of our primary
instruments was a survey, we were concerned that the right
questions were included and presented in the right way [34].
To address construct validity [43], we began by examining
the landscape of the use of program analysis in Microsoft and
interviewing developers. These interviews led to the creation
of a beta survey that we deployed and which provided another
round of feedback to fine tune the questions in the final survey.
Thus, we have high confidence that the questions are asked in
a clear and understandable manner and cover the important
aspects of program analyzers. We are also confident that the
options provided for answers to the questions capture the
majority of developer responses.

With regard to external validity [50], our analysis comes
wholly from one software organization. This makes it unlikely
that our results are completely representative of the views of
software developers in general. However, because Microsoft
employs tens of thousands of software engineers, works on
diverse products in many domains, and uses many tools
and processes, we believe that our approach of randomly
sampling improves generalizability significantly. In an effort
to increase external validity, we have provided a reference to
our survey instrument so that others can deploy it in different
organizations and contexts.

Not all categorizations of live site incidents came directly
from the software engineer that handled the incident. In
cases where we could not contact them, we had to categorize
them ourselves based on information in the incident tracker,
which may introduce subjectivity. As mentioned previously,
we mitigated this by having multiple researchers categorize
the incidents independently and checking the inter-rater
reliability, which resulted in perfect agreement.

5. PROGRAM ANALYZERS IN INDUSTRY
In this section, we give an overview of program analyzers

that are currently being used in three large software compa-
nies, namely Microsoft, Google, and Facebook. We derived
a list of first party program analyzers at Microsoft by inter-
viewing leads and members of the managed and unmanaged
static analysis teams in the company. We then asked the
participants of our survey (see Section 2) which analyzers
they have run the most. We focus on the six most popular
first and third party program analyzers for Microsoft. For
Google and Facebook, we rely on recent research publications
to determine which analyzers are currently being used.

First party program analyzers at Microsoft. The
order in which we present the tools is arbitrary and all first



party tools were selected by at least 8% of the respondents.
BinSkim [1] is a binary scanner that validates compiler

and linker settings. Specifically, it validates that code has
been built using the compiler and linker protections that are
required by the Microsoft Security Development Lifecycle
(SDL) [17], e.g., that a binary has opted into the Address
Space Layout Randomization (ASLR) or the hardware Data
Execution Prevention (DEP) features.

FxCop [11] analyzes managed assemblies using a set of
pre-defined or custom rules and reports possible design, lo-
calization, performance, and security improvements. Many
of the detected code issues concern best practices violations.

PoliCheck is an internal tool by Microsoft’s Geopolitical
Product Strategy team that scans text (code, code comments,
and content, including Web pages) for anything that might
be politically or geopolitically incorrect. For example, a
person’s name should not be written in red letters as in some
context or culture it may signify that the person is dead.

PREfast [14] performs intraprocedural analysis to identify
defects in C and C++ source code. There are multiple PRE-
fast plug-ins for detecting different kinds of code issues, like
BadValues for security errors, CppCoreCheck for reliability,
security, and compliance errors, DriversDLL for errors in
kernel-mode drivers, etc.

PREfix [24] is one of the few analyzers in industry that
performs cross-binary dataflow analysis. PREfix detects
security, reliability, performance, and memory consumption
issues, but without the user providing extensive annotations,
it is almost impossible to find any memory or resource leaks.

StyleCop [19] was selected by 50.5% of the respondents
and is, by far, the most popular first party tool. It analyzes
C# code to enforce a set of style and consistency rules, which
is configurable and may be augmented with custom rules.

Third party program analyzers at Microsoft. Here,
we present the six most popular third party analyzers that
are being or have been used at Microsoft.

ReSharper [16] was selected by 51.2% of the respondents
and is the tool that has been run the most out of all first
and third party analyzers. ReSharper is a productivity tool
with a code analysis component, which finds compiler errors,
runtime errors, redundancies, code smells, and possible im-
provements right while the user is typing. Note that 81.8% of
our respondents have heard of ReSharper, out of those, 47.5%
are currently using ReSharper, and out of those, 50% rank
its code analysis as one of their top three favorite features
(29% said it was the most important feature).

Just like ReSharper, CodeRush [5] is a productivity tool,
which supports easy code investigation, automation of com-
mon code creation tasks, easy search and navigation to a
required code location, etc. Among its features, CodeRush
also provides a code analysis tool that suggests slight code
improvements and detects dead or duplicate code, useless
code (e.g., containing an unimplemented class member), in-
valid code (e.g., containing a call to an undeclared method)
as well as unreadable code.

Fortify [10] is a tool for identifying security vulnerabilities
in source code, with support for 20 programming languages.
Its analysis is based on a set of security coding rules, and its
detected vulnerabilities are categorized and prioritized based
on how much risk they involve and whether they provide
an accurate action plan. The Microsoft investigation into
Fortify, performed on two very large codebases, revealed that
its rules are thorough at the expense of being very noisy.

Checkmarx [2] analyzes source code, also written in a
very wide breadth of programming languages, by virtually
compiling it and performing queries against it for a set of
pre-defined and custom security rules. During an evaluation
of the tool at Microsoft, Checkmarx was found to be as
accurate as Fortify but easier to configure. Fortify, however,
was found to achieve deeper coverage.

Coverity [6, 23] is considered one of the best commercial
static analyzers for detecting security and reliability errors in
C, C++, C#, and Java. In general, the code issues it reports
have a very high fix rate and a very low false positive rate.
Coverity performs whole-program analysis and is known to
have detected serious bugs involving multiple functions or
methods. It is primarily offered as a cloud-based service.

Cppcheck [7] is a rule-based analyzer for C and C++. It
mainly detects reliability errors, like null pointer dereferences,
use of uninitialized variables or unsafe functions, etc. The
goal of Cppcheck is to report no false positives, therefore, it
is rarely wrong, but as a consequence, it misses many bugs.

Program analyzers at Google. So far, Google has
made several attempts to integrate program analyzers into
the development process of software engineers. The most
prominent example of such an analyzer is FindBugs [9, 21],
which cheaply detects defects in Java code, including bad
practices, performance, and correctness problems. FindBugs
aims at identifying the low-hanging fruit of code issues, in-
stead of finding all possible errors in a particular category.
Other analysis tools that have at times been used by Google
include Coverity [6], Klocwork [13], and fault prediction [42].
However, all of these analyzers have gradually been aban-
doned due to their false positive rates, scalability issues, and
workflow integration problems [49].

Recently, Google built Tricorder [20, 49], a program anal-
ysis ecosystem for detecting a variety of code issues in a
wide breadth of programming languages. Tricorder smoothly
integrates into the development workflow, scales, and allows
even non-analysis experts to write and deploy custom analyz-
ers. Moreover, any integrated analyzer that is annoying to
developers, degrades the performance of Tricorder, or whose
reported code issues are never fixed by developers is banned
from the ecosystem.

The overview of Tricorder [49] describes some of the tools
that have been integrated in the Google analysis ecosystem.
These include analysis frameworks, like ErrorProne [8] and
ClangTidy [4], which find bug patterns based on AST match-
ing in Java and C++, respectively, and the Linter analyzer,
which detects style issues and contains more than 35 individ-
ual linters, such as configured versions of the Checkstyle Java
linter [3] and the Pylint Python linter [15]. Lastly, there are
various domain-specific analyzers, like AndroidLint for de-
tecting issues in Android applications, and tools that analyze
metadata associated with a changelist, like how much code
is transitively affected by a particular changelist.

Program analyzers at Facebook. Infer [26, 25, 12] is
Facebook’s most well-known analyzer in the current litera-
ture: it is based on academic research in program analysis,
and there are many publications on its internals and its large-
scale deployment. Facebook uses Infer to find resource leaks
and null-pointer exceptions in Android and iOS applications.
The tool may report both false positives and false negatives.
Infer’s analysis is incremental, which means that, when ana-
lyzing a changelist, it uses a cache of verification results so
that only functions affected by the changelist are analyzed.



Discussion. In this section, we observe that, although
there are a few exceptions to this rule, advanced program
analysis techniques are generally underdeveloped in industry.
Most of the program analyzers that we have presented are
productivity tools, linters, or rule-based scanners. We are
definitely not claiming that simplistic program analyzers
lack value—we are however wondering why many innovative
and bright research ideas do not seem to have substantial
practical impact. This trend has been observed before [39,
26, 49] in an effort to provide a few reasons for this gap
between scientific literature and industry.

Here, we would like to support these suggestions from
the literature with data-driven results from our survey. For
instance, Calcagno et al. [26, 25, 29] suggest that part of
the problem is that research has focused too much on whole-
program or specify-first analyses. Indeed, the importance of
compositional and incremental analyses is stressed by the
fact that 56% of the survey respondents do not currently have
the functionality of analyzing only a changelist, instead of an
entire codebase, but this functionality would be important
to them. Furthermore, 46% find the granularity of functions
or methods more suitable for directing an analyzer toward
the more critical parts of their code. Concerning program
annotations, 21% of the respondents are not willing to write
any specifications or do not know what specifications are.

Calcagno et al. also define the “social challenge”, which
has been described in other related work too [39, 49]. En-
gineers accumulate trust in an analyzer and start reacting
to the bugs it reports when certain features are there: full
automation and integration into the development workflow,
scalability, precision, and fast reporting. In fact, the top six
pain points, obstacles, or annoyances that our survey respon-
dents encountered when using program analyzers are (from
most to least annoying): (1) irrelevant checks are turned on
by default, (2) bad phrasing of warnings, (3) too many false
positives, (4) too slow, (5) no suggested fixes, and (6) diffi-
cult to integrate in the workflow (see Figure 1). Moreover,
the top six minimum requirements that an analyzer must
satisfy for our respondents to start using it are (from most
to least minimal): (1) detect issues that are important to
me, (2) easy to integrate in the workflow, (3) fast, (4) few
false positives, (5) with suppression of warnings, (6) good
phrasing of warnings. Lastly, in terms of fast reporting, 21%
of the respondents are only willing to wait seconds for a
program analyzer to check a changelist, and 53% minutes.

6. OTHER RELATED WORK
Empirical studies. There are relatively few empirical

studies that analyze the usage and adoption of program
analysis tools in industry, especially from the point of view of
software engineers. So far, many studies have analyzed the
functionality of program analyzers, mostly from the point of
view of tool designers [27, 21, 23].

The work most closely related to ours investigates why
software engineers do not use static analysis tools to find
bugs [39]. The results are collected from interviews with 20
engineers, and focus on the interviewees’ perception of tools,
including interacting with their interfaces, and on what could
have caused these perceptions. Although their interviewees
felt that using static analysis is beneficial, there are certain
barriers in their use, like false positives, poorly presented
warnings, lack of or weak support from the team, inability
to suppress warnings, poor environment integration, long

running times of the tools, etc. In Section 2, we discuss that
our survey respondents have also identified the same pain
points. In terms of support from the team, many of our
respondents that have stopped running program analyzers
said it was because of a change in the team policy.

Ayewah and Pugh [22] also conducted a survey and a
controlled study on how software engineers use the FindBugs
tool [9, 21]. Although related, our work is not concerned
about a particular program analyzer; we are rather focusing
on what the general characteristics of any program analysis
should be such that it is industrially relevant.

Lastly, our work is analogous to a recent empirical analy-
sis of programming language adoption [46]: instead of pro-
gramming languages, it focuses on the adoption of program
analyzers in a large software organization.

Unsoundness in program analysis. Around the year
2000, unsoundness in program analysis was controversial in
the academic community [23]. By now, researchers have re-
alized that soundness is commonly eschewed in practice [44].
In fact, there have even emerged approaches for measuring
the unsoundness in a static analysis and evaluating its prac-
tical impact [28]. In industry, as it also becomes evident in
Section 5, it is a well-established design decision to build
program analyzers to be unsound in order to increase automa-
tion, improve performance, achieve modularity, and reduce
the number of false positives or the annotation overhead. The
full range of program analysis techniques in industry, from
heuristics to more advanced methodologies, like in Coverity,
PREfix, and Infer, becomes more precise and efficient in
detecting software bugs at the cost of ignoring or making
unsound assumptions about certain program properties.

In our survey, we presented engineers with common sources
of unsoundness in program analyzers, and asked them which
of these should not be overlooked by tool designers (see
Section 2). We hope that our findings will help designers in
finding good trade-offs when building practical analyses.

Other companies. Ebay has suggested techniques for
objectively evaluating the cost-effectiveness of different pro-
gram analyzers and comparing them against each other [38].
IBM has experimented with an online portal that addresses
common barriers to the wide usage of static analysis tools
and promotes their adoption [47].

Other evaluations. Other evaluations of usage of static
analyzers include understanding how to improve their user
interfaces [40], and how to use suitable benchmarks for sys-
tematically evaluating and comparing these tools [37].

7. CONCLUSION
We have presented a multi-method empirical investiga-

tion that we deployed at Microsoft. Our findings shed light
on what practitioners want from program analyzers, how
program analysis researchers can achieve broad and lasting
adoption of their tools, which types of defects are most impor-
tant to minimize through program analysis, and which tools
are currently being used at three large software companies.

We believe that our data-driven answers to these questions
are the first step toward narrowing the gap between scientific
literature and industry with regard to program analysis.
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