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Abstract—We present a system for predicting gaming-
related properties from Twitter profiles. Our system
predicts various traits of users based on the tweets pub-
licly available on their profiles. Such inferred traits in-
clude degrees of tech-savviness, knowledge on computer
games, actual gaming performance, preferred platform,
degree of originality, humor and influence on others. Our
approach is based on machine learning models trained
on crowd-sourced data. Our system enables people to
select Twitter profiles of their fellow gamers, examine
the trait predictions made by our system, and the
main drivers of these predictions. We present empirical
results on the performance of our system based on its
accuracy on our crowd-sourced dataset. Ultimately, we
are motivated by the automated discovery of influential
gamers in social media, and its potential for streamlining
product campaigns.

1. Introduction

Big-data organizations strive to make consumer
outreach increasingly data-driven. To this end, it is
vital to automatically infer from user-data traits that are
thought to be instrumental in launching a successful
product campaign.

Social media plays a pivotal role in our lives as
consumers, and services such as Twitter, Facebook and
Google+ are used regularly by over a billion users.
Recent research has uncovered many ways in which
online information, including social network data, can
be used to predict personal traits of users [1], [2], [3],
[4], [5], [6], [7], [8], [9].

Such information can provide insight on users [10],
[11], or accommodate commercial applications such as
personalized search [12], targeted advertising [13], or
improving the quality of collaborative-filtering-based
recommender systems. 1

This earlier work focuses on the general popula-
tion, whereas our focus is on the specific target group
of computer gamers. Gamers are predominantly active
in social media, and use distinct online communication
styles and language.

We focus on the following perceived traits of
gamers, assumed to affect their standing in the gaming
community: tech-savviness, degree of knowledge on
computer games, and gaming skill in various genres.
We also infer variables such as their life-stage, degree
of originality, and level of influence on their peers.

Our system accepts a Twitter handle, and predicts
the traits of its owner. These predictions are the result
of applying supervised machine learning on the textual
tweets made by the target user.

The rest of the paper describes the methodology
for building our prediction system. Namely, the crowd-
sourcing of annotations (2.1), the set of features ex-
tracted from every raw tweet (2.2), and the training of
machine learning classifiers and regressors (depend-
ing on the trait), using instances of such feature-sets.
In section 2.1 we dive into the specific traits that
we are interested in predicting. In the experiments,
section 3, we show empirical results of system in

1. Standard recommender systems only use information on con-
sumer items and rely on fingerprinting or dimensionality reduction
techniques [14], [15], [16], but can be adapted to incorporate more
detailed user profiling [17], [18], [19], [20].



predicting gaming-related traits. We also address inter-
rater disagreement in section 3.1, a common problem
in crowd-sourcing scenarios, by computing a specific
type of intra-class correlation (ICC) for each rated
trait. These measures clarify our perspective on the
impact to predictive capacity and, ultimately, highlight
the limitations of our system. In conclusion, section 4,
we discuss the main results of this prediction exercise,
the merits of our tool from a business point of view,
as well as possible extensions.

2. Methodology

We build a suitable machine learning model (re-
gressor or classifier) for each gaming-related traits (c.f.
list of traits in 2.2), and train it on a dataset of 2,000
Twitter profiles, annotated by workers on Amazon’s
Mechanical Turk.

2.1. Crowd-sourced annotation

We asked 646 workers to rate 2,000 English-
speaking Twitter profiles. Each worker was asked to
examine several of those profiles and form an opinion
regarding the traits of the profile owners. Each Twitter
profile was annotated 3.12 times on average. 2 For each
profile rated, we asked the worker to provide their
opinion regarding the following traits of the profile
owner:

Categorical:
- gender (male, female)

- fan of Xbox (yes, no)

- fan of Playstation (yes, no)

Ordinal:
- age range (18-,18-25,25-30,30-45,45+)

- life stage (high school, university,

young professional,

established pro, retired)

- tech-savviness (1-5)

- knowledge level of games (1-5)

2. We have used redundant labels as crowdsourced data is know
to be very noisy. [21] Earlier work has shown that aggregating
responses can improve data quality even using simple aggregation
such as majority vote [22], [23], and there are also various Bayesian
data aggregation methods [24], [25], [26], [27]. We sourced redun-
dant labels so as to achieve more robust models.

- trustworthiness (1-5)

- content quality / depth (1-5)

- humour (1-5)

- originality (1-5)

- level of influence (1-5)

where the ordinal ratings (1-5) map to (very low,
low, medium, high, very high), respectively.

In addition, we augment these crowd-sourced rat-
ings, with direct measures of time that a target user has
spent playing Xbox games, and their actual achieve-
ment scores .

2.2. Feature extraction

The textual data of the users in the training dataset
are pre-processed by reducing all words to their root
form, via a Porter stemmer [28]. The stemmed text is
then used to extract a vocabulary, which consists of
those words and hashtag words (those prefixed by ‘#’)
that are present in at least 3 user profiles and at most
80% of all user profiles.

We combine lexical and stylistic features to create
a training dataset for the machine learning models, and
to predict the traits of users previously unseen by our
models.

- The lexical part of a feature-set is obtained by
mapping the terms of all tweets in a profile into
a vector representation of term frequencies-
inverse document frequencies (TF-IDF). This is
done with respect to the vocabulary extracted
from the tweet-corpus. A TF-IDF weight cap-
tures the respective term’s importance to a
document, relative to the term’s usage in the
corpus [29].

- The stylistic part of the feature-set includes
the occurrences of elongated words, fully cap-
italized words, consecutive punctuation marks,
hashtags, as well as the percentage of the pro-
file’s messages that were retweets or replies,
and the number of URLs that the user has
shared.

2.3. Predictive models

As per the list in 2.1, we distinguish between
categorical and ordinal traits. To predict an ordinal



trait y from tweet features x, we use an ordinary least
squares (OLS) regression model:

hw(x) = w0 +w>x , (1)

where the learnt model-weights w minimize the sum
of squared errors over n datapoints:

argmin
w

n∑
i=1

(yi − hw(xi))
2 . (2)

Similarly, to classify a categorical trait y from
tweet features x, we use a logistic regression model:

hw(x) =
1

1 + e−(w0+w>x)
∈ [0, 1] , (3)

where w minimizes the negative log-likelihood:

argmin
w

− log

n∏
i=1

hw(xi)
yi(1− hw(xi))

(1−yi) . (4)

Due to the size of the feature-set being in the order of
105, and because (4) admits no closed-form solution,
these objectives are solved via gradient descent.

For prediction on an unseen profile, our system
accepts its Twitter handle, scrapes the recent tweets of
the user via the Twitter API (first 20 pages) and, where
appropriate, automatically translates them through the
Microsoft Translator API.

3. Experiments

3.1. Inter-rater disagreement and reliability

We quantify the disagreement amongst raters of a
Twitter profile with the intra-class correlation (ICC), a
statistical measure of inter-rater reliability. The ICC is
apt for annotations3 that can be ordered, for instance,
when a difference in humour ratings 1 and 5 shows
more disagreement than ratings 2 and 4. In contrast,
any difference in categorical annotations carries the
same weight in disagreement. In this paper, we use
the ICC to quantify inter-rater reliability for all traits.
This is because the interpretation of ICC on a binary
categorical trait is as valid as on any quantitative trait4.

We also compute a secondary agreement measure,
Fleiss’ kappa (or κ), which does not account for

3. Strictly speaking, annotations are categorical and ratings are
quantitative. In this paper we use the terms interchangeably.

4. ICC becomes invalid for more than two categories.

any intrinsic order in the annotations, if present. This
makes κ particularly suitable to categorical traits with
more than two categories. Regardless, kappa remains
a valid choice for ordinal traits, but tends to under-
estimate the reliability in such traits. We discuss the
interpretation of κ in 3.1.2.

3.1.1. ICC. There are several definitions of intra-class
correlations used in the earlier literature. The most
recent and used is a family of ICC measures defined
in [30]. The class of ICC used in this paper is denoted
in this literature as icc(1, k). This class is suitable in
scenarios where for each of n subjects, k raters are
randomly selected from a population of raters, and
asked to rate that subject. Hence, each subject can be
rated by different raters, as is the case with our crowd-
sourced annotation setup.

For a particular trait t, we denote

A(t) ∈ Rn×k, (5)

to be its matrix of annotations, where each row is a
subject annotated by k random raters, and

µi =
1

n

∑
j

Ai,j (6)

µ =
1

nk

∑
i,j

Ai,j , (7)

as the mean of row i and the general mean, respec-
tively.

All classes of ICC can be computed from within
the analysis-of-variance (ANOVA) framework. Specif-
ically, icc(1, k), or simply icc as denoted henceforth,
is the ratio:

icc =
vb − vw

vb
, (8)

where

vw =
1

n(k − 1)

∑
i,j

(
A

(t)
i,j − µi

)2
and (9)

vb =
1

n− 1

∑
i

k (µi − µ)2 (10)



are the within subject and between subject variances,
respectively. Because vb ≥ vw , the icc is always
measured in the [0, 1] interval, from no agreement to
perfect agreement. It is now clear from (8) how the
interpretation of icc is taken directly from the ANOVA
context, and more concretely, as the percentage of
variation that is not explained by inter-rater disagree-
ments. It also shows why icc would be a valid choice
for binary categorical traits, like gender.

3.1.2. Fleiss’ kappa. An alternative reliability mea-
sure is Fleiss’ kappa [31], or κ, which has a different
interpretation to the icc. The distance between annota-
tion now has no effect and only the number of agreeing
pairs of raters is taken into account.

Let A(t) ∈ Nn×k be an integer annotations matrix
for trait t, where n is the number of subjects and k
is now the number of categories or levels of the trait.
A

(t)
i,j is the number of raters that annotate subject i into

category j. 5 Then κ of trait t is computed with the
following simple algorithm:

for i = 1 to n do
Ri ←

∑
j Ai,j # number of raters of i

Pi ← Ri(Ri − 1)/2 # all pairs of raters of i
Qi ←

∑
j Ai,j(Ai,j − 1)/2 # agreeing pairs

end for
pa ← 1

n

∑
iQi/Pi # mean agreement probability

S ←
∑

i,j Ai,j # total ratings
for j = 1 to k do
πj ←

∑
iAi,j/S # proportion of category j

end for
pc ←

∑
j π

2
j # probability of agreement by chance

κ =
pa − pc
1− pc

(11)

By the last equation, κ is interpreted as the degree
of agreement over that which would be expected by
chance. As such, κ takes value in (−∞, 1] and it is
read as:

- poor agreement, for values in (−∞, 0];
- poor agreement to perfect agreement, for values

in (0, 1].
We list the icc and κ reliability scores for each

trait in figure 1. Amongst the most ‘agreeable’ traits,

5. Note that this definition allows for the number of raters to
vary from subject to subject.

we encounter gender, age, life stage, Xbox fan and
knowledge. We note that κ is always lower than icc,
but their values are correlated. Surprisingly, PS fan did
not rank as high on agreement as Xbox fan, but it is
unclear how to best interpret this result.

Figure 1. Inter-rater agreement (icc and κ) and performance of
predictive models (rmse and accuracy – averages of 10-fold cross-
validation). Each column is a bar-chart with horizontal lines as
95% confidence intervals, where appropriate.

3.2. Prediction performance

3.2.1. Distribution of data. We train both classifi-
cation and regression models for each trait, binary-
categorical or ordinal. 6 We do this because the re-
sponse variable for each trait and profile is an average
across the annotations of that profile’s raters. So even
though a trait of interest can be binary in nature, its
averaged perception across social media spans a real-
valued interval, c.f. 3.1. This is illustrated in figure 2,
which shows the distribution of annotations for each
traits. Intuitively, the two most correlated bivariate
distributions are life-stage – age and tech-savvy –
knowledgeable. We are interested in the bottom row
of figure 2, as it conveys the traits most correlated to
influential: trustworthy, quality and original.

6. Models and experiments are coded with the scikit-learn open-
source Python library [32].



Figure 2. Pair-plot of all bivariate distributions between all but gender, Xbox fan and PS fan. The histograms rendered on the diagonal of
the grid are marginal distributions of annotation per trait, across the 2,000 rated profiles. Scatterplots are featured on the upper triangular
grid and kde-plots (kernel density estimators) on the lower triangular. All variables are normalized in the [0, 1] range prior to training
and testing, so all plots are rendered on the unit-square. Coded with the seaborn open-source Python library [33].



gender (-male, +female)

age (-young, +mature)

life-stage (-student, +pro)

tech-savvy (–tech-unsavvy, +tech-savvy)

knowledgeable (–unknowledgeable, +knowledgeable)

Figure 3. Bag-of-word features as word-clouds, where size indicates the magnitude of a feature-weight after training (TF-IDF coefficient
in linear regression) and the color indicates the sign of the weight – orange for positive, blue for negative. Censored parts of words are
shown with asterisks. Coded with the wordcloud open-source Python library.



We use two measures for the quality of prediction.
One is the root mean square error (RMSE) of the nu-
merical predictions (on the five point scale for ordinal
or {0, 1} Boolean scale, for categorical). The RMSE is
measured in the units of the annotations normalized in
the [0, 1] interval. The second is based on partitioning
the user population into thirds, by sorting the users
from the highest to lowest score of the predicted trait.
We can then examine the two extreme thirds, and check
the prediction accuracy of determining whether a user
is in the top or bottom third (ignoring the middle
third). Figure 1 shows the accuracy of out predictions
(measured using 10-fold cross validation).

The word-clouds in Figure 3 show the relative
importance of each feature in the bag-of-words vo-
cabulary for the best classified traits. At first glance,
the word-clouds do not offer much insight into how
these traits are perceived, but a quick comparison
between word-clouds reveals strong similarities be-
tween expected pairs, such as age and life-stage, as
well as tech-savvy and knowledgeable. Besides this
cursory observation, a correlation analysis between the
perception of traits is outside the scope of this paper.

In addition to perceived traits, we have also built
similar models to predict the time that a gamer has
spent playing computer games and their actual per-
formance in computer games. 7 Our results indicate a
prediction accuracy 59% for the time spent playing
games, and 64% for actual performance in playing
games, referred to as “Gamer Score” (the accuracy is
for separating users in the top third and those in the
bottom third of these properties). 8

4. Conclusion

Figure 1 indicates that it is indeed possible to
predict many perceptions on gamers from the language
they use in online social networks. A few properties
are more difficult to determine than others, and in
particular, those with the smallest of inter-rater agree-
ment (ICC) scores. These experiments indicate that
information from online social networks is predictive
of several objective gaming-related traits of users. We
emphasize that the choice of feature representation is at

7. We had access to such data from the user profiles in the Xbox
platform data.

8. Interestingly, our methods achieved better predictions for the
actual ability in playing computer games than for the time spent
playing them.

least as important as the choice of learning algorithm.
Instead, the focus and novelty is on the demonstrated
prediction pipeline, and its potential as a marketing
tool.

Naturally, many trait perceptions are expected to
be correlated. An obvious improvement is the con-
sideration of such correlations. As of yet, we are
learning models independently for each trait, without
accounting for inter-trait correlations. A more accurate
model would be one of simultaneous prediction of
multiple traits, akin to multi-output linear regression,
in the case that the variables or responses were real-
valued numbers.

For future work, we aim to quantify the uncer-
tainty in estimates of inter-rater reliability, via prob-
abilistic graphical models and Markov chain Monte
Carlo (MCMC) sampling. This will provide a means
to access the reliability of individual rater is a rigorous
probabilistic manner, therefore mitigating the main
limitation of our pipeline.
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