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Abstract. In this paper we describe two optimization techniques that are specially tailored for information
gathering. The first is a greedy minimization algorithm that minimizes an information gathering plan by removing
redundant and overlapping information sources without loss of completeness. We then discuss a set of heuristics
that guide the greedy minimization algorithm so as to remove costlier information sources first. In contrast to
previous work, our approach can handle recursive query plans that arise commonly in the presence of constrained
sources. Second, we present a method for ordering the access to sources to reduce the execution cost. This problem
differs significantly from the traditional database query optimization problem as sources on the Internet have a
variety of access limitations and the execution cost in information gathering is affected both by network traffic and
by the connection setup costs. Furthermore, because of the autonomous and decentralized nature of the Web, very
little cost statistics about the sources may be available. In this paper, we propose a heuristic algorithm for ordering
source calls that takes these constraints into account. Specifically, our algorithm takes both access costs and traffic
costs into account, and is able to operate with very coarse statistics about sources (i.e., without depending on full
source statistics). Finally, we will discuss implementation and empirical evaluation of these methods in Emerac,
our prototype information gathering system.
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1. Introduction

The explosive growth and popularity of the world-wide web have resulted in thousands of
structured queryable information sources on the Internet, and the promise of unprecedented
information-gathering capabilities to lay users. Unfortunately, the promise has not yet been
transformed into reality. While there are sources relevant to virtually any user-queries, the
morass of sources presents a formidable hurdle to effectively accessing the information. One
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Figure 1. The information gatherer acts as an intermediary between the user and information sources on the
Internet.

way of alleviating this problem is to develop information gatherers (also called mediators)
which take the user’s query, and develop and execute an effective information gathering plan,
that accesses the relevant sources to answer the user’s query efficiently.! Figure 1 illustrates
the typical architecture of such a system for integrating diverse information sources on the
internet. Several first steps have recently been taken towards the development of a theory
of such gatherers in both database and artificial intelligence communities.

The information gathering problem is typically modeled by building a virtual global
schema for the information that the user is interested in, and describing the accessible
information sources as materialized views on the global schema.? The user query is posed
in terms of the relations of the global schema. Since the global schema is virtual (in that
its extensions are not stored explicitly anywhere), computing the query requires rewriting
(or “folding” (Qian, 1996)) the query such that all the extensional (EDB) predicates in the
rewrite correspond to the materialized view predicates that represent information sources.
Several researchers (Levy et al., 1996; Qian, 1996; Kwok and Weld, 1996) have addressed
this rewriting problem. Recent research by Duschka and his co-workers (Duschka and
Genesereth, 1997; Duschka and Levy, 1997) subsumes most of this work, and provides
a clean methodology for constructing information gathering plans for user queries posed
in terms of a global schema. The plans produced by this methodology are “maximally
contained” in that any other plan for answering the given query is contained in them.3

Generating source complete plans however is only a first step towards efficient infor-
mation gathering. A crucial next step, which we focus on in this paper, is that of query
plan optimization. Maximally contained plans produced by Duschka’s methodology are
conservative in that they in essence wind up calling any information source that may be
remotely relevant to the query. Given the autonomous and decentralized nature of the
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Figure 2. The full process of query planning.

Internet, sources tend to have significantly overlapping contents (e.g. mirror sources), as
well as varying access costs (premium vs. non-premium sources, high-traffic vs. low-traffic
sources). Naive execution of maximally contained plans will access all potentially relevant
sources and be prohibitively costly, in terms of the network traffic, response time, and access
costs (in the case of “premium” sources that charge for access).

Atfirst blush, it would seem that we should be able to directly apply the rich body of work
on query optimization in databases (Chaudhuri, 1998) to solve this problem. Unfortunately,
this does not work because many of the assumptions made in the traditional database query
optimization do not hold in information gathering scenarios. To begin with, in traditional
databases, redundancy and overlap among different sources is not a major issue, while it
is a very crucial issue in information gathering. Similarly, traditional query optimization
methods depend on elaborate statistical models (histograms, selectivity indices etc.) of the
underlying databases. Such statistical models may not be easily available for sources on
the Internet.* Finally, even the work on optimizing queries in the presence of materialized
views (c.f. Chaudhuri and Krishnamurthy, 1995) is not directly applicable as in such work
materialized views are assumed to be available in addition to the main database. In contrast,
the global database in information gathering is “virtual” and the only accessible information
resides in materialized views whose statistical models are not easily available. For all these
reasons, it is now generally recognized (c.f. Florescu et al., 1998) that query optimization
for information gathering is a very important open problem.

In this paper we describe the query optimization techniques that we have developed
in the context of Emerac, a prototype information gathering system under development.
Figure 2 provides a schematic illustration of the query planning and optimization process
in Emerac. We start by generating a query plan using the source inversion techniques de-
scribed by Duschka and Genesereth (1997) and Duschka and Levy (1997). This polynomial
time process gives us a “maximally contained” query plan which serves as the input for
the optimization methods. As in traditional databases, our optimization phase involves two
steps: logical optimization and execution optimization. In traditional databases, logical op-
timization involves rewriting a query plan, using relational algebra equivalences, to make
it more efficient; while execution optimization involves steps such as ordering the access
to the base relations to make computations of joins cheaper. For Emerac, the logical opti-
mization step involves minimizing the maximally contained query plan such that access to
redundant sources is removed. Execution optimization involves ordering the access to the
information sources in the minimized plan so as to reduce execution cost.

Our contributions. Forlogical optimization, we present a technique that operates on the re-
cursive plans generated by Duschka’s algorithm and greedily minimizes it so as to remove
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access to costly and redundant information sources, without affecting the completeness of
the plan. For this purpose, we use the so-called localized closed world (LCW) statements
that characterize the completeness of the contents of a source relative to either the global
(virtual) database schema or the other sources. Our techniques are based on an adaptation of
Sagiv’s (Sagiv, 1988) method for minimizing datalog programs under uniform equivalence.
Although there exists some previous research on minimizing information gathering plans
using LCW statements (Duschka, 1997; Friedman and Weld, 1997), none of it is applicable
to minimization of information gathering plans containing recursion. Our ability to handle
recursion is significant because recursion appears in virtually all information gathering
plans either due to functional dependencies, binding constraints on information sources, or
recursive user queries (Duschka and Genesereth, 1997). Additionally, in contrast to existing
methods, which do pairwise redundancy checks on source accesses, our approach is capable
of exploiting cases where access to one information source is rendered redundant by access
to a combination of sources together. Large performance improvements in our prototype
information gatherer, Emerac, attest to the cost-effectiveness of our minimization approach.

Ultimately plan execution in our context boils down to doing joins between the sources
efficiently. When gathering information on the Internet, we typically cannot instruct two
sources to join with each other. It is thus necessary to order the access to the sources.
The existing methods for subgoal ordering assume that the plan is operating on a single
“fully relational” (i.e., no binding restrictions) database, and that the plan execution cost
is dominated by the number of tuples transferred. In contrast, sources on the Internet have
a variety of access limitations and the execution cost in information gathering is affected
significantly by the connection setup costs. We describe a way of representing the access
capabilities of sources, and provide a greedy algorithm for ordering source calls that respects
source limitations, and takes both access costs and traffic costs into account, without requring
full source statistics.

Although there exist other research efforts that address source redundancy elimination
and optimization in the presence of sources with limited capabilities, Emerac is the first
to consider end-to-end issues of redundancy elimination and optimization in recursive
information gathering plans. It is also the first system system to consider the source access
costs as well as traffic costs together in doing optimization.

Organization. Therestof the paperis organized as follows. Section 2 provides the backgro-
und on information integration and describes the motivation for our work. Section 3, we re-
view the work on integrating diverse information sources by modeling them as materialized
views on a virtual database. We pay special attention to the work of Duschka and Genesereth
(1997) and Duschka and Levy (1997), which forms the basis for our own work. Section 4
briefly reviews the use of LCW statements and Sagiv’s algorithm for datalog program mini-
mization under uniform equivalence. Section 5 presents our greedy minimization algorithm
that adapts Sagiv’s algorithm to check for source redundancy in the context of the given LCW
statements. We also explain how the inter-source subsumption relations can be exploited
in addition to LCW statements (Section 5.1). We then discuss the complexity of the min-
imization and present heuristics for biasing the greedy minimization strategy. Section 6.1
describes our algorithm for ordering source accesses during execution. Section 7 describes
the architecture of Emerac, our prototype information gatherer, and presents an empirical
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evaluation of the effectiveness of our optimization techniques. Section 8 discusses related
work. Section 9 presents our conclusions, and outlines our current research directions.

2. Background and motivation

2.1. Background

In order to place the work on Emerac in the proper context, it is important to provide a
broad classification of the prior work on information integration. Information integration
(aka data integration) has received a significant amount of attention in the recent years,
and several systems have been developed. These include InfoMaster (Geddis et al., 1995),
Information Manifold (Levy et al., 1996), Garlic (Haas et al., 1997), TSIMMIS (Garcia-
Molina et al., 1997), HERMES (Adal1 et al., 1996), and DISCO (Raschid et al., 1998). The
similarities and differences among these systems can be broadly understood in terms of (1)
the approach used to relate the mediator and source schemas and (2) the type of application
scenario considered by the system.

The application scenarios considered to date can be usefully classified into two categories:

Authorized integration of databases. Integrating a set of heterogeneous database systems
owned by a given corporation/enterprise.

Information Gathering. Integrating a set of information sources that export information
related to some specific application area (e.g. comparison shopping of books, integration
of multiple bibliography sources etc.).

In the first case, we would expect that the set of data sources are relatively stable, and
that the mediation is “authorized” (in that the data sources are aware that the they are be-
ing integrated). In the second, “information gathering” scenario, the set of data sources
may be changing, and more often than not, the mediation may not have been explic-
itly authorized by the sources. Systems such as Garlic (Haas et al., 1997), TSIMMIS
(Garcia-Molina et al., 1997), HERMES (Adal et al., 1996), and DISCO (Raschid et al.,
1998) can be characterized as aiming at authorized database integration, while InfoMaster
(Geddis et al., 1995), Information Manifold (Levy et al., 1996), Occam (Kwok and Weld,
1996), Razor (Friedman and Weld, 1997) as well as the Emerac system presented in this
paper address the information gathering scenario.

Although related in many ways, authorized database integration and information gath-
ering systems do differ in two important ways—the way source and mediator schemas are
modeled, and the types of approaches used for query optimization.

There are two broad approaches for modeling source and mediator schemas (Halevy,
2001). The “global as view” (GAV) approach involves modeling the mediator schema as
a view on the (union of) source schemas. The “local as view” (LAV) approach involves
modeling the source schemas as views on the mediated schema. The GAV approaches
make query planning relatively easy as a query posed on the mediated schema can directly
be rewritten in terms of sources. The LAV approach, in contrast, would require a more
complex rewriting phase to convert the query posed on the mediator schema to a query on
the sources.
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The advantage of LAV approach however is that adding new sources to a mediator involves
just modeling them as views on the mediated schema. In contrast, in the GAV approach, the
mediated schema has to be rewritten every time a new source is added. Systems that address
authorized integration of known databases, such as Garlic, Disco, TSIMMIS and HERMES
use the GAV approach as they can be certain of a relatively stable set of sources. In contrast,
systems aimed at information gathering, such as the Information Manifold (Levy et al.,
1996) and InfoMaster (Geddis et al., 1995) use the LAV approach.

The other main difference among information integration systems is the types of ap-
proaches used for query optimization. Systems addressing authorized integration of known
databases can count on the availability of statistics on the databases (sources) being inte-
grated. Thus Garlic (Haas et al., 1997), TSIMMIS (Chawathe et al., 1994), HERMES (Adali
et al., 1996) and DISCO (Tomasic et al., 1997) systems attempt to use cost-based optimiza-
tion algorithms for query planning. Systems addressing information gathering scenarios,
on the other hand, cannot count on having access to statistics about the information sources.
Thus, either the mediator has to learn the statistics it needs, or will have to resort to optimiza-
tion algorithms that are not dependent on complete statistics about sources. Both Infomaster
and Information Manifold system use heuristic techniques for query optimization.

Within the above classification, Emerac is aimed at information gathering. Thus, itis most
closely related to systems such as InfoMaster (Geddis et al., 1995), Information Manifold
(Levy etal., 1996), Occam (Kwok and Weld, 1996) and Razor (Friedman and Weld, 1997).
Like these other systems, Emerac too uses the LAV approach to model source and mediator
schemas, and uses heuristic techniques for query optimization. The specific contributions
of Emerac over the other systems are:

e A systematic approach for handling minimization of (recursive) datalog query plans using
the LCW information.

e A heuristic optimization technique for query plans that takes into account both the access
and transfer costs.

3. Building query plans: Background

Suppose our global schema contains the world relation advisor(S, A), where A is the advisor
of S. Furthermore, suppose we have an information source ADDB, such that for every tuple
(S, A) returned by it, A is the advisor of S. This can be represented as a materialized view
on the global schema as follows:

ADDB(S, A) — advisor(S, A)

We make the “open world assumption,” (OWA) on the sources (Abiteboul and Duschka,
1998), meaning that the ADDB source has some but not necessarily all of the tuples satisfying
the advisor relation.

Suppose we want to retrieve all the students advised by Weld. We can represent our goal
by the query Q:

query(S, A) - advisor(S, A)AN A = “Weld”
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Duschka and Genesereth (1997) and Duschka and Levy (1997) show how we can generate
an information gathering plan that is “maximally contained” in that it returns every query-
satisfying tuple that is stored in any of the accessible information sources. This method
works by inverting all source (materialized view) definitions, and adding them to the query.
The inverse, v~', of the materialized view definition with head v(X|, ..., X,,) is a set of
logic rules in which the body of each new rule is the head of the original view, and the
head of each new rule is a relation from the body of the original view. When we invert our
definition above, we get:

advisor(S, A) - ADDB(S, A)

When this rule is added to the original query Q, we effectively create a datalog® program
whose execution produces all the tuples satisfying the query.

Note that we are modeling sources as “‘conjunctive views” on the mediated schema. The
complexity of finding the maximally contained plan depends on the expressiveness of the
language used to describe sources. Abiteboul and Duschka (1998) show that as long as
sources are described as conjunctive views on the mediated schema, and we use the open
world assumption on the sources, maximally contained plans can be found in polynomial
time. The complexity becomes NP-hard when the sources are written as disjunctive, and
undecidable when the sources are written as recursive views on the mediated schema.

Constrained sources & Recursion. The materialized view inversion algorithm can be
modified in order to model databases that have binding pattern requirements. Suppose we
have a second information source, CONDB that requires the student argument to be bound,
and returns the advisor of that given student. We denote this in its view as follows:

CONDB($S, A) — advisor(S, A)

The ‘$’ notation denotes that S must be bound for any query sent to CONDB. A straight-
forward inversion of this source will get us a rule of the form:

advisor(S, A) - CONDB($S, A)

which is unexecutable as S is not bound. This is handled by making up a new relation called
dom whose extension is made to correspond to all possible constants that can be substituted
for S. In our example, assuming that we have both the ADDB source and the CONDB source,
the complete plan for the query, which we shall refer to as P, is:

rl:query(S, A) - advisor(S, A) A A = “Weld”
r2:advisor(S, A) - ADDB(S, A)
r3:advisor(S, A) - dom(S) A CONDB(S, A)
r4:dom(S) - ADDB(S, A)
r5:dom(A) - ADDB(S, A)
r6:dom(A) - dom(S) A CONDB(S, A)
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Notice that all extensional (EDB) predicates in the progam correspond to source pred-
icates (materialized views). Notice also the presence of dom(S) relation in the rule r3.
Rules r4, r5 and r6 define the extension of dom by collecting all possible constants that
can be derived from source calls. Finally, note that rule r6 is recursive, which makes the
overall plan recursive, even though the original query as well as the source description are
non-recursive. Given the ubiquitousness of constrained sources on the Internet, it is thus
important that we know how to handle recursive information gathering plans.

It is worth noting that the complexity of finding maximally contained plans remains
polynomial when we have sources with access constraints. The only change is that the query
plan itself is going to be a recursive datalog program. This change can in turn significantly
increase the execution cost of the plans. Consequently, we focus on using any information
about the source overlap to minimize the query plan and remove the recursion as much as
possible.

4. Plan minimization preliminaries

The plan P above accesses two different advisor databases to answer the query. It would
be useful to try and cut down redundant accesses, as this would improve the execution
cost of the plan. To do this however, we need more information about the sources. While
the materialized view characterizations of sources explicate the world relations that are
respected by each tuple returned by the source, there is no guarantee that all tuples satisfying
those properties are going to be returned by that source.

One way to support minimization is to augment the source descriptions with statements
about their relative coverage, using the so-called localized closed world (LCW) statements
(Etzioni et al., 1997). An LCW statement attempts to characterize what information (tuples)
the source is guaranteed to contain in terms of the global schema. Suppose, we happen to
know that the source ADDB is guaranteed to contain all the students advised by Weld
and Hanks. We can represent this information by the statement (note the direction of the
arrow):

ADDB(S, A) < advisor(S, A) AN A = “Weld”
ADDB(S, A) < advisor(S, A) A A = “Hanks”

Fair-wise rule subsumption. Given the LCW statement above, intuitively it is obvious that
we can get all the tuples satisfying the query Q by accessing just ADDB. We now need to
provide an automated way of making these determinations. Suppose we have two datalog
rules, each of which has one or more materialized view predicates in its body that also have
LCW statements, and we wish to determine if one rule subsumes the other. The obvious
way of checking the subsumption is to replace the source predicates from the first rule with
the bodies of their view description statements, and the source predicates from the second
rule with the bodies of the LCW statements corresponding to those predicates. We now
have the transformed first rule providing a “liberal” bound on the tuples returned by that
rule, while the transformed second rule gives a “conservative” bound. If the conservative
bound subsumes the liberal bound, i.e., if the transformed second rule “contains” (entails)
the transformed first rule, we know that second rule subsumes the first rule. Duschka (1997)
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shows that this check, while sufficient, is not a necessary condition for subsumption. He
proposes a modified version that involves replacing each source predicate s with s A v in
the first rule, and with s Vv [ in the second rule, where v is the view description of s, and
[ is the conjunction of LCW statements of s. If after this transformation, the second rule
contains the first, then the first rule is subsumed by it

Minimization under uniform equivalence. Pair-wise rule subsumption checks alone are en-
ough to detect redundancy in non-recursive plans (Levy, 1996; Friedman and Weld, 1997),
but are inadequate for minimizing recursive plans. Specifically, recursive plans correspond
to infinite union of conjunctive queries and checking if a particular rule of the recursive
plan is redundant will involve trying to see if that part is subsumed by any of these infinite
conjuncts (Ullman, 1989, pp. 908). We instead base our minimization process on the notion
of “uniform containment” for datalog programs, presented in Sagiv (1998). To minimize a
datalog program, we might try removing one rule at a time, and checking if the new program
is equivalent to the original program. Two datalog programs are equivalent if they produce
the same result for all possible assignments of EDB predicates (Sagiv, 1988). Checking
equivalence is known to be undecidable. Two datalog programs are uniformly equivalent
if they produce the same result for all possible assignments of EDB and IDB predicates.
Uniform equivalence is decidable, and implies equivalence. Sagiv (1998) offers a method for
minimizing a datalog program under uniform equivalence that we illustrate by an example
(and later adapt for our information gathering plan minimization). Suppose that we have
the following datalog program:

rl:p(X) = pY) A j(X,Y)
r2: p(X) - s(Y)A j(X,Y)
r3:s(X) - p(X)

We can check to see if r1 is redundant by removing it from the program, then instantiating
its body to see if the remaining rules can derive the instantiation of the head of this rule
through a simple bottom-up evaluation (Ullman, 1989). Our initial assignment of relations
is p(“Y”), j(*X”, “Y”). If the remaining rules in the datalog program can derive p(“X”’)
from the assignment above, then we can safely leave rule 1 out of the datalog program.
This is indeed the case. Given p(“Y”’) we can assert s(“Y”’) via rule r3. Then, given s(“Y”)
and j(“X”, “Y”), we can assert p(“X"’) from rule 2. Thus the above program will produce
the same results without rule r1 in it.

5. Greedy minimization of recursive plans

We now adapt the algorithm for minimizing datalog programs under uniform equivalence
to remove redundant sources and unnecessary recursion from the information gathering
plans. Our first step is to transform the query plan such that the query predicate is directly
related to the source calls. This is done by removing global schema predicates, and replacing
them with bodies of source inversion rules that define those predicates (see Ullman, 1989,
Section 13.4).” Our example plan P, from Section 3, after this transformation with the LCW
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statements in Section 4 looks as follows:

r2 : query(S, A) - ADDB(S, A)A A = “Weld”

r3 : query(S, A) - dom(S) ACONDB(S, A) A A = “Weld”
r4 . dom(S) - ADDB(S, A)
r5 : dom(A) - ADDB(S, A)
r6 : dom(A) - dom(S) A CONDB(S, A)

We are now ready to consider minimization. Our basic idea is to iteratively try to remove
each rule from the information gathering plan. At each iteration, we use the method of
replacing information source relations with their views or LCW’s as in the rule subsumption
check (see previous section) to transform the removed rule into a representation of what
could possibly be gathered by the information sources in it, and transform the remaining
rules into a representation of what is guaranteed to be gathered by the information sources
in them. Then, we instantiate the body of the transformed removed rule and see if the
transformed remaining rules can derive its head. If so, we can leave the extracted rule out
of the information gathering plan, because the information sources in the remaining rules
guarantee to gather at least as much information as the rule that was removed. The full
algorithm is shown in figure 3.

For our example plan above, we will try to prove that rule 73, containing an access to
the source CONDB, is unnecessary. First we remove r3 from our plan, then transform it
and the remaining rules so they represent the information gatherered by the information
sources in them. For the removed rule, we want to replace each information source in it with
a representation of all the possible information that the information source could return.

Replace all global schema predicates in P
with bodies of their inversion rules.
repeat
let r be a rule in P that has not yet been considered
let P be the program obtained by deleting rule r from P
and simplifying it by deleting any unreachable rules.
let P’ be P[s — sV ]
let 7’ be r[s — s A v]
if there is a rule, r; in 7/,
such that r; is uniformly contained by P’
then replace P with P

until each rule in P has been considered once

Figure 3. The greedy plan minimization algorithm.
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Specifically, we want to transform it to r[s +> s A v]. This produces:
query(S, A) - dom(S) ACONDB(S, A)
A advisor(S, A) A A = “Weld”
For the remaining rules, P — r3, we transform them into P’ = (P — r3)[s — s V1],

which represents the information guaranteed to be produced by the information sources in
the rules. For our example, we produce:

r21 : query(S, A) :- ADDB(S, A) A A = “Weld”
r22 : query(S, A) - advisor(S, A) N A = “Weld”
r23 : query(S, A) - advisor(S, A) A A = “Hanks”

dom(S) :- ADDB(S, A)

dom(S) - advisor(S, A)

dom(A) - ADDB(S, A)

dom(A) - advisor(S, A)

dom(A) - dom(S) A CONDB(S, A)

dom(A) - dom(S) A advisor(S, A)

When we instantiate the body of the transformed removed rule r3, we get the ground
terms: dom(“S”), CONDB(“S”, “A”), A = “Weld”, advisor(“S”, “A”). After evaluating P’
the remaining rules given with these constants, we find that we can derive query(“S”, “A”),
using the rule r22, which means we can safely leave out the rule r3 that we’ve removed
from our information gathering program.

If we continue with the algorithm on our example problem, we will not be able to remove

any more rules. The remaining dom rules can be removed if we do a simple reachability
test from the user’s query, as they are not referenced by any rules reachable from the query.

5.1.  Handling inter-source subsumption relations

The algorithm above only makes use of LCW statements that describe sources in terms of
the global schema. It is possible to incorporate inter-source subsumption statements into the
minimization algorithm. Specifically, suppose we are considering the removal of a rule r
containing a source relation s from the plan P. Let U be the set of inter-source subsumption
statements that have s in the tail, and U <7 be the statements of U with the < notation
replaced by:- notation (so U is a set of datalog rules). We have to check if r[s — s A v] is
uniformly contained in (P — r + U < 7%)[s — s V []. If so, then we can remove r.
As an example, suppose we know that s1 and s2 are defined by the views:

s1(x) - r(x)
s2(x) - r(x)

Suppose we know that s1 contains all tuples that s2 contains. This corresponds to the
statement

s1(x) -s2(x)
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Suppose we have the query:
Q(x) =r(x)

The corresponding maximally contained plan P will be:

Q(x) = r(x)
r(x) - sl(x)
r(x) - s2(x)

To recognize that we can remove third rule from this plan because of the source sub-
sumption statements, we check if that rule is uniformly contained in the program (P —r +
“s1(x):82(x))”, which is:

Q(x) = r(x)
r(x) - sl(x)
s1(x) - s2(x)

The uniform containment holds here since if we add the tuple s2(A) to the program,
bottom up evaluation allows us to derive s1(A) and subsequently r(A), thus deriving the
head of the removed rule.

5.2.  Heuristics for ordering rules for removal

The final information gathering plan that we end up with after executing the minimization
algorithm will depend on the order in which we remove the rules from the original plan. In
the example given in Section 5.1, suppose we had another LCW statement:

CONDB(S, A)<«—advisor(S, A)

In such a case, we could have removed r2 from the original information gathering plan P,
instead of removing 73. Since both rules will lead to the generation of the same information,
the removal would succeed. Once 72 is removed however, we can no longer remove 3. This
is significant, since in this case, a plan with rule 73 in it is much costlier to execute than the
one with rule 72 in it. The presence of r3 triggers the dom recursion through rules r4 - - - r6,
which would have been eliminated otherwise. Recursion greatly increases the execution cost
of the plan, as it can generate potentially boundless number of accesses to remote sources
(see Section 7). We thus consider for elimination rules containing non-recursive predicates
before those containing recursive predicates (such as dom terms). Beyond this, we also
consider any gathered statistics about the access costs of the sources (such as contact time,
response time, probability of access etc.) to break ties (Lambrecht and Kambhampati, 1997).

Complexity of Minimization. The complexity of the minimization algorithm in figure 3 is
dominated by the cost of uniform containment checks. As Sagiv (Sagiv, 1988) points out,



OPTIMIZING RECURSIVE INFORMATION GATHERING PLANS 131

the running time of the uniform containment check is in the worst case exponential in the
size of the query plan being minimized. However, things are brighter in practice since the
exponential part of the complexity comes from the “evaluation” of the datalog program.
The evaluation here is done with respect to a “small” database — consisting of the grounded
literals of the tail of the rule being considered for removal. Nevertheless, the exponential
complexity justifies our greedy approach for minimization, as finding a globally minimal
plan would require considering all possible rule-removal orders.

6. Plan execution

Once the datalog query plan has been minimized to remove any redundant source ac-
cesses, Emerac attempts to execute the minimized plan. In this section, we describe how
the techniques for datalog plan execution (c.f. Ullman, 1989) are adapted to the information
gathering scenario to efficiently execute Emerac’s information gathering plans.

Two efficient approaches for executing datalog programs are (1) top-down relational
evaluation and (2) bottom-up evaluation with magic sets transformation (Ullman, 1989).
In Emerac we use the top-down relational evaluation. The top-down relational evalua-
tion scheme attempts to avoid the inefficiencies of the top-down tuple-by-tuple evaluation
scheme by directly manipulating relations (c.f. Ullman, 1989, Algorithm 12.17). The stan-
dard version of this scheme involves generating a rule/goal graph for the datalog program
and evaluating the graph until fix point. To make this evaluation feasible as well as more
efficient, a “conjunct ordering” algorithm is used to re-order the conjuncts (Morris, 1988).

In order to adapt the top-down relational evaluation to information gathering, we make
the following extensions to it:

e We provide a framework for modeling the access restrictions on the source relations.
These restrictions include attributes that must be bound in order to access the relation, as
well as those attributes whose bindings will be ignored by the source.

e We describe a novel conjunct ordering approach that takes into consideration the access
restrictions, and qualitative costs in reordering the rules (and thereby the rule/goal graphs).

In the rest of this section, we elaborate on these two extensions. We should mention here
that in addition to these main changes, we also make another minor but important change
to the evaluation of the rule goal graph. The plan is executed by traversing the relational
operator graph. When ever a union node is encountered during traversal of the rule/goal
graph, new threads of execution are created to traverse the children of the node in parallel.
Use of separate threads allows us to reduce the response time as well as return answers to
the user asynchronously.

6.1. Ordering source calls during execution

A crucial practical choice we have to make during the evaluation of datalog programs is the
order in which predicates are evaluated. Our objective is to reduce the “cost” of execution,
where cost is a function of the access cost (including connection time), traffic costs (the
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number of tuples transferred), and processing cost (the time involved in processing the
data). Typically, traffic and processing costs are closely correlated.

In our cost model, we assume that the access cost dominates the other terms. This is
a reasonable assumption given the large connection setup delays involved in accessing
sources on the Internet. While the traffic costs can also be significant, this is offset to some
extent by the fact that many data sources on the Internet do tend to have smaller extractable
tables.®

Although the source call ordering problem is similar to the “join ordering” phase in the
traditional database optimization algorithms (Chaudhuri, 1998), there are several reasons
why the traditional as well as distributed-database techniques are not suitable:

e Join ordering algorithms assume that all sources are relational databases. The sources on
the Internet are rarely fully relational and tend to support limited types of queries. These
limitations need to be represented and respected by the join ordering algorithm.

e Join ordering algorithms in distributed databases typically assume that the cost of query
execution is dominated by the number of tuples transferred during execution. Thus, the
so-called “bound-is-easier” assumption makes good sense. In the Internet information
gathering scenario, the cost of accessing sources tends to dominate the execution cost.
Consequently, we cannot rely solely on the bound-is-easier assumption and would need
to consider the number of source calls.

e Typically, join ordering algorithms use statistics about the sizes of the various predicates
to compute an optimal order of joining. These techniques are not applicable for us as our
predicates correspond to source relations, about which we typically do not have complete
statistics.

e The fact that source latencies make up a significant portion of the cost of execution argues
for parallel (or “bushy”) join trees instead of the “left-linear” join trees considered by the
conventional algorithms (Chaudhuri, 1998).

6.1.1. Representing source access capabilities. As we mentioned, in the information
gathering scenarios, the assumption that information sources are fully relational databases
is not valid. An information source may now be a wrapped web page, a form interfaced
database, or a fully relational database. A wrapped web page isa WWW document interfaced
through a wrapper program to make it appear as a relational database. The wrapper retrieves
the web page, extracts the relational information from it, and then answers relational queries.
A form-interfaced database refers to a database with an HTML form interface on the web
which only answers selection queries over a subset of the attributes in the database. A
WWW airline database that accepts two cities and two dates and returns flight listings is an
example of a form interfaced database.

In our system, we use a simple way to inform the gatherer as to what types of queries
an information source would accept.” We use the “$” annotation to identify variables that
must be bound, and “%” annotation to identify unselectable attributes (i.e., those attributes
whose bindings cannot be pushed to the source to narrow down the selection). Thus a
fully relational source would be adorned source(X, Y), a form interfaced web-page that
only accepts bindings for its first argument would be adorned source(X, %Y), while a
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wrapped web-page source would have all its attributes marked unselectable, represented
as source(% X, %Y ). Finally, a form interfaced web-page that requires bindings for its first
argument, and is able to do selections only on the second argument would be adorned as
source($X,Y, %Z).

Often times, a single source might support multiple binding patterns. These are supported
by listing all the feasible binding patterns for that source. For example, if source S has two
binding patterns: S|($X, Y, %Z), S;(X, $Y, %Z), it means that S| can be accessed either
with X bound or with Y bound. In either case, the attribute Z cannot be selected at the
source (and must be filtered locally).

The “$” and “%” annotations are used to identify feasible binding patterns for queries
on a source, to establish generality relations between two binding patterns, and to ensure
that soundness is preserved in pushing variable selection constraints (such as “Y = 7”) into
source calls. Given a source with annotations S($X, %Y, Z), only the binding patterns of
the form S {’ ~~ are feasible (where “—" stands for either bound or free argument). Similarly,
we are not allowed to push selection constraints on Y to the source S; (they must be filtered
locally). Thus the call Sfbf is modeled as Sf’ﬂ filtered locally with the binding on Y.

A binding pattern S* is more general than S9 (written S” >, S7, if every selectable
(non “%”-annotated) variable that is free in ¢ is also free in p, but not vice versa. Thus,
for the source §; above, the binding pattern Si’bf is more general than the binding pattern
Sff b (while such a relation would not have held without “%” annotations). Intuitively, the
more general a binding pattern, the higher the number of tuples returned by the source when
called with that binding pattern. We ignore binding status of “%?-annotated variables since
by definition they will not have any effect on the amount of data transferred. Finally, we
define #(«) as the number of bound variables in « that are not %-annotated. Notice that
“>¢” holds only between binding patterns of the same source while “#(.)” can be used to
relate binding patterns of different sources.

6.1.2. Plans and costs. In Emerac, we support simple select/project/join queries on the
information sources. Given the access restrictions on the sources, plans for such queries
involve computing “dependent joins” (c.f. Chaudhuri and Shim, 1993; see below) over the
source relations. Moreover, it may not always be feasible to push selections to the sources.
As an example, consider two data sources S1(%X, Y), S>($Y, Z) that export the relations
Ri(X, Y) and Ry(Y, Z) respectively. Suppose we have a query

0X,Z2): —Ri(X,Y),R(Y,Z), X =“a”
The query rewriting phase in Emerac will convert this to
0X,2): —=51(X,Y), Y, 2), X =*“a”
It would seem that a good execution plan for the query would be to push the selection
over X to §; and do join between the two sources (in any order). However, since S; has

an unselectable attribute restriction on X, it is not possible to do a selection at the source.
Further, since $, requires Y to be bound, we need to do a dependent join between S; and
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S,. A feasible plan for this query would thus be:

Y
ox—a (S (X, ¥)) 2 S2 (v, Z)

Here source S is being called with the binding pattern ff, and the results are processed (at
the mediator) with a selection on X = “a”. Next, the source S, is called with the binding
pattern bf, where calls are issued once for each unique value of Y from the left sub-tree.
(This form of passing bindings from the left subtree of a join to the right subtree is called a
“dependent join,” and has been studied in the literature in connection with optimization in
the presence of foreign functions (Chaudhuri and Shim, 1993).)

In computing the plans, we are thus interested in deciding not only the order in which
the joins are carried out, as is the case in traditional system-R style query optimization
(Chaudhuri, 1998), but also about what specific binding patterns are used in source calls,
and how far it is feasible to push selections into query plans. We note that the execution
cost is a function of the access cost (including connection time), traffic costs (the number
of tuples transferred), and processing cost (the time involved in processing the data). Thus,
optimal plans will need to minimize:

Z(Cfl xng + C7 *Ds)

s

where 7, is the number of times a source s has been accessed during the plan and C} is the
cost per access, and C; is the per tuple transfer cost for source s, and Dy is the number of
tuples transferred by s. We note that this cost metric imposes a tension between the desire
to reduce network traffic, and the desire to reduce access costs. To elaborate, reducing the
network traffic involves accessing sources with less general binding patterns. This in turn
typically increases the number of separate calls made to a source, and leads to increased
access cost. To illustrate this further, consider the subgoals:

S1(X,Y) AS(Y, Z)

Suppose that the query provides bindings for X. How should we access the sources? The
conventional wisdom says that we should access S first since it has more bound arguments.
As aresult of this access, we will have bindings for ¥ which can then be fed into calls to S5.
The motivation here is to reduce the costs due to network traffic. However, calling S; and
using its outputs to bind the arguments of S, may also lead to a potentially large number of
separate calls to S, (one per each of the distinct ¥ values returned by S)),'? and this can lead
to a significant connection setup costs, thus worsening the overall cost. On the other hand,
calling S, without propagating bindings from §; would reduce the source calls to two. We
need to thus consider both the access costs and the traffic costs to optimize the ordering of
the sources.

Since we often do not have the requisite statistics to do the full cost-based optimization,
we propose an approach that is less dependent on full statistics. Our algorithm does not
make use of a quantitative measure of access cost or transfer costs, but rather a qualitative
measure of high and low cost of access to a source. We describe this approach in the next
section.
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6.1.3. An algorithm for ordering source calls. 'We make two important assumptions in
designing our source-call ordering algorithm:

e Exact optimization of the execution cost requires access to source selectivity statis-
tics. While such statistics may be available for intra-corporation information integration
scenarios (c.f. GARLIC (Haas et al., 1997)), they are harder to get in the case of au-
tonomous and decentralized sources on the Internet.

e We assume that by default source access costs (rather than network traffic) are the dom-
inating cost of a query plan. This becomes reasonable given the large connection setup
delays involved in accessing sources on the Internet. Many Internet sources tend to have
small extractable tables which help offset the traffic costs that at times can be proportional
to or greater than access cost.!!

If our assumptions about the secondary importance of network traffic costs were always
true, then we can issue calls to any source as soon as its binding constraints are met (i.e.,
all the variables requiring bindings have bindings available). Furthermore, we need only
access the source with the most general feasible binding pattern (since this will reduce the
number of accesses to the source). We do provide an escape clause for this assumption (see
below), as sometimes sources can transfer arbitrarily large amounts of data for calls with
sufficiently general binding patterns.

High-traffic Binding Patterns. 'To ensure that we don’t get penalized excessively for fo-
cusing concentrating primarily on access costs, we also maintain a table, called HTBP, of
least general (w.r.t. “>,”) source binding patterns that are still known to be high-traffic pro-
ducing. The general idea is to postpone calling a source as long as all the feasible binding
patterns for that source supported by the currently bound variables are equal to or more
general than a binding pattern listed in HTBP.

An underlying assumption of this approach is that while full source statistics are rarely
available, one can easily gain partial information on the types of binding patterns that cause
excessive traffic. For example, given a source that exports the relation

Book(Author, Title, ISBN, Subject, Price, Pages)

we might know that calls that do not bind at least one of the first four attributes tend to
generate high traffic. The information as to which binding patterns generate high traffic could
come either from source modeling phase, or could be learned with rudimentary probing
techniques. The latter approach involves probing the sources with a set of sample queries,
and logging for each source the binding patterns and the cardinalities of generated result
sets, identifying the HTBP patterns using a threshold on the result set cardinality.

There are two useful internal consistency conditions on HTBP. First, if S¢ is listed in
HTBP (where « is a binding pattern on ), then every S# where B >, « is also implicitly
in HTBP. Similarly, if §% is in HTBP, then it cannot be the case that the only free variables
in o are all “%?”-annotated variables.

A greedy algorithm to order source calls based on these ideas appears in figure 4. It is
along the lines of “bound-is-easier” type ordering procedures (Morris, 1988; Levy et al.,
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Inputs: FBP: table of forbidden binding patterns
HTBP: table of high traffic binding patterns
V := all variables bound by the head; V' .= {§

ClL--m]=
Array where C[4] lists sources chosen at i*” stage;
Pll---m]=

Array where P[i] lists sources postponed at i stage
for i := 1 to m (where m is the number of subgoals)
do begin

Cli) =0, P[] =0, V.=V UV’

for each unchosen subgoal S

do begin

B = All feasible binding patterns for .S w.r.t. V'
and FBP sorted using “>,” relation.
for cach § € B
do begin
if Bpenrppst(B=0")V (B4 05)
then begin
Push S with binding pattern g into C[i];
Mark S as ”chosen”;
add to V"’ all variables appearing in S,
end
end
if B # () and S is not chosen
then Push S7 into P[i], where
7y € B has the maximum #(.) value;
end
if Cli] = 0 and Pi] # 0
then begin
Take the source S# € P[i] with maximum #(.)
value and push it into C[i];
add to V all variables appearing in S;
else fail
end

Return the array C[1..7].

Figure 4. A greedy source call ordering algorithm that considers both access costs and traffic costs.
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1996). By default, it attempts to access each source with the most general feasible bind-
ing pattern. This default is reasonable given our assumption that access costs dominate
transfer costs. The default is overridden if a binding pattern is known to produce too
much traffic-by being present in HTBP (or being more general than a pattern present in
HTBP).

The procedure takes as input a rule with m subgoals and a given binding pattern for its
head. The input also includes FBP, a table of forbidden binding patterns for each source
(constructed from the “$” annotations), and the table HTBP, which contains all source
binding patterns that are known to be high-traffic producing. At each level i, the algorithm
considers the feasible binding patterns of each unchosen source from most general to least
general, until one is found that is not in HTBP. If such a binding pattern is found, that
source, along with that binding pattern, is added to the set of selected sources at that level
(maintained in the array of sets C[i]). If not, the source, along with the least general feasible
binding pattern (given the “$” restrictions as well as the currently available bound variables),
is temporarily postponed (by placing it in P[i]). If at the end of considering all unchosen
sources at level i, we have not chosen at least one source (i.e., all of them have only
high-traffic inducing binding patterns), then one of the sources from the list of postponed
sources (P[i]) is chosen and placed in C[i]. This choice is made with the “bound-is-easier”
assumption by selecting the source with the least general binding pattern (in terms of #(.)).

Anytime a source is placed in C[i], the set V of variables that currently have available
bindings is updated.'? This ensures that at the next stage more sources will have feasible, as
well as less general, binding patterns available. This allows the algorithm to progress since
less general binding patterns are also less likely to be present in the HTBP table. Specifically,
when C[i] is empty and P[i] is non-empty, we push only one source from P[i] into C[i]
since it is hoped that the updated V' will then support non-high-traffic binding patterns at
the later stages. (By consulting HTBP, and the set of unchosen sources, the selection of
the source from P[i] can be done more intelligently to ensure that the likelihood of this
occurrence is increased).

Notice that each element of C is a (possibly non-singleton) set of source calls with
associated binding patterns (rather than a single source call)—thus supporting parallel
source calls which reduce the time spent on connection delays. Thus, C[i] may be non-
empty for only a prefix of values from 1 to m. The complexity of our ordering algorithm
is O(n?) where n is the length of the rule. Note that HTBP table determines the behavior
of our algorithm. An empty HTBP table makes our algorithm to focus on reducing source
accesses (similar to Yerneni and Li (1999)), whereas presence of all source binding patterns
in HTBP table makes the algorithm focus on reducing network traffic by using a variant of
bound-is-easier (Morris, 1988). When some source patterns are present in the HTBP table
our algorithm attempts to reduce both access and transfer costs, as appropriate.

6.1.4. Example. Figure 5 shows an example illustrating the operation of the source-call
ordering procedure. We have two sources in the query plan: DP(A,T,Y), which is a source of
all database papers, and SM98(T,U), which is a source of all papers from SIGMOD-98. The
query binds the year to 1998, and wants the author, title and URL tuples. We will illustrate
the algorithm under three different scenarios.
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Case 1. In the first case, shown on the left, HTBP contains DP??”?, and SM98%". Notice
that this means that every possible call to these sources is considered to be high-traffic.
Given that the query binds one variable, Y, the only possible source call bindings we have
are: DP///, DP//?, and SM98//. Among these, the algorithm finds no possible feasible
source call that is not in HTBP-all of them are more general than the source call patterns
stored in HTBP. Thus, it winds up picking up DP//? since this is the one with most bound
variables. At this, point, the second iteration starts with one remaining source SM98, and
bindings for three variables, A, T', Y (where A and T are supplied by the first call). The two
possible source calls are SM98// and SM98%/, both of which are again in the HTBP. So, the
algorithm picks SM98”/. The query plan thus involves doing a dependent join (Chaudhuri
and Shim, 1993) between DP//* and SM98"/, with the unique titles retrieved by the DP

tuples being used to invoke SM98 (D P/7P(A, T, Y) X SM98/ (T, U))

Case 2. In the second case, only the call DP//? is in the HTBP. Thus, in the first iteration,
neither of the DP calls are feasible, but the SM98 call is. So, SM98/7 is chosen. In the
second iteration, we have four DP calls, of which three are in HTBP. The call DP/%/
is however not in HTBP, and is thus feasible. The query plan thus involves a dependent
join between SMT98 and DP with the URL values from SM98 call being passed to DP

(SM98//(T, U)X DPTP (A, T, Y)).

Case 3. In the third case, HTBP is empty. Thus, we simply pick the most general feasible
source calls in the very first iteration—leading to calls SM98// and DP///. The query plan
is thus a (non-dependent) join between the sources SM98 and DP (DP///(A, T, Y)X
SM98/I(T, U)).

*Sources : DP(A:Author,T:Title,Y:Year)
SM98(T:Title,J:URL)

“Query :  Q(A,T,U,1998)

*Plan:  Q{A,T,U,1998) :- DP(A,T,1998) & SM98(T.U)

HTBF: {DP®b SM98 bb} HTBP: {DP"™} HTBP: {3

Step 1. V={¥} Step 1. V={Y} Step 1. V={r}

Cand: DP"DP™ SMI8" | Cand: DP"DP" SM38 " Cand : DPMDP™ SMaa"
P[1] = { DP™ SM98 '} C[1] = Sm9g " C[1]=smses " pp™
C[1]= DP™ Step 2. V={Y, U, T}

Step 2. V={AT.Y} Cand: DP™ DP'™ Dp™ ppie
Cand: SM98 " SM98 ¥ .
C[2]= DP™
P[2]={SMm38

C[2]=SMa8 b

Figure5. Exampleillustrating the operation of the source-call ordering procedure. Note that based on the contents
of the HTBP table, the procedure can degenerate into bound-is-easier type ordering.
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6.1.5. Converting the call graph to a join tree. When the algorithm in figure 4 termi-
nates,the array C specifies which sources are to be called at each stage, and what binding
patterns are to be used in those calls—specifically, all the source calls in C[i] are issued in
parallel before those in C[i + 1]. There is still the matter of what is the exact join tree that
is to be executed at the mediator to derive answers from these source calls.

Consider running the algorithm on the query with the given binding restrictions

OX, Y, W,Z): =SV X, Y) A S (v, 2) A SIT(T, Wy A SP (W, 2)

We also assume that HTBP is empty.'* Our algorithm will end with C[1] = { Slf 7, S{f }
and C[2] = {Sb/ . Sff '}. Analyzing the common variables among the sources, it is easy to
represent this as a call graph as shown in figure 6—which has both directed and undirected
arcs. Arcs correspond to shared variables between source calls. A directed arc from S1 to
S2 states that a shared variable needs to be bound by S1 before reaching S2.

The join tree can be greedily derived from the call graph by combining vertices in the
graph till it becomes a single node. The vertex combination is done by traversing the graph
in a topologically sorted order. All the vertices that have directed arcs between them are first
combined (by doing a dependent join (Chaudhuri and Shim, 1993) between the correspond-
ing sources). When the resulting graph doesn’t have any directed arcs, Then the undirected
arcs are processed by converting them to joins. Finally, if we are left with a disconnected
graph, the corresponding subtrees are joined by a cartesian product. Accordingly converting
the example in figure 6 gives us the following plan:

As the example above shows, our approach supports bushy join trees (instead of sticking
merely to left-linear joint trees). As is evidenced by this example (and pointed out first
in Florescu et al. (1999)), bushy join trees allow us to avoid cartesian products in more
situations than left linear join trees alone would—when there are binding restrictions on
sources.

z
w

Join Graph

s—2 L 52
= G =/

Call Graph

Figure 6. Converting a call graph into a join graph.
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7. Implementation and evaluation

We will start by describing the architecture and implementation of Emerac (Section 7.1).
Next, we will discuss a variety of experiments we conducted to evaluate its effectiveness.
Section 7.2 evaluates the effectiveness of the plan minimization routines described in
Section 5 in terms of their costs and benefits. Section 7.3 describes the experiments we
conducted to evaluate the techniques for improving the plan execution that we presented in
Section 6. This section starts with an empirical validation of our assumptions about the dom-
ination of source access costs (Section 7.3.1). The source call ordering scheme is evaluated
over simulated sources in Section 7.3.2, and over sources on the Internet in Section 7.3.3.

7.1.  Architecture of Emerac

Emerac is written in the Java programming language, and is intended to be a library used
by applications that need a uniform interface to multiple information sources. Full details
of Emerac system are available in Lambrecht (1998). Emerac presents a simple interface
for posing queries and defining a global schema. Emerac is internally split into two parts:
the query planner and the plan executor. The default planner uses algorithms discussed in
this paper, but it can be replaced with alternate planners. The plan executor can likewise
be replaced, and the current implementation attempts to execute an information gathering
plan in parallel after transforming it into a relational operator graph.

The query planner accepts and parses datalog rules, materialized view definitions of
sources, and LCW statements about sources. Given a query, the query planner builds a source
complete information gathering plan (using the method from (Duschka and Genesereth,
1997)) and attempts to minimize it using the minimization algorithm presented in Section 5.

The optimized plan is passed to the plan executor, which transforms the plan into a
relational operator graph. The plan executor makes use of “$” and “%?”-adornments to
determine the order to access each information source in a join of multiple sources, as
described in this paper. The plan is executed by traversing the relational operator graph.
When a union node is encountered during traversal, new threads of execution are created to
traverse the children of the node in parallel. Use of separate threads also allows us to return
answers to the user asynchronously, facilitating return of first tuples faster.

Handling Recursion during execution. Since information gathering plans can contain
recursion, handling recursive plans during execution becomes an important issue. Since each
recursive call to a node in the 1/g graph (Ullman, 1989) can potentially generate an access
call to a remote source, evaluating a program until it reaches fix point can get prohibitively
expensive. Currently, we take a practical solution to this problem involving depth-limited
recursion. Specifically, we keep a counter on each node in the r/g graph to record how many
times the node has been executed. When the counter reaches a pre-specified depth-limit,
the node would not be executed, and an empty set will be returned to represent the result of
executing the node. Since the recursion induced by the binding restrictions does not involve
any negation in the tail of the rules, this strategy remains sound—i.e., will produce only
correct answers.
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Wrapper Interface. Emerac assumes that all information sources contain tuples of infor-
mation with a fixed set of attributes, and can only answer simple select queries. To interface
an information source with Emerac, a Java class needs to be developed that implements a
simple standard interface for accessing it. The information source is able to identify itself so
as to provide a mapping between references to it in materialized view and LCW definitions
and its code.

In order to facilitate construction of wrappers for web pages, a tool was created to
convert the finite state machine based wrappers created by SoftMealy (Hsu, 1998) into
Java source code that can be compiled into information sources usable by Emerac. We
have successfully adapted 28 computer science faculty listing web pages wrapped with
SoftMealy into information sources usable by Emerac.

7.2.  Evaluating the effectiveness of plan minimization

We used the prototype implementation of Emerac to evaluate the effectiveness of the op-
timization techniques proposed in this paper. We used two sets of experimental data. The
first were a set of small artificial sources containing 5 tuples each. Our second data set
was derived from the University of Trier’s Database and Logic Programming (DBLP) on-
line database, which contains bibliographical information on database-related publications.
Individual sources used in the experiments corresponded to different subsets of DBLP
data (ranging from 128 to 2048 tuples). In each case, some of the sources are uncon-
strained, while others have binding restrictions (leading to recursive plans). To normalize
for differences caused by individual source implementations, we extracted the data into
tables which we stored on disk as Java serialized data. All experiments were conducted
using a simple wrapper (written in compiled Java) to return the contents of the serialized
tables.

The sources delay answering each query for a set period of time in order to simulate
actual latency on the Internet. In all our experiments, this delay was set to 2 seconds, which
is quite reasonable in the context of current day Internet sources.

Utility of minimization. To see how the planner and executor performed with and without
minimization, we varied the number of duplicate information sources available and relevant
to the query, and compared the total time taken for optimization (if any) and execution.
Given that the minimization step involves an exponential “uniform containment” check, it
is important to ensure that the time spent in minimization is made up in improved execution
cost. Notice that we are looking at only the execution time, and ignoring other costs (such
as access cost for premium sources), which also can be reduced significantly with the
minimization step. The naive method simply builds and executes source complete plans.
The “LCW” method builds source complete plans, then applies the minimization algorithm
described in Section 5 before executing the plans. For both methods, we support fully
parallel execution at the union nodes in the /g graph. Since in practice, recursive plans are
handled with depth bounded recursion, we experimented with a variety of depth limits (i.e.,
the number of times a node is executed in the rule-goal graph), starting from 1 (which in
essence prunes the recursion completely).
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Figure 7. Results characterizing utility of minimization algorithm.

The plots in figure 7 show the results of our experiments. Plot a is for the artificial sources,
and shows the relative time performances of LCW against the naive algorithm when the
number of redundant constrained sources is increased. In this set of experiments, LCW
statements allow us to prove all constrained sources to be redundant, and the minimiza-
tion algorithm prunes them. The y-axis shows the cumulative time taken for minimization
and execution. We note that the time taken by the LCW algorithm remains fairly indepen-
dent of recursion depth as well as number of constrained sources. The naive algorithm,
in contrast, worsens exponentially with increasing number of constrained sources. The
degradation is more pronounced for higher recursion depths, with the LCW method out-
performing the naive one when there are two or more redundant constrained sources. Plot
b repeats the same experiment, but with the sources derived from the DBLP data. The
sources are such that the experimental query returns upto 256 tuples. The experiment is
conducted for recursion depth limits 1 and 3. We note once again, that LCW method re-
mains fairly unaffected by the presence of redundant constrained sources, while the naive
method degrades exponentially. Plot ¢ considers DBLP data sources in a scenario where
some constrained sources are left unsubsumed after the minimization. As expected, LCW
performance degrades gracefully with increased number of constrained sources. Naive al-
gorithm would not have shown such graceful degradation as no sources would be removed
through subsumption.

7.3.  Evaluating the effectiveness of source call ordering

In this section, we report on a set of experiments conducted on both artificial and real Internet
sources to evaluate the effectiveness of our algorithm (referred to as HT). We compare the
performance with two other greedy approaches for join ordering namely Bound-is-easier
(BE) and Reduced Access (RA). For sources where HTBP information cannot be ascertained
and hence is not available, HT will work as RA. The aim of our experiments is to demonstrate
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that our algorithm outperforms algorithms that concentrate on reducing only tuple transfer
cost (as in BE) or only source access cost (as in RA). BE corresponds roughly to the algorithm
used in Information Manifold (Levy et al., 1996) while RA is similar to the algorithm
proposed in Yerneni and Li (1999) for reducing source access costs. The experiments also
indirectly show that the kind of coarse statistics that we assume in our algorithm are likely
to be available easily in practice.

7.3.1. Verifying the dominance of access cost. An important assumption we made in
developing the execution algorithm is about dominance of source access cost over tuple
transfer cost for sources on the Internet. In this section we describe a simple empirical
validation of this hypothesis. We consider access cost as the cost incurred in setting up a
connection to a source. Transfer cost is incremental cost for each transaction. We considered
two sources, an internet source http://dvs1.dvlabs.com/adcritic/ and a local intranet source.
We recorded the time taken to download various files with sizes ranging from 10KB to
25MB from both the sources. Each byte transfer is considered as a transaction. Average
values were taken after 4 rounds of data transfer for each file.

Though access (a) and transfer time (¢) for a source are not known, they can be calculated
from a plot of downloading time vs. filesize as given in figure 8. Source access time (a) is
the y-intercept and tuple transfer time (¢) is the slope of the graph.

As can be seen from figure 8 the access cost for internet source (nearly 5 sec) is much
higher than that for intranet source (92 msec). Tuple transfer time, on the other hand is
nearly same for both types of sources. This validates our assumption that for data sources
residing on the Internet, source access cost is considerably higher than tuple transfer cost.

7.3.2. Source call ordering results for artificial sources. Below we present results from
the performance evaluation of HT, BE and RA algorithms for queries over sources mimick-
ing Internet sources. We derived the sources from the relations present in the “Enterprise
Schema” used in Elmasri and Navathe (1994). The sources are designed as Java servlets
accessible from a server on the Intranet. The servlets accept a query and return relevant
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Figure 8. Comparison of access and transfer cost.
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tuples extracted from data stored in flat files. To model the latency exhibited by Internet
sources, we delay the response from the servlets. The delay is proportional to the number of
tuples in the resultset. Some of the servlets were designed to also mimic the bursty behaviour
(i.e., sending sets of tuples interspersed with delays (Urhan and Franklin, 1998)) shown by
some Internet sources. A detailed description of sources in terms of their attributes and their
forbidden binding patterns is given below:

Employeeffffffff(N :Name,S:SSN, B: Dateof Birth, A: Address, X : Sex,
Y :Salary, U : Manager, D : Dept No)

Dept"/7(Dn: DeptName, D : DeptNo, U : Manager, T : MrgStart Date)
Deptloc’T (D : DeptNo, Dc: Location)

Worksonfff(S :SSN, P: ProjectlD, H: Hours)

Project/’//(Pn: ProjectName, P Projectld, Dc: Location, D : DeptNo).

The subscripts on source names describe forbidden binding pattern derived from “$”
and “%” annotations for the sources. Intuitively, FBP and HTBP will have fewer patterns
than the set of feasible binding patterns for a source. Hence we use them to represent the
infeasible/costly binding patterns thereby reducing the look up time for our experiments.

The Table 1 lists source binding patterns that generate large resultsets for most of the
values given to the bound attributes. Each column in Table 1 is an HTBP table. Thus given
Deptloc(D,““Houston) and the HTBP table of Deptloc, one can see that pushing the value
Location = “Houston” to the source Deptloc will result in high traffic. The source Dept.
has an empty HTBP table. Hence any query with a binding pattern that is not forbidden
for Dept can be issued to Dept. But we cannot assume a source with no HTBP to have
low cost. Therefore we deliberately modeled Dept to simulate a source with high response
time.

The graphs in figures 9-11 compare the average values of execution time, size of result
sets and number of source calls for BE, HT and RA. The results were obtained by running
queries Q1, Q2 and Q3 using these algorithms. The queries were generated with 3 different
binding patterns per source and 5 different binding values per binding pattern. The times
for running the source call ordering algorithms themselves were minute in comparison with
the execution costs.

Queryl: Q(N,S,B,A,X,Y,U,D,Dn,U, T, Dc)

Plan:Q(N,S,B,A,X,Y,U,D,Dn,U,T, Dc):—
Employee(N,S,B,A,X,Y,U,D),Dept(Dn,D,U,T), Deptloc(D,Dc).

Table 1. HTBP for artificial sources.

Employee Dept. Deptloc Workson Project
fEEEELEE b,b b.f,f f,f,b,f
fEEEELED b,f f,b,f f.fb,b

fLEEEEb,b f,b f.f,b
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Query2:Q(D, Dc, S, P, H, Pn)
Plan:Q(D, D¢, S, P, H, Pn): —
Deptloc(D,Dc),Workson(S,P,H),Project(Pn,P,Dc,D).

Query3:Q(Dn,D,U,T, Dc, S, P, H, Pn)
Plan:Q(Dn,D,U,T, Dc, S, P,H, Pn): —
Dept(Dn,D,U,T),Deptloc(D,Dc),Workson(S,P,H), Project(Pn,P,Dc,D).

From figure 11, we can see that RA always optimizes the number of source calls and has
the least number of source calls for all 3 queries. BE on the other hand focuses on having
smaller result sets and thus to reduce the transfer cost, as is evident from figure 10. But no
approach is a clear winner when the total execution cost is considered (see figure 9). Our HT
algorithm gives lowest execution cost for 2 out of the 3 cases considered. We can see that
HT tries to reduce both number of source calls (figure 11) and/or resultset size (figure 10)
while executing the queries. For Q2 and Q3, HT has source number of source calls equal
to BE but smaller result sets compared to BE and RA and hence achieves lower execution
cost. HT strikes a middle ground compared to BE and RA and tries to optimize both access
cost and transfer cost. Thus HT generates low cost execution plans more often than BE and
RA.

The case where RA is better than HT in figure 9 shows that HTBP is not always perfect.
We consider a binding pattern as HTBP if it generates large resultsets for most binding
values (without regard to attribute selectivities). It could well be the case that for a specific
instantiation of the binding pattern (i.e. for particular value(s) of attribute(s)), a HTBP may
not generate high traffic. RA which does not consider HTBP thus makes source calls using
this binding pattern and emerges a winner.

7.3.3. Source call ordering results for Internet sources. The next set of tests were done
on data sources derived from the DBLP Bibliography of Al and Database papers maintained
by Michael Ley at http://dblp.uni-trier.de. We use a simple scenario with the execution plan
using only 2 sources:

Dp17b15.£71f (A:Author, Co:Co-Author, C:Conference, Y:Year)
Dp2//1 (A:Author, T:Title, C:Conference, Y:Year)

We derive two sources Dpl and Dp2 shown above from the DBLP Bibliography by pro-
jecting the corresponding relations from DBLP. Specifically, we developed a wrapper over
DBLP that accepts queries over relations of Dpl and Dp2, forwards them to DBLP and
extracts the relevant relation from the resultset given by DBLP. Queries accepted by the
wrapper have to satisfy the FBP associated with the projected relation. The subscripts on
source names give the forbidden binding patterns (FBP). HTBP for these sources are shown
in Table 2. These HTBP statements can be determined by rudimentary probing techniques.
Specifically, we execute queries on sources with various binding pattern/value combinations
and log the resultset sizes and execution times. Given similar resultset sizes for two sources,
we cannot deduce that both binding patterns are HTBP since the sources may have differing
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Table 2. HTBP for real sources Dpl and Dp2.

Dp1(A,Co,C,Y) Dp2(A,T,C,Y)

FB.,B.B FEEB
FEB,F
FEB,EF
B.EEF

Table 3. Results of accessing Dpl, DP2 using BE and HT.

BE HT
Source calls 20.8/15.3 12.7/11.5
Join size 8.8/9.0 8.2/7.9
Time 30.5/21.8 18.8/16.4

processing power and database size. Hence we store the execution time for queries on a
source and use these to determine the average response time and resultset size returned by
the source. Any binding pattern that generates larger result sets than average resultset size
or has considerably higher response time than the average case is considered HTBP. The
binding pattern restriction for Dp1 is Dpl ($A, %Co, C, Y) and that for Dp2 is Dp2 ($A,
T, C,Y). The “%” annotation describes that the attribute has to be filtered locally. But both
the sources must bind the attribute ‘Author’ to retrieve tuples. The experimental setup is
thus:

Query : Q(A,Co,T,C,Y)
Plan : Q(A,Co,T,C,Y): — Dp2(A,T,C,Y),Dpl(A,Co,C,Y)

Table 3 shows the performance of various algorithms for queries over Dpl and Dp2.
Performance is measured as the number of source calls made, resultset size (Joinsize) and
the query response time (Time). The time incurred in executing the source call ordering
algorithms were negligible compared to the execution costs. The results show that HT
performs better than BE for these sources. The example also shows that the HTBP statistics
can be collected for real Internet sources and that our algorithm does perform better than
other existing source call algorithms.

8. Related work

As we mentioned, systems that consider integration in the context of information gathering
use LAV approach to model sources. In the LAV approach, sources are seen as materialized
views over the mediated schema. The user query, posed in terms of the mediator schema,
has to be re-written solely in terms of source calls. Although this problem, on the surface,
is similar to query rewriting in terms of materialized views (Chaudhuri et al., 1995), there
are several important differences that complicate the query rewriting:
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e We are only interested in rewritings that are entirely in terms of source relations.

e The sources may not contain all tuples satisfying their view definition. This leads to
the so-called open-world assumption, and changes the objective of query planning from
finding a “sound and complete” query plan to finding a “sound and maximally contained”
(Duschka and Genesereth, 1997) query plan (a query plan P for the query Q is maximally
contained if there is no other query plan P’ for Q that can produce more answers for Q
using the same set of sources).

e The materialized views represented by the sources may have a variety of access restric-
tions. In such a case, the maximally contained query plan may be a “recursive” query
plan (or equivalently, an infinite union of conjunctive plans).

IM (Levy et al., 1996) and Occam (Kwok and Weld, 1996) are among the first systems
to consider query planning in the LAV approach. Both these systems search through the
space of conjunctive query plans, to find sound rewritings of the user query, and optimizing
them for efficient execution.

There are two problems with the approaches used by IM and Occam, when some sources
have access restrictions. To begin with, as shown by Duschka and Genesereth (1997);
Duschka and Levy (1997), maximally contained plans will be recursive when we have
sources with access restrictions. The approach of finding sound conjunctive query plans,
used by IM and Occam essentially “unfolds” the recursion,'* forcing them to handle infi-
nite unions of conjunctive plans. IM gets around this by sacrificing guarantees of maximal
containment. Specifically, as mentioned in Duschka and Levy (1997), while IM ensures
that the query plans returned by the system are feasible (i.e., respect all access restric-
tions), it does not guarantee maximally contained plans. Occam (Kwok and Weld, 1996)
was the first to formally recognize that the maximally contained plan may correspond
to an infinite union of conjunctive query plans. It searches in the space of conjunctive
query plans of increasing lengths, pruning candidate plans when they are found to be
redundant.

The unfolding of recursion inherent in IM and Occam also leads to inefficient query plan
execution. Specifically, the unfolded conjunctive query plans found by these algorithms
tend to have a significant amount of overlapping structure, and executing them separately
leads to significant redundant computation.

Emerac uses Duschka’s source inversion algorithm (Duschka, 1997) to generate a dat-
alog query plan that is maximally contained with respect to the given query. The query
minimization and optimization are done directly on the datalog query plan, without con-
verting it to (a potentially infinite union of) conjunctive query plans. Emerac thus
avoids the redundant processing involved in executing unfolded conjunctive query
plans.

Friedman and Weld Friedman and Weld (1997) offer an efficient algorithm for mini-
mizing a non-recursive query plan through the use of LCW statements. Their algorithm is
based on pair-wise subsumption checks on conjunctive rules. Recursive rules correspond to
infinite unions of conjunctive queries, and trying to prove subsumption through pair-wise
conjunctive rule containment checks will not be decidable. The approach in Duschka (1997)
also suffers from similar problems as it is based on the idea of conjunctive (un)foldings
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of a query in terms of source relations (Qian, 1996). In the case of recursive queries or
sources with binding restrictions, the number of such foldings is infinite. In contrast, our
minimization algorithm is based on the notion of uniform containment for recursive datalog
programs (Sagiv, 1988). This approach can check if sets of rules subsume a single rule. Thus
it can minimize a much greater range of plans.

Execution optimization in Emerac involves ordering the calls to the sources so as to
reduce the access and transfer costs. There are some similarities between this source call
ordering and the join ordering in traditional databases. In contrast to traditional databases
however, we cannot assume access to full statistics in the case of information gathering.
For example, the execution ordering algorithm used in the Information Manifold (IM)
system (Levy et al., 1996) generalizes the bound-is-easier style approach (first proposed
as part of the Nail! system (Morris, 1988)) to work with Internet sources with multiple
capability records (essentially, multiple feasible binding patterns per source), and to reduce
tuple transfer costs by pushing selections to the sources. Our work can be seen as further
extending the IM algorithm such that it uses coarse information about the result cardinality
for each feasible binding pattern, as well as unselectable attribute limitations. Unlike the IM
algorithm, we also explicitly consider optimizing both source access cost and tuple transfer
cost. In contrast to IM which focuses on the tuple transfer costs, Yerneni and Li (1999) focus
exclusively on minimizing access cost. The algorithm described in this paper may be seen as
striking a middle ground between minimizing source access costs alone or minimizing tuple
transfer costs alone. The experiments in Section 7.3 establish the importance of considering
both types of costs. Finally, while use of heuristic algorithms for query optimization is one
approach for dealing with lack of source statistics, another approach would be to learn the
statistics. In Gruser and Zadorozhny (2000) describe an approach for online learning of
response times for Web-accessible sources.

It should be noted that systems that address integration in the context of federated database
systems do use more cost-based approaches. For example, the issue of join ordering in the
context of heterogeneous distributed databases is considered in the DISCO (Raschid et al.,
1998) and Garlic (Haas et al., 1997) projects. In contrast to our approach, both these projects
assume availability of full statistics for the sources being integrated, and thus concentrate on
cost-based optimization methods. For example, the Garlic optimizer assumes full knowl-
edge of the statistics about the databases being integrated as well as their access and query
support capabilities. The query processing capabilities are represented as a set of rules which
are used by a Starburst-style optimizer (Lohman, 1989) to rewrite the mediator query. The
statistics are used for cost-based optimization. In the DISCO (Raschid et al., 1998) approach,
the optimizer assumes that the wrapper for each source provides a complete cost model for
the source. The main difference between our approach and the Garlic approach is in terms
of the granularity of knowledge available about the information sources being integrated.
While the Garlic and DISCO approaches are well suited for federated database systems,
where there is some level of central authority, they are less well suited for integration in
the context of information gathering, where the sources are autonomous and decentralized,
and are under no obligation to export source statistics. Our approach relies on more coarse-
grained statistics and thus can get by without insisting on full knowledge of the source
capabilities and statistics. In our current Havasu data integration project, we are pursuing a



150 KAMBHAMPATI ET AL.

complementary approach—that of learning the needed statistics, and then using them as the
basis for cost-based query optimization (Nie and Kambhampati, 2001; Nie et al., 2002; Nie
et al., 2001).

9. Conclusion

In this paper, we considered the query optimization problem for information gathering plans,
and presented two novel techniques. The first technique makes use of LCW statements
about information sources to prune unnecessary information sources from a plan. For this
purpose, we have modified an existing method for minimizing datalog programs under
uniform containment, so that it can minimize recursive information gathering plans with
the help of source subsumption information. The second technique is a greedy algorithm
for ordering source calls that respects source limitations, and takes both access costs and
traffic costs into account, without requiring full source statistics. We have then discussed
the status of a prototype implementation system based on these ideas called Emerac, and
presented an evaluation of the effectiveness of the optimization strategies in the context of
Emerac. We have related our work to other research efforts and argued that our approach
is the first to consider end-to-end the issues of redundancy elimination and optimization in
recursive information gathering plans.

We are currently exploring the utility of learning rudimentary source models by keeping
track of time and solution quality statistics, and the utility of probabilistic characterizations
of coverage and overlaps between sources (Nie et al., 2002; Nie et al., 2001). We are also
working towards extending our current greedy plan generation methods, so as to search a
larger space of feasible plans and to make the query optimization sensitive to both coverage
and cost (Nie and Kambhampati, 2001).

Notes

1. Notice that this is different from the capability provided by the existing search engines, which supply a list
of pointers to the relevant sources, rather than return the requested data.

2. See (Lambrecht and Kambhampati, 1997) for a tutorial.

3. Inother words, executing a maximally contained plan guarantees the return of every tuple satisfying the query
that can be returned by executing any other query plan.

4. It would of course be interesting to try and “learn” the source statistics through judicious probing. See (Zhu
and Larson, 1996) for a technique that does it in the context of multi-databases.

5. Things get a bit more complicated when there are variables in the body of the view that do not appear in
the head. During inversion, every such variable is replaced with a new function term fy (X1, ..., X;;). The
function symbols can then be eliminated by a flattening procedure, as there will be no recursion through them
in the eventual plan, resulting in a datalog program in the end.

6. The next section contains an example illustrating this strategy.

7. Note that this step is safe because there is no recursion through global schema predicates. This step also
removes any new predicates introduced through flattening of function symbols.

8. Even those sources that have large tables regulate their data output, by paginating the tuples and sending
them in small quanta (e.g., first 10 tuples satisfying the query), which will avoid the network congestion if
the users needed only a certain percentage of the tuples satisfying the query.

9. More elaborate languages for representing source access capabilities are proposed in (Garcia-Molina et al.,
1999; Vassalos and Papakonstantinou, 1997).
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10. Unless S, accepts a list of possible values for X in a single call (Garcia-Molina et al., 1999).

11. Even those that have large tables regulate their data output, by paginating the tuples and sending them in
small quanta (e.g., first 10 tuples satisfying the query), which will avoid the network congestion if the users
needed only a certain percentage of the tuples satisfying the query.

12. The reason we keep an auxiliary variable V' to collect the bound variables within the second “for” loop and
add them to V only outside of the inner loop is that we want any source calls being made in parallel within
the same plan step to not depend on bindings that only become available in parallel branches of execution.

13. This example is inspired by the discussion in (Florescu et al., 1999).

14. IM’s bucket algorithm also uses a “generate-test” approach, generating candidate conjunctive query plans,
and ensuring their soundness by testing if they are contained in the query. Duschka (1997) points out the
disadvantages of this generate/test approach.
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